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Abstract Quasi-Newton and truncated-Newtonmethods are popular methods in opti-
mization and are traditionally seen as useful alternatives to the gradient and Newton
methods. Throughout the literature, results are found that link quasi-Newton methods
to certain first-order methods under various assumptions. We offer a simple proof to
show that a range of quasi-Newton methods are first-order methods in the definition of
Nesterov. Further, we define a class of generalized first-order methods and show that
the truncated-Newton method is a generalized first-order method and that first-order
methods and generalized first-order methods share the same worst-case convergence
rates. Further, we extend the complexity analysis for smooth strongly convex problems
to finite dimensions. An implication of these results is that in a worst-case scenario, the
local superlinear or faster convergence rates of quasi-Newton and truncated-Newton
methods cannot be effective unless the number of iterations exceeds half the size of
the problem dimension.
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1 Introduction

Quasi-Newton and truncated-Newton methods have been widely used since their ori-
gin. Arguments for their use are that their convergence is faster than that of the classical
gradient method, due to curvature information and simple implementations and that,
in the limited-memory form and when using truncated-Newton, they are suitable for
large-scale optimization. These features have made the methods a textbook must-have
[1–3]. In this paper,wewill analyze someof themore commonquasi-Newtonmethods,
specifically quasi-Newton methods of the Broyden [4] and Huang [5] families, which
include the well-known variants Broyden–Fletcher–Goldfarb–Shanno (BFGS) [6–9],
symmetric rank 1 (SR1) [4,10–13] and Davidon–Fletcher–Powell (DFP) [14,15] (see
also [16]).Wewill also consider the limited-memoryBFGS (L-BFGS)method [17,18].
Local convergence of these algorithms is well studied, see [2,3] for an overview.

Many connections exist between quasi-Newton methods and first-order methods.
The DFPmethod using exact line search generates the same iterations as the conjugate
gradient method for quadratic functions [19] (see also [20, pp. 57] and [21, pp. 200–
222]). A more general result is that the nonlinear Fletcher–Reeves conjugate gradient
method is identical to the quasi-Newton Broyden method (with exact line search and
initializedwith the identitymatrix) when applied to quadratic functions [2, The. 3.4.2].
These connections only apply for quadratic functions, but stronger properties and
connections are also known. A memoryless BFGS with exact line search is equivalent
to the nonlinear Polak–Ribiére conjugate gradient methods with exact line search
[22] (note that the Hestenes-Stiefel and Polak–Ribiére nonlinear conjugate gradient
methods are equivalent when utilizing exact line search [3, §7.2]). The DFP method
with exact line search and initialized with the identity matrix is a nonlinear conjugate
gradient method with exact line search [21, pp. 216–222]. Further, all quasi-Newton
methods of the Broyden family are equivalent when equipped with exact line search
[23]. Consequently, all the above statements can be extended to all methods of the
Broyden family when exact line search is utilized (see also [2, pp. 64]).

Even though it seems clear that quasi-Newton methods and first-order methods are
similar, it is not uncommon to encounter thoughts on the subject along the lines: “Two
of the most popular methods for smooth large-scale optimization, the inexact- (or
truncated-) Newton method and limited-memory BFGS method, are typically imple-
mented so that the rate of convergence is only linear. They are good examples of
algorithms that fall between first- and second-order methods” [24]. This statement
raises two questions (i) Why is a limited-memory BFGS method not considered a
first-order method? (ii) Can we give a more informative classification of truncated-
Newton methods?

We can already partly answer question one since this is addressed in the convex
programming complexity theory of Nemirovsky and Yudin [25]. Since the limited-
memory BFGS utilizes information from a first-order oracle, it is a first-order method
which implies certain worst-case convergence rates. The first-order definition and
related worst-case convergence rates can be simplified for instructional purposes,
as done by Nesterov [26]. However, the inclusion of quasi-Newton methods in the
simplified and more accessible analysis of first-order methods by Nesterov is not
addressed.
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The second question on the classification of truncated-Newton methods is open
for discussion. The truncated-Newton method implicitly utilizes second-order infor-
mation. Customary classification would then denote the truncate-Newton method a
second-order method since it requires a second-order oracle. However, the standard
Newton method is also a second-order method. The worst-case convergence rates of
the Newton and truncated-Newton methods are not the same and grouping these two
substantially different methods into the same classification is dissatisfactory.

Contributions This paper elaborates on previous results and offers a more straight-
forward and accessible proof to show that a range of quasi-Newtonmethods, including
the limited-memory BFGS method, are first-order methods in the definition of Nes-
terov [26]. Further, by defining a so-called generalized first-order method, we extend
the analysis to include truncated-Newton methods as well. For the sake of complete-
ness, we also consider complexity analysis of a class of smooth and strongly convex
problems in finite dimensions. For a worst-case scenario, quasi-Newton and truncated-
Newton methods applied to this class of problems show linear convergence rate for
as many iterations as up to half the size of the problem dimension k ≤ 1

2n. Hence,
problems exist for which local superlinear or faster convergence of quasi-Newton and
truncated-Newton methods will not be effective unless k > 1

2n.
The rest of the paper is organized as follows. Section 2 below describes the used

definition of first-order methods. Section 3 describes quasi-Newton methods, and it is
shown that a range of quasi-Newton methods are first-order methods in the definition
of Nesterov. Section 4 describes a generalized first-order method and shows that the
truncated-Newton method belongs to this class and that the worst-case convergence
rate is the same as that of first-order methods. Section 5 contains the conclusions.

2 First-Order Methods

We denote N := {0, 1, 2, . . .} the natural numbers including 0. A vector is denoted
x = [x1, . . . , xn]T ∈ R

n . The vector ei ∈ R
n is the i th standard basis vector for Rn .

We will define the span of a set X ⊆ R
n as span X := {∑|X |

i=1 ci xi : x1, . . . , x|X | ∈
X; c1, . . . , c|X | ∈ R}. Note that this means that span {x1, . . . , xm} = {∑m

i=1 ci xi :
c1, . . . , cm ∈ R}. Let X and Y be two sets with X ⊆ R

n and Y ⊆ R
n , and then the

(Minkowski) sum of sets is

X + Y := {x + y : x ∈ X, y ∈ Y }. (1)

We consider the convex, unconstrained optimization problem

minimize
x∈Rn

f (x) (2)

with optimal objective f (x�) = f �. We assume that f is a convex function, continu-
ously differentiable with Lipschitz continuous gradient constant L:

f (x) ≤ f (y) + ∇ f (y)T (x − y) + 1
2 L‖x − y‖22, ∀ x, y ∈ R

n . (3)
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From time to time, we will strengthen our assumption on f and assume that f is also
strongly convex with strong convexity parameter μ > 0, such that

f (x) ≥ f (y) + ∇ f (y)T (x − y) + 1
2μ‖x − y‖22, ∀ x, y ∈ R

n . (4)

For twice differentiable functions, the requirements on μ and L are equivalent to the
matrix inequality μI 	 ∇2 f (x) 	 L I . The condition number of a function is given
by Q = L

μ
. Following Nesterov [26], we will define a first-order (black-box) method

for the problem (2) as follows.

Definition 2.1 A first-order method for differentiable objectives is any iterative
method that from an initial point x0 generates (xi )i=1,...,k+1 such that

xk+1 ∈ x0 + Fk+1,where

Fk+1 = Fk + span {∇ f (xk)}

with F0 = ∅ and k ∈ N.

Strong results exist for such first-order methods [26]. These results date back to
[25], but methods for achieving these bounds were first given in [27]. In Theorem 2.1,
we reproduce an important result related to the first-order methods in Definition 2.1
as provided in [26].

Theorem 2.1 [26, Th 2.1.4 and Th 2.1.13] For any k ∈ N, 1 ≤ k ≤ 1
2 (n − 1) and

x0, there exists a (quadratic) function f : Rn �→ R, which has a Lipschitz continuous
gradient with constant L, such that any first-order method satisfies

f (xk) − f �

‖x0 − x�‖22
≥ 3L

32(k + 1)2
.

There exists a function f : R∞ �→ R with a Lipschitz continuous gradient which is
strongly convex with condition number Q, such that any first-order method satisfies

‖xk − x�‖22
‖x0 − x�‖22

≥
(√

Q − 1√
Q + 1

)2k

.

We extend the above result for smooth and strongly convex problems from infinite-
dimensional to finite-dimensional problems.

Theorem 2.2 For any k ∈ N, 1 ≤ k ≤ 1
2n and x0 ∈ R

n, there exists a function
f : R

n �→ R with a Lipschitz continuous gradient which is strongly convex with
condition number Q ≥ 8, such that any first-order method satisfies

‖xk − x�‖22
‖x0 − x�‖22

≥ 1

2

(√
Q/β − 1√
Q/β + 1

)2k

with constant β = 1.1.
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Proof See “Appendix 1”. ��
Thismeans that for certain problems, the convergence rate of any first-ordermethod

cannot be faster than linear. Since some methods achieve these bounds, it is known
the latter are tight (up to a constant) [26]. Several other variants have been published
[28–32], see also the overview [33].

3 Quasi-Newton Methods

For the (line search) quasi-Newton methods, we select the iterations as follows

xk+1 = xk − tk Hk∇ f (xk), k = 0, 1, . . . (5)

where x0 and H0 are provided initializations. Consequently, severalmethods for select-
ing the step sizes tk and the approximations of the inverse Hessian Hk exist. Often
Hk+1 is built as a function of Hk and the differences

yk = ∇ f (xk+1) − ∇ f (xk), sk = xk+1 − xk . (6)

The following lemma connects the line search quasi-Newton methods to first-order
methods in a straightforward manner.

Lemma 3.1 Any method of the form

xk+1 = xk − tk Hk∇ f (xk), k = 0, 1, . . .

where tk ∈ R, H0 = α I , α ∈ R, α �= 0 and

Hk+1z ∈ span{Hkz, xk+1 − xk, Hk(∇ f (xk+1) − ∇ f (xk))} ∀z ∈ R
n

is a first-order method.

Proof The first iteration k = 0 is a special case; this is verified by

x1 = x0 − t0H0∇ f (x0) = x0 − t0α∇ f (x0) ∈ x0 + span{∇ f (x0)}.

The iterations k = 1, 2, . . . will be shown by induction of the statement:

∀ k = 1, 2, . . . , X (k) :
{
Hkz ∈ span {z,∇ f (x0),∇ f (x1), . . . ,∇ f (xk)} ∀z ∈ R

n

xk+1 ∈ x0 + span {∇ f (x0),∇ f (x1), . . . ,∇ f (xk)}

Induction start for k = 1 we have

H1z ∈ span{H0z, x1 − x0, H0(∇ f (x1) − ∇ f (x0))}
∈ span{αz,−t0α∇ f (x0), α(∇ f (x1) − ∇ f (x0))}
∈ span{z,∇ f (x0),∇ f (x1)} ∀z ∈ R

n
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and

x2 = x1 − t1H1∇ f (x1) = x0 − t0H0∇ f (x0) − t1H1∇ f (x1)

∈ x0 + span{∇ f (x0),∇ f (x1)}

so X (1) holds. Induction step. Assume X (k) holds. We have

Hk+1z ∈ span {Hkz, xk+1 − xk, Hk(∇ f (xk+1) − ∇ f (xk))}
∈ span {Hkz, Hk∇ f (xk), Hk∇ f (xk+1) − Hk∇ f (xk))}
∈ span {Hkz, Hk∇ f (xk), Hk∇ f (xk+1)}
∈ span {z,∇ f (x0), . . . ,∇ f (xk),∇ f (xk+1)} ∀z ∈ R

n, (7)

where we have assumed that X (k) holds. Equation (7) is the first part of X (k + 1).
For the iterators, we then have

xk+2 = xk+1 − tk+1Hk+1∇ f (xk+1)

∈ x0 + span {∇ f (x0), . . . ,∇ f (xk)} + span {∇ f (x0), . . . ,∇ f (xk+1)}
∈ x0 + span {∇ f (x0), . . . ,∇ f (xk+1)} , (8)

where we have used X (k) and (7). Equation (8) is the second part of X (k + 1);
consequently, X (k + 1) holds. The iterations then satisfy xk+1 ∈ x0 + Fk+1 and the
method is a first-order method. ��

We will now show that the quasi-Newton methods in the Broyden and Huang
family, and the L-BFGS methods are first-order methods. This implies that they share
the worst-case complexity bounds of any first-order method given in Theorems 2.1
and 2.2. Note that these methods are not necessarily optimal, in the sense that (up
to a constant) they achieve the bounds in Theorems 2.1 and 2.2. As described in the
introduction, these are known results [25]. Our reason for conducting this analysis
is twofold: we believe that (i) the provided analysis is more intuitive and insightful
(ii) it provides a logical background for analyzing truncated-Newton, taking a similar
approach.

3.1 The Broyden Family

The (one parameter) Broyden family includes updates on the form

Hk+1 = Hk + ρksks
T
k − �k Hk yk y

T
k Hk + ηk

�k
vkv

T
k (9)

where ηk is the Broyden parameter and

ρk = 1

yTk sk
, �k = 1

yTk Hk yk
, vk = ρksk − �k Hk yk .
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The Broyden family includes the well-known BFGS, DFP, and SR1 quasi-Newton
methods as special cases with certain settings of ηk , specifically:

BFGS : ηk = 1, (10)

DFP : ηk = 0 (11)

SR1 : ηk = 1

ρk yTk (sk − Hk yk)
. (12)

Corollary 3.1 Any quasi-Newton method of the Broyden family with ηk ∈ R, any step
size rule and H0 = α I , α ∈ R, α �= 0 is a first-order method.

Proof Using Eq. (9), we have:

Hk+1z = Hkz + ρksks
T
k z − �k Hk yk y

T
k Hkz + ηk

�k
vkv

T
k z

∈ span{Hkz, sk, Hk yk, vk}∀z ∈ R
n

∈ span{Hkz, sk, Hk yk}∀z ∈ R
n

∈ span{Hkz, xk+1 − xk, Hk(∇ f (xk+1) − ∇ f (xk))}∀z ∈ R
n

and the results then follow directly from Lemma 3.1. ��

3.2 The Huang Family

The Huang family includes updates on the form [5]:

Kk+1 = Hk + ψkσksk(φksk + ϕk H
T
k yk)

T − ςk Hk yk(θksk + ϑk H
T
k yk)

T (13)

where ψk, φk, ϕk, θk, ϑk ∈ R and

σk = 1

(φksk + ϕk HT
k yk)T yk

, ςk = 1

(θksk + ϑk HT
k yk)T yk

Note that theHuang family includes theDFPmethodswith the selectionψk = 1, φk =
1, ϕk = 0, θk = 0, ϑk = 1, but also a range of other methods, see e.g. [5], including
non-symmetric forms.

Corollary 3.2 Any quasi-Newton method of the Huang family, any step size rule and
H0 = α I , α ∈ R, α �= 0 is a first-order method.

Proof Using Eq. (13), we have:

Hk+1z = Hkz + ψkσksk(φksk + ϕHT
k yk)

T z − ςk Hk yk(θksk + ϑk H
T
k yk)

T z

∈ span{Hkz, sk, Hk yk}∀z ∈ R
n

∈ span{Hkz, xk+1 − xk, Hk(∇ f (xk+1) − ∇ f (xk))}∀z ∈ R
n

and the results then follow directly from Lemma 3.1. ��
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3.3 Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)

For L-BFGS, we only build a Hessian approximation H̄k out of the m most recent
gradients [3]

H̄k = (V T
k−1 . . . V T

k−m)H̄0
k (Vk−m . . . Vk−1)

+ ρk−m(V T
k−1 . . . V T

k−m+1)sk−ms
T
k−m(Vk−m+1 . . . Vk−1)

+ ...

+ ρk−1sk−1s
T
k−1

where Vk = I − ρk yksTk . From this, it is clear that for k ≤ m and H̄0
k = H0 the

approximations of the Hessian for the BFGS and L-BFGSmethods are identical H̄k =
Hk . This motivates that L-BFGS is also a first-order method.

Corollary 3.3 The L-BFGS method with any step size rule and H̄0
k = γk I , γk ∈ R,

γk �= 0 is a first-order method

Proof See “Appendix 2”. ��

4 Generalized First-Order Methods and the Truncated-Newton Method

In this section, we will show that the truncated-Newton method is very similar as
regards behavior as a first-order method. However, the truncated-Newton method is
not a first-order method following Definition 2.1. Instead, when comparing a first-
order method with a truncated-Newton method, we must assume some properties of
the underlying iterative solver of the Newton equation

∇ f (xk) + ∇2 f (xk)(x − xk) = 0

which is usually achieved by an underlying lower level algorithm that is often a first-
order methods itself, e.g. the conjugate gradient method. For a fixed higher level index
k, these iterations start with xk,0 := xk (warm-start) and F ′

k,0 = ∅, and subsequently
iterate for i ∈ N

xk,i+1 ∈ xk + F ′
k,i+1, with

F ′
k,i+1 = F ′

k,i + span{∇ f (xk) + ∇2 f (xk)(xk,i − xk)} .

After the lower level iterations have been completed, e.g. at iterate i� + 1, the new
higher level iterate is set to

xk+1 = xk + tk(xk,i�+1 − xk) ∈ xk + F ′
k,i�+1

where tk is obtained by a line search. By renumbering all iterates so that the lower and
higher level iterations become part of the same sequence, we might express the last
equation as
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xk+i�+1 ∈ xk + F ′
k+i�+1

where the iterates and subspaces after xk and F ′
k = ∅ are generated following

xk+i+1 ∈ xk + F ′
k+i+1, with

F ′
k+i+1 = F ′

k+i + span{∇ f (xk) + ∇2 f (xk)(xk+i − xk)}.

Wesee that themain differences of a truncated-Newtonmethod compared to a standard
first-order method are (i) that the subspace is reset at the beginning of the lower level
iterations (here, at index k) and (ii) that the exact gradient evaluations are replaced by
a first-order Taylor series (here evaluated at xk). This motivates the question of how
to define a generalization of first-order methods that is also applicable to the class of
truncated-Newton methods. In this definition, we will introduce a higher degree of
freedom, but make sure that the truncated-Newton methods are contained. One way
to formulate the generalized first-order subspaces could be

F̄ ′
k+1 = F̄ ′

k + span{∇ f (xi ) + ∇2 f (xi ) (xk − xi ) : 0 ≤ i ≤ k}.

This definition would include all truncated-Newton methods that use first-order meth-
ods in their lower level iterations, together with standard first-order methods, and
many more methods as well. Note that the dimensions of the subspaces do not only
increase by one in each iteration as in the standard first-order method, but possibly by
k + 1. Here, we can disregard the fact that in practice, we will not be able to generate
these large dimensional subspaces. In this paper, we decide to generalize the subspace
generation further, as follows.

Definition 4.1 A generalized first-order method for a problem with a twice continu-
ously differentiable objective is any iterative algorithm that selects

xk+1 ∈ x0 + Sk+1, where

Sk+1 = Sk + span{∇ f (p) + ∇2 f (p) d : p ∈ x0 + Sk, d ∈ Sk} (14)

with S0 = {0} and k ∈ N.

Remark 4.1 Note that here we use S0 = {0} and not S0 = ∅ to ensure that the set-
builder notation in (14) is well defined for the first iteration.

At this point, a short discussion of the term “generalized first-order methods” seems
appropriate. The model in Definition 4.1 requires second-order information and using
standard terminology for such methods, see for instance [25], these should be denoted
second-order methods. However, one motivation for using truncated-Newton methods
is the implicit usage of the second-order information in which the Hessian matrix
∇2 f (p) ∈ R

n×n is never formed but only touched upon via the matrix-vector product
∇2 f (p)d ∈ R

n . Further, whether or not the Hessian matrix is used explicitly or
implicitly, a truncated-Newton method is more similar to first-order methods than to
second-order methods from a global convergence perspective, as we will show in the
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following section. Hence, we believe that the term “generalized first-order methods”
provides a meaningful description of these methods.

This also motivates the following definition of a generalized first-order oracle
(deterministic, black box):

input: (x, z) return: ( f (x),∇ f (x),∇2 f (x)z)

This means that with a two-tuple input (x, z), the oracle returns the three-tuple output
( f (x),∇ f (x),∇2 f (x)z). In this case, the second-order information is not directly
available as in a second-order oracle but only ∇2 f (x)z. This results in a stronger
and more precise description of truncated-Newton methods than saying that they fall
between first- and second-order methods as suggested in [24] and discussed in the
introduction.

4.1 Equivalence of Generalized and Standard First-Order Methods for
Quadratic Functions

For a quadratic function, f (x), the spaces of the usual first-order method and the
generalized first-order method coincide, Fk = Sk .

Lemma 4.1 For quadratic functions f , Sk = Fk, k ≥ 1.

Proof As f is quadratic, ∇ f is linear, and thus coincides with its first-order Taylor
series, i.e.∇ f (p) + ∇2 f (p) d = ∇ f (p + d). To simplify the notation, denote the
constant Hessian ∇ f 2(x) = P for all x ∈ R

n . For F1 = span{∇ f (x0)}, and for
quadratic problems S1 = 0 + span{∇ f (x0) + P · 0} = span{∇ f (x0)}. For the
standard first-order method k ≥ 1, the following holds

Fk+1 = Fk + span{∇ f (xk)}
= Fk + span{∇ f (x0) + P(xk − x0)}
= Fk + span{P(xk − x0)}
= Fk + span{Px : x ∈ Fk}. (15)

Conversely, for the generalized first-order method applied to a quadratic function for
k ≥ 1 it holds that

Sk+1 = Sk + span{∇ f (p) + ∇2 f (p) d : p ∈ x0 + Sk, d ∈ Sk}
= Sk + span{∇ f (p + d) : p ∈ x0 + Sk, d ∈ Sk}
= Sk + span{∇ f (x0 + d) : d ∈ Sk}
= Sk + span{∇ f (x0) + Pd : d ∈ Sk}
= Sk + span{Pd : d ∈ Sk} . (16)

Since S1 = F1 and (15)–(16) are the same recursions, Sk = Fk, ∀k ≥ 1. ��

123



216 J Optim Theory Appl (2017) 172:206–221

With the Lemma 4.1 at hand, we can now present an important result which moti-
vates the name “generalized first-order methods”.

Theorem 4.1 Theorems 2.1 and 2.2 holds for generalized first-order methods.

Proof Generalized first-order methods and first-order methods are equivalent for
quadratic problems following Lemma 4.1. Hence, the results in Theorems 2.1 and 2.2
follow directly (see also [26, The. 2.1.7 and The. 2.1.13]). ��

This means that the convergence for generalized first-order methods is the same
as for first-order methods, i.e., in a worst-case scenario, they are sub-linear for
smooth problems and linear for smooth and strongly convex problems, including
the finite-dimensional case. This implies that from a global convergence perspective,
a generalized first-order method has more in common with first-order methods com-
pared to second-order methods.

5 Conclusions

In this paper, we have tried to answer two important questions. First, why are limited-
memory BFGS methods not considered first-order methods? We believe that this
is connected to the accessibility of the analysis provided in the work [25]. To this
end, we have given a more straightforward analysis, using the definition of first-
order methods as provided in [26]. The second question is whether it is possible
to give a better description of the classification of truncated-Newton methods? We
have described a class of methods named generalized first-order methods to which
the truncated-Newton methods belong and have shown that the worst-case global
convergence rate for generalized first-order methods is the same as that applying to
for first-order methods. Thus, in a worst-case scenario, quasi-Newton and truncated-
Newton methods are lower-bounded by a linear rate of convergence for k ≤ 1

2n
according toTheorem2.2 (see also the comment [26, pp. 41]). In aworst-case scenario,
a better convergence, such as superlinear, can only be effective for k > 1

2n. Since the
number of iterations k for this bound depends on the dimensionality of the problem
n, this bound has the strongest implication for large-scale optimization.
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Appendix 1: Proof of Theorem 2.2

Proof We will follow the approach [26, The. 2.1.13] but for finite-dimensional prob-
lems (this is more complicated as indicated in [26, p. 66]). Consider the problem
instance
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minimize
x∈Rn

f (x) = 1
2 x

T Px − cT x

with P =
[
A 0
0 I

]

∈ R
n×n, A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p 1 0 0 · · · 0
1 p 1 0 · · · 0
0 1 p 1 ...

...
. . .

. . .
. . . 0

0 · · · 0 1 p 1
0 · · · 0 0 1 q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
ñ×ñ,

c = e1 ∈ R
n×n

where ñ ≤ n and the initialization x0 = 0. We could also have generated the problem
f̄ (x̄) = f (x̄ + x̄0) and initialized it at x̄0 since this is just a shift of sequences of any
first-order method. To see this, let k ≥ 1 and x̄ ∈ x̄0 + F̄k be an allowed point for a
first-order method applied to a problem with objective f̄ using x̄0 as initialization. Let
x = x̄ + x̄0, then

∇ f̄ (x̄) = ∇ f̄ (x − x̄0) = ∇ f (x − x̄0 + x̄0) = ∇ f (x),

f̄ (x̄) = f̄ (x − x̄0) = f (x − x̄0 + x̄0) = f (x).

Consequently x ∈ Fk = F̄k and we can simply assume x0 = 0 in the following.
We select p = 2 + μ and q = (p + √

p2 − 4)/2 with the bounds 1 ≤ q ≤ p.
Then:

A = Ã + (q − p + 1)eñe
T
ñ , Ã =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p 1 0 0 · · · 0
1 p 1 0 · · · 0
0 1 p 1 ...

...
. . .

. . .
. . . 0

0 · · · 0 1 p 1
0 · · · 0 0 1 p − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The value q − p+ 1 ≥ 0 for μ ≥ 0. The eigenvalues of the matrix Ã are given as [34]

λi = p + 2 cos

(
2iπ

2ñ + 1

)

, i = 1, . . . , ñ.

The smallest and largest eigenvalues of A are then bounded as

λmin(A) ≥ p + 2 cos

(
2ñπ

2ñ + 1

)

≥ p − 2 = μ,

λmax(A) ≤ p + 2 cos

(
2π

2ñ + 1

)

+ q − p + 1 ≤ q + 3 ≤ p + 3 = L .

With μ ≤ 1, we have λmin(P) = λmin(A) and λmax(P) = λmax(A). The condition
number is given by Q = L

μ
= p+3

p−2 = 5+μ
μ

≥ 6, and the solution is given as
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x� = P−1e1. The inverse A−1 can be found in [34], and the i th entry of the solution
is then

(x�)i =
{

(−1)i+1sñ−i
qrñ−1−rñ−2

, i = 1, 2, . . . , ñ

0 , i = ñ + 1, . . . n

where

r0 = 1, r1 = p, ri = pri−1 − ri−2, s0 = 1, s1 = q, si = psi−1 − si−2, i = 2, . . . , ñ − 1

Since q is a root of the second-order polynomial y2− py+1, we have si = qi ,∀i ≥ 0.

Using Q = p+3
p−2 ⇔ p = 2

Q+ 3
2

Q−1 and then

q = p + √
p2 − 4

2
=

Q + 3
2 +

√
1
2 + 5Q

Q − 1
≤ Q + β

√
Q

Q − β
√
Q

(17)

A simple calculation of β in (17) can for instance be β =
3
2+

√
1
2+5Q√
Q

∣
∣
∣
Q=8

� 2.78,

which is sufficient for any Q ≥ 8. However, solving the nonlinear equation yields that
β = 1.1 is also sufficient for any Q ≥ 8. Since ∇ f (x) = Px − c, the set Fk expands
as:

Fk+1 = Fk + span{∇ f (xk)} = Fk + span{Pxk − c}.
Since P is tridiagonal and x0 = 0, we have

F1 = ∅ + span{Pxk − c : xk ∈ 0 + ∅} = span{e1}
F2 = span{e1} + span{Px1 − c : x1 ∈ F1} = span{e1, e2}

...

Fk = span{e1, e2, . . . , ek}.
Considering the relative convergence

‖xk − x�‖22
‖x0 − x�‖22

= ‖xk − x�‖22
‖x�‖22

≥
∑ñ

i=k+1 s
2
ñ−i

∑ñ
i=1 s

2
ñ−i

=
∑ñ−k−1

i=0 q2i

∑ñ−1
i=0 q2i

= 1 − q2(ñ−k)

1 − q2ñ
= q2ñq−2k − 1

q2ñ − 1
.

(18)
Fixing ñ = 2k, we have for k = 1

2 ñ ≤ 1
2n

‖xk − x�‖22
‖x0 − x�‖22

≥ q2k − 1

q4k − 1
= q2k(q2k − 1)

(q2k − 1)(q2k + 1)
q−2k = q2k

(q2k + 1)
q−2k ≥ 1

2q
−2k

and inserting (17) yields

‖xk − x�‖22
‖x0 − x�‖22

≥ 1

2

(
Q − β

√
Q

Q + β
√
Q

)2k

= 1

2

(√
Q/β − 1√
Q/β + 1

)2k

.

��
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Remark We note that it is possible to explicitly state a smaller β and hence a tighter
bound, but we prefer to keep the explanation of β simple.

Algorithm 1: Evaluation of r ← H̄k∇ f (xk).

input : {si , yi , ρi }, H̄0
k , ∇ f (xk )

output: r
q ← ∇ f (xk )1
for i = k − 1, k − 2, . . . , k − m do2

αi ← ρi s
T
i q3

q ← q − αi yi4

r ← H̄0
k q5

for i = k − m, k − 2, . . . , k − 1 do6

β ← ρi y
T
i r7

r ← r + si (αi − β)8

Appendix 2: Proof of Corollary 3.3

For this proof, we note that the multiplication H̄k∇ f (xk) can be calculated efficiently
via Algorithm 1 [3, Alg. 7.4]. From Algorithm 1, we obtain that with H̄0

k = γk I and
using (6),

H̄k∇ f (xk) ∈ span{∇ f (xk), yk−1, . . . , yk−m, sk−1, . . . , sk−m}
∈ span{∇ f (xk),∇ f (xk−1), . . . ,∇ f (xk−m), H̄k−1∇ f (xk−1),

. . . , H̄k−m∇ f (xk−m)}

and then recursively inserting

H̄k∇ f (xk) ∈ span{∇ f (xk),∇ f (xk−1), . . . ,∇ f (xk−m),∇ f (xk−m−1),

H̄k−2∇ f (xk−2), . . . , H̄k−m−1∇ f (xk−m−1)}
∈ span{∇ f (xk), . . . ,∇ f (x0)}.

The iterations are then given as

xk+1 = xk − tk H̄k∇ f (xk) = x0 −
k∑

i=0

ti H̄i∇ f (xi )

∈ x0 + span{∇ f (x0),∇ f (x1), . . . ,∇ f (xk)}

and L-BFGS is a first-order method. ��
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