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1 Introduction

In the last few years, several important concepts of nonlinear analysis and optimization
problems have been extended from an Euclidean space to a Riemannian manifold
setting in order to go further in the study of the convex theory, the fixed point theory,
the variational inequality and related topics. In general, a manifold is not a linear
space, but the extension of concepts and techniques from linear spaces to Riemannian
manifolds is natural by using the geodesic instead of line segment (see [1–3] for more
details).

On the other hand, the concept of convexity for sets and functions plays a central
role in nonlinear programming with continuous variables and has various applications
in the areas of mathematical economics, engineering, operations research, etc. [4].
Therefore, it is important to consider a wider class of generalized convex functions
and also to seek practical criteria for convexity or generalized convexity. Udriste [3]
and Rapcsák [5] considered a generalization of convexity, called geodesic convexity,
and extended many results of convex analysis and optimization theory to Riemannian
manifolds. Inspired by the concept of convexity on a linear vector space, the notion of
geodesic convexity on some nonlinear metric spaces has become a successful tool on
a Riemannian manifold. These ideals have opened a new way to solve other related
problems. Actually, in the last decades concepts and techniques, which fit in Euclid-
ean spaces, have extended to the nonlinear framework of Riemannian manifolds. For
example, generalized convexity has been introduced and studied by Rapcsák [5], Hor-
vath [6], Mititelu [7], Barani and Pouryayevali [8] and Ferreira [9]. Rapcsák [2] and
Ledyaev [10] studied the nonsmooth analysis on manifolds. In 2003, Németh [11] first
introduced the variational inequalities on Hadamard manifolds; in 2009, Li et al. [12]
generalized it to the Riemannian manifolds. Colao et al. [13], Zhou and Huang [14]
researched the equilibrium problems and its applications on the Hadamard manifolds.
Moreover, a few researchers have developed several related algorithms on manifolds,
see [15–19] and so on.

However, we could not solve some problems such as Knaster, Kuratowski and
Mazurkiewicz theorem (in short, KKM theorem) on a manifold, because lack of
characterization of a geodesic convex hull. In 2009, Zhou and Huang [20] defined
geodesic combination and geodesic convex hull and tried to get a KKM theorem on a
Hadamard manifold. Papa Quiroz and Oliver [21] gave a characterization of affinity
on a Hadamard manifold in 2009, and this statement is also used in Colao et al [13].
They also gave the analogous to KKM theorem in the setting of a Hadamard manifold
(see Lemma 3.1 in [13]). In 2012, Yang and Pu [22] introduced the concept of the
geodesic convex hull and claimed that the geodesic convex hull is same as the convex
hull. Unfortunately, as pointed out by Kristály et al. [23], there are some conceptual
mistakes within the class of Hadamard manifolds, where the authors of these papers
used equivalences between convexity notions, which basically reduce the geometric
setting to the Euclidean one. Therefore, it is important and interesting to give some
new characterization of geodesic convexity with applications onHadamardmanifolds.

Besides, the concept of S-KKM theorem was first introduced by Chang et al. [24–
26]. They established an S-KKM theorem whenever S is a single or a set-valued
mapping and introduced a new mapping class.
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The main purpose of this paper is to give some new results concerned with the
geodesic convexhull andgeodesic convex combinationwith applications onHadamard
manifolds. This paper is organized as follows. In Sect. 2, we recall some notations,
definitions and basic properties used throughout this paper. In Sect. 3, some new
results concerned with the geodesic convex hull and geodesic convex combination on
Hadamard manifolds are given. In Sect. 4, we prove an S-KKM theorem on Hadamard
manifolds, which can be considered as a generalization and improvement of Theorem
3.2 of [20] and Lemma 3.1 of [13]. Some applications of S-KKM theorem to a Fan–
Browder-type fixed point theorem and a fixed point theorem for the mapping class
S-KKM(X, Y) on Hadamard manifolds are given in Sect. 5.

2 Preliminaries

In this section, we recall some notations, definitions and basic properties used through-
out this paper. It can be found in many introductory books on Riemannian geometry,
topology and so on (see, for example, [1–3,10,27–29]).

Let M be a simply connected m-dimensional manifold. Given x ∈ M , the tangent
space of M at x is denoted by TxM , and the tangent bundle of M by

TM : =
⋃

x∈M
TxM,

which is naturally a manifold. A vector field V on M is a mapping of M into TM,
which associates to each point x ∈ M a vector V (x) ∈ TxM . We always assume that
M can be endowed with a Riemannian metric to become a Riemannian manifold. We
denote by 〈·, ·〉 the scalar product on TxM with the associated norm ‖ · ‖, where the
subscript x will be omitted. Given a piecewise smooth curve γ : [a, b] → M joining
x to y (i.e. γ (a) = x and γ (b) = y), by using the metric, we can define the length of
γ as

L(γ ) :=
∫ b

a

∥∥γ ′(t)
∥∥ dt.

Let ∇ be the Levi-Civita connection associated with (M, 〈·, ·〉) and γ a smooth
curve in M . A vector field V is said to be parallel along γ iff ∇γ ′V = 0. Iff γ ′ itself is
parallel along γ , we say that γ is a geodesic, and in this case ‖γ ′‖ is constant. When
‖γ ′‖ = 1, γ is said to be normalized.

Definition 2.1 ([3], p. 22) LetΩ be the set of all piecewiseC∞ regular curves joining
points x and y in M. The function

d : M × M → R, d(x, y) = inf
ω∈Ω

L(ω)

is the distance on M.

Definition 2.2 ([28], p. 4) A Hadamard manifold M is a simply connected complete
Riemannian manifold of nonpositive sectional curvature.
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Definition 2.3 ([3], p. 17) The exponential mapping expp : TpM → M is defined by
exppν := γν(1), where γν is the geodesic defined by its position p and velocity ν at
p.

Lemma 2.1 ([29], p. 149, Theorem 3.1, Cartan-Hadamard theorem) Let M be a
Hadamard manifold; then the universal cover of M is a convex geodesic space with
respect to the induced length metric d. In particular, any two points of the universal
cover are joined by a unique geodesic.

Proposition 2.1 ([29], p. 149, Theorem 3.1) Let M be a Hadamard manifold and
p ∈ M. Then, expp : TpM → M is a diffeomorphism, and for any two points
p, q ∈ M, there exists a unique minimal geodesic

γp,q(t) = expp(texp
−1
p q),

for all t ∈ [0, 1] joining p to q.

Proposition 2.2 ([29], p. 150, Lemma 3.2) The exponential mapping and its inverse
are continuous on a Hadamard manifold.

Lemma 2.2 ([17], Lemma 2.4) Let x0 ∈ M and {xn} ⊂ M such that xn → x0. Then,
the following assertions hold.

(i) For any given y ∈ M, exp−1
xn y → exp−1

x0 y and exp−1
y xn → exp−1

y x0;
(ii) If {vn} is a sequence such that vn ∈ Txn M and vn → v0, then v0 ∈ Tx0M;
(iii) Given the sequences {un} and {vn} satisfying un, vn ∈ Txn M, if un → u0 and

vn → v0 with u0, v0 ∈ Tx0M, then

〈un, vn〉 → 〈u0, v0〉.

Definition 2.4 ([3], p. 58) A subset C ⊂ M is said to be geodesic convex iff for
any two points x, y ∈ C , the geodesic joining x to y is contained in C , that is, if
γ : [a, b] → M is a geodesic such that x = γ (a) and y = γ (b), then

γ ((1 − t)a + tb) ∈ C

for all t ∈ [0, 1].
Remark 2.1 By Proposition 2.1, on a Hadamard manifold M , a subset C ⊂ M is
geodesic convex iff

expx (texp
−1
x y) ∈ C

for all x, y ∈ C and t ∈ [0, 1].
From now on, let a Hadamard manifold M be endowed by a Riemannian metric

〈·, ·〉 with corresponding norm denoted by ‖ · ‖ and S ⊂ M be a geodesic convex
subset.
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Definition 2.5 ([28], p. 67, Definition 3.3.1) The geodesic convex hull of a subset
S ⊂ M is the smallest geodesic convex subset of M containing S, and denoted by
conv(S).

Remark 2.2 The geodesic convex hull defined in Definition 2.5 is equivalent to the
intersection of all the geodesic convex sets containing S.

Definition 2.6 ([3], p. 61) A real-valued function f : M → R, defined on C , is
said to be geodesic convex iff, for any geodesic γ of C , the composition function
f ◦ γ : R → R is convex, i.e.

( f ◦ γ ) (ta + (1 − t)b) ≤ t ( f ◦ γ )(a) + (1 − t)( f ◦ γ )(b)

for any a, b ∈ R and 0 ≤ t ≤ 1.

Remark 2.3 By Proposition 2.1, on a Hadamard manifold M , a mapping f : M → R

is geodesic convex iff it satisfies

f
(
expx (texp

−1
x y)

)
≤ (1 − t) f (x) + t f (y)

for all x, y ∈ M and t ∈ [0, 1].
Proposition 2.3 ([30] p. 222) If Ω is the set of all geodesic joining x and y in M, the
function d : M×M → R defined by d(x, y) = infω∈Ω L(ω) is said to be the geodesic
distance. Moreover, d is the continuous and geodesic convex function with respect to
the product Riemannianmetric, that is, for any given pair of geodesicsγ1 : [0, 1] → M
and γ2 : [0, 1] → M, the following inequality holds for all t ∈ [0, 1] :

d (γ1(t), γ2(t)) ≤ (1 − t)d (γ1(0), γ2(0)) + td (γ1(1), γ2(1)) .

In particular, for each y ∈ M, the function d(·, y) : M → R is a geodesic convex
function.

Definition 2.7 ([13], Lemma 3.1 or [20], Definition 2.8) A set-valued mapping G :
M ⇒ M is said to be a KKMmapping on M iff for any point-sets {x1, x2, . . . , xn} ⊂
M ,

conv({x1, x2, . . . , xn}) ⊂
n⋃

i=1

Gxi .

Definition 2.8 A topological space X is said to be of fixed point property iff every
continuous function f : X → X has a fixed point.

Definition 2.9 Let X be a set withA = {Ai }i∈I a family of subsets of X . We say that
the collectionA has the finite intersection property iff any finite sub-collection J ⊂ I
has nonempty intersection

⋂
i∈J Ai .

Lemma 2.3 ([31], p. 17) Let X be a topological space. Then, X is compact iff every
collection of closed sets satisfying the finite intersection property has nonempty inter-
section itself.
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3 Convex Analysis on Hadamard Manifolds

In this section, we give the definition of geodesic convex combination of finite points
on a Hadamard manifold. Similar to the Euclidean space, the geodesic convex com-
bination of two points x1, x2 ∈ M is the geodesic joining x1 to x2, and denoted by

comb(x1,x2)(t2) := γx1,x2(t2) = expx2

(
t2exp

−1
x2 x1

)
,

for all t2 ∈ [0, 1]. Especially,

comb(x1,x2)(1) = γx1,x2(1) = expx2

(
exp−1

x2 x1
)

= x1

and

comb(x1,x2)(0) = γx1,x2(0) = expx20 = x2.

Furthermore, the geodesic convex combination of three points x1, x2, x3 is the
geodesic triangle on M , and denoted by

comb(x1,x2,x3)(t2, t3) := expx3

(
t3exp

−1
x3

(
comb(x1,x2)(t2)

))

= expx3

(
t3exp

−1
x3

(
expx2 t2exp

−1
x2 x1

))
.

for all t2, t3 ∈ [0, 1].
Figure 1 provides the geodesic convex combination of two points and three points,

respectively.

Definition 3.1 The geodesic convex combination of finite points x1, . . . , xn is the
geodesic joining xn to any geodesic convex combination of x1, . . . , xn−1, and denoted
by

Fig. 1 Combination of points on a manifold
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comb(x1,...,xn)(t2, . . . , tn) := expxn

(
tnexp

−1
xn

(
comb(x1,...,xn−1) (t2, . . . , tn−1)

))
,

for all ti ∈ [0, 1] with i = 2, 3, . . . , n.

Remark 3.1 Let x ∈ M be a geodesic convex combination of xi ∈ M with i ∈ I =
{1, 2, . . . , n}, and denote it by x = comb(x1,x2,...,xn)(t2, . . . , tn). Take L := {l ∈ I :
tl = 1}. Then, x is a geodesic convex combination of xk with k ∈ I \ L .

Next we give two theorems to reveal the relation between the geodesic convex
combination and the geodesic convex set and hull.

Theorem 3.1 A subset C ⊂ M is geodesic convex iff it contains all the geodesic
convex combinations of its elements.

Proof Since C contains all the geodesic convex combinations of its elements, for any
x1, x2 ∈ C and t ∈ [0, 1], we have

expx2(texp
−1
x2 x1) = comb(x1,x2)(t) ∈ C.

By definition of the geodesic convex set, C is a geodesic convex set.
On the other hand, if C is geodesic convex, then

comb(x1,x2)(t2) = expx2(t2exp
−1
x2 x1) ∈ C

with any two points x1, x2 ∈ C and all t2 ∈ [0, 1]. We must show that any geodesic
combination of x1, . . . , xm ∈ C belongs to C withm > 2. Take anym > 2, and make
the induction hypothesis thatC contains all the geodesic convex combination of fewer
than m points. Set any given geodesic combination

x := comb(x1,...,xm ) (t2, . . . , tm)

and

y := comb(x1,...,xm ,xm+1) (t2, . . . , tm, tm+1)

with x1, . . . , xm, xm+1 ∈ C . It follows from Definition 3.1 that

y = expxm+1

(
tm+1exp

−1
xm+1

x
)

.

By the induction hypothesis, we know that x ∈ C , and so C is a geodesic convex set.
Thus, y ∈ C. This completes the proof. 
�
Lemma 3.1 For any given p, q ∈ M, the geodesic expp(texp

−1
p q), which is joining

p to q, and the geodesic expq(hexp
−1
q p) which is joining q to p with any t, h ∈ [0, 1]

are the same geodesic. In other words, for any given point x = expp(texp
−1
p q) with

any t ∈ [0, 1], there must exists h ∈ [0, 1] such that x = expq(hexp
−1
q p).
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Proof By Lemma 2.1, two points p, q are joined by a unique geodesic, which com-
pletes the proof. 
�
Theorem 3.2 For any S ⊂ M, conv(S) consists of all the geodesic convex combina-
tions of elements of S.

Proof Let S∗ consist of all the geodesic convex combination of elements of S. Since
S ⊆ conv(S), all elements of S belong to conv(S). Moreover, conv(S) is a geodesic
convex set, so all the geodesic convex combinations of its elements belong to conv(S)

by Theorem 3.1. This shows that S∗ ⊆ conv(S).

On the other hand, we should show that S∗ is a geodesic convex set. For any given
two geodesic combinations x, y ∈ S∗, we have

x = comb(x1,...,xm )(t2, . . . , tm), y = comb(y1,...,yn)(h2, . . . , hn),

where xi , y j ∈ S, ti , h j ∈ [0, 1] for all i = 1, . . . ,m and j = 1, . . . , n. It follows
from Lemma 3.1 that there exist t, h ∈ [0, 1] such that

comb(y1,x)(t) = expx (texp
−1
x y1) = expy1(hexp

−1
y1 x)

= expy1

(
hexp−1

y1

(
comb(x1,...,xm )(t2, . . . , tm)

))

= comb(x1,...,xm ,y1)(t2, . . . , tm, h) ∈ S∗.

This implies that

comb(y1,y2,x)(t, h2) = comb(y2,comb(x,y1))
(h2)

= expy2

(
h2exp

−1
y2

(
expy1(hexp

−1
y1 x)

))
∈ S∗.

By the induction, one has comb(y1,...,yn ,x)(t, h2, . . . , hn) ∈ S∗, and so

expx texp
−1
x

(
expyn hnexp

−1
yn

(
. . .

(
expy2h2exp

−1
y2 y1

)
. . .

))
= expx (texp

−1
x y) ∈ S∗,

which means that S∗ is a geodesic convex set and conv(S) ⊂ S∗. This completes the
proof. 
�
Corollary 3.2 If A ⊂ B, then conv(A) ⊂ conv(B).

Definition 3.2 Thegeodesic convex hull of a finite set is said to be a geodesic polytope.

Proposition 3.1 The geodesic polytope of a finite set {x1, . . . , xn} ⊂ M consists of
all the elements of the form comb(x1,...,xn)(t2, . . . , tn).

Proof Let S = {x1, . . . , xn} be a finite set. Setting some ti = 1, we know that Theorem
3.2 immediately implies the conclusion. This completes the proof. 
�
Proposition 3.2 Every geodesic polytope in M is compact.
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Proof Let P = conv({x1, . . . , xn}) be a geodesic polytope, and define a mapping
T : R

n−1 → M by

T (t2, . . . , tn) := expxn tnexp
−1
xn

(
expxn−1

tn−1exp
−1
xn−1

(
. . .

(
expx2 t2exp

−1
x2 x1

)
. . .

))
.

It follows from Proposition 2.2 and Lemma 2.2, we know that T is continuous. By
Proposition 3.1, for any x ∈ P , there exist t̄i ∈ [0, 1] with i = 2, 3, . . . , n such that
x = T (t̄2, . . . , t̄n). Thus, P = T ([0, 1]n−1) and so P is compact by the compactness
of [0, 1]n−1 and the continuity of T . This completes the proof. 
�

4 S-KKM Theorem on Hadamard Manifolds

In this section, we prove an S-KKM theorem on Hadamard manifolds, which can be
considered as a generalization of Theorem 3.2 of [20] and Lemma 3.1 of [13].

Definition 4.1 Let X ⊂ M be a nonempty subset, Y ⊂ M a geodesic subset and
S, T : X ⇒ Y two set-valued mappings. T is said to be an S-KKM mapping on M
iff for any finite subset {x1, x2, . . . , xn} ⊂ X , one has

conv

(
n⋃

i=1

Sxi

)
⊂

n⋃

i=1

T xi .

Remark 4.1 Every KKM mapping on M , defined in Definition 2.7, is an S-KKM
mapping on M. However, the converse does not hold in general.

Example 4.1 Let M := {eix : 0 < x < 2π} and two open subsets

X :=
{
eix : 1

4
< x <

1

3

}
, Y :=

{
eix : 2 < x < 2π

}
.

Define two set-valued mappings S, T : X ⇒ Y as follows:

Seix :=
{
eiy : x + 2 ≤ y ≤ −x + 3

}
, T eix :=

{
eiy : 2 ≤ y ≤ x + 3

}
.

Then, for any eix j ∈ X with j = 1, 2, . . . , n and

1/4 < x1 ≤ x2 ≤ · · · ≤ xn < 1/3,

one has

conv
(
{eix1 , . . . , eixn }

)
=

{
eiy : x1 ≤ y ≤ xn

}
⊂ X
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and

n⋃

j=1

T eix j =
{
eiy : 2 ≤ y ≤ 3 + xn

}
⊂

{
eiy : 2 ≤ y <

10

3

}
= A.

It is easy to see that X ∩ A = ∅, and so

conv
(
{eix1 , eix2 , . . . , eixn }

)
�

n⋃

j=1

T eix j ,

which shows that T is not a KKM mapping. However, we have

n⋃

j=1

Seix j =
{
eiy : 2 + x1 < y < 3 − x1

}
,

and so

conv

⎛

⎝
n⋃

j=1

Seix j

⎞

⎠ =
{
eiy : 2 + x1 < y < 3 − x1

}
⊂

n⋃

j=1

T eix j .

This means that T is an S-KKM mapping on M .

The next lemma is important for establishing the main results of this section.

Lemma 4.1 ([11], Lemma 1) Let K ⊂ M be a closed geodesic convex set. If K is
compact, then it is of the fixed point property.

Proof Let o ∈ K and define a function toK : K \ {o} → [1,+∞[ by

toK (x) := max
{
t : expo(texp−1

o x) ∈ K
}

.

Since geodesic ray γo,x : [0,∞[→ M from o to x is γo,x (t) = expo(texp
−1
o x), and

the geodesic distance between any two of its points a = γo,x (t1) and b = γo,x (t2) is
d(a, b) = d(γo,x (t1), γo,x (t2)) = |t1 − t2| (see [3], p.23), one has

{
t : expo(texp−1

o x) ∈ K
}

= {
t : γo,x (t) ∈ K

} = {
d(o, b) : ∀b ∈ γo,x ∩ K

}
.

Thus,

toK (x) = max
{
t : expo(texp−1

o x) ∈ K
}

= sup
b∈γo,x∩K

d(o, b) = d(o, γo,x ∩ ∂K ),

where ∂K means the boundary of K .Consequently, toK (x) is well defined and continu-
ous because K is closed and bounded and the geodesic distance function is continuous.
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Besides, we have

toK

(
expo(λexp

−1
o (x))

)
=λ−1 max

{
tλ : expo((tλ)exp−1

o x) ∈ K
}
=λ−1toK (x). (1)

Denote by B(0, 1) the closed unit ball in span(exp−1
o K ), the subspace of ToM gener-

ated by exp−1
o K . Consider the function f : K → B(0, 1), defined by

f (x) :=

⎧
⎪⎨

⎪⎩

exp−1
o x

toK (x)‖exp−1
o x‖ , if x �= o,

0, if x = o.

By Lemma 2.2, we have that x → o implies exp−1
o x/(toK (x)‖exp−1

o x‖) → 0. Thus,
f is continuous by Proposition 2.2 and the continuity of toK .

Now we consider the inverse function f −1. It is easy to see f −1(0) = o. If x �= 0,
letting λ = (toK (x)‖exp−1

o x‖)−1 and y = f (x) = λexp−1
o x , then x = expoλ

−1y. It
follows from relation (1) that

λ−1 = toK (x)
∥∥∥exp−1

o x
∥∥∥ = λ−1toK (x)

∥∥∥λexp−1
o x

∥∥∥

= toK

(
expo(λexp

−1
o x)

) ∥∥∥λexp−1
o x

∥∥∥

= toK (expoy)‖y‖.

Thus, we get

x = expo(λ
−1y) = expo

(
toK (expoy)‖y‖y

)
,

and the inverse function f −1 : B(0, 1) → K is given by

f −1(x) =
{
expo(t

o
K (expox)‖x‖x), if x �= 0,

o, if x = 0.

Hence f −1 is also continuous. Therefore, f is a homeomorphism. By Brower’s fixed
point theorem, K is of the fixed point property. 
�
Theorem 4.1 Let K ⊂ M be a geodesic convex set and S, T : K ⇒ K\{∅} two
set-valued mappings on M. If T is an S-KKM mapping and for any x ∈ K, T x ⊂ K
is closed in K , then for any finite x1, x2, . . . , xn ∈ K,

n⋂

i=1

T xi �= ∅.
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Proof Suppose that

n⋂

i=1

T xi = ∅.

Let index set I := {1, 2, . . . , n}, and, for each x ∈ K , define λi (x) ∈ [0, 1] as follows:

λi (x) := 1 − di (x)∑n
j=1 d j (x)

,

where di (x) = d(x, T xi ) = inf y∈T xi {d(x, y)} and d(x, y) is the geodesic distance
between x and y. Define an index set

I (x) := {i ∈ I : di (x) �= 0} = {i ∈ I : x /∈ T xi } .

Then,

λi (x) = 1 ⇔ di (x) = 0 ⇔ x ∈ T xi

and

λi (x) < 1 ⇔ di (x) > 0 ⇔ x /∈ T xi .

Now we prove that, for any x ∈ K , I (x) is not empty. In fact, if there exists x̂ ∈ K
such that I (x̂) = ∅ and di (x̂) = 0 for all i ∈ I , then the closedness of T xi ⊂ K yields
that

x̂ ∈
n⋂

i=1

T xi ,

which implies the absurd statement that
⋂n

i=1 T xi = ∅. This shows that I (x) is not
empty. Thus,

∑n
j=1 d j (x) �= 0 and λi : K → [0, 1] is well defined. By Proposition

2.3 and the closedness of T xi , we know that the mapping di (x) is continuous and so
is λi (x). Let zi ∈ Sxi ⊂ K . Since K is a geodesic convex set, the polytope

Z := conv ({zi : i ∈ I }) ⊂ K .

Define f : Z → Z as follows:

f (x) = fn(x) := expzn

(
λn(x)exp

−1
zn ( fn−1(x))

)
,

where

fk(x) = expzk

(
λk(x)exp

−1
zk ( fk−1(x))

)
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and

f2(x) = expz2(λ2(x)exp
−1
z2 x1).

Since λi (x) ∈ [0, 1] is continuous, by Proposition 2.2,

f (x) = comb(z1,...,zn) (λ2(x), . . . , λn(x))

is continuous. Besides, by Proposition 3.2, the polytope Z is compact, and so Lemma
4.1 implies that there exists x ∈ Z such that

x = f (x) = comb(z1,...,zn) (λ2(x), . . . , λn(x)) . (2)

Next we consider two situations as follows.

(a) If λ2(x) = · · · = λn(x) = 1, then d2(x) = · · · = dn(x) = 0. However, I (x) is
not empty, and so

d1(x) �= 0 ⇒ x /∈ T x1. (3)

It follows from (2) that

x = f (x) = comb(z1,...,zn)(1, . . . , 1) = z1.

Since T is an S-KKM mapping, we have x = z1 ∈ Sx1 ⊂ T x1, which is a
contradiction to (3).

(b) If there exists i ∈ {2, 3, . . . , n} such that λi (x) �= 1, then the index set defined by
I ∗ := {i ∈ I : λi (x) �= 1} is not empty. It is easy to see that λp(x) �= 1 when
p ∈ I ∗, and λq(x) = 1 when q ∈ I \ I ∗. It follows from Remark 3.1 and Theorem
3.2 that

x = f (x) = comb(z p,p∈I ∗)(λp(x), p ∈ I ∗) ∈ conv({z p : p ∈ I ∗}).

Since T is an S-KKM mapping, one has

conv({z p : p ∈ I ∗}) ⊂ conv(
⋃

p∈I ∗
Sxp) ⊂

⋃

p∈I ∗
T xp. (4)

On the other hand, for each p ∈ I ∗, λp(x) �= 1, and so dp(x) > 0. This implies
that

x /∈
⋃

p∈I ∗
T xp, (5)

which is a contradiction to (4). Therefore, the hypothesis
⋂n

i=1 T xi = ∅ is not
true.

This completes the proof. 
�
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Theorem 4.2 Let K ⊂ M be a geodesic convex subset and S, T : K ⇒ K\{∅} be two
set-valued mappings on M. If T is an S-KKM mapping, and for any x ∈ K, T x ⊂ K
is closed in K , and there exists at least one x0 ∈ K such that T x0 is compact in K ,
then

⋂

x∈K
T x �= ∅.

Proof For any x ∈ K , let T̃ x = T x
⋂

T x0. Since Hadamard manifold M is a Haus-
dorff space and {T̃ x : x ∈ K } is closed for all x ∈ K , it follows from Theorem 4.1
that

n⋂

i=1

T̃ xi =
n⋂

i=1

T xi ∩ T x0 =
n⋂

i=0

T xi �= ∅,

and so {T̃ x : x ∈ K } is of finite intersection property. By Lemma 2.3, one has

⋂

x∈K
T̃ x �= ∅,

and so

⋂

x∈K
T x =

⋂

x∈K

(
T x ∩ T x0

) =
⋂

x∈K
T̃ x �= ∅.

This completes the proof. 
�
Now we give an example to illustrate Theorem 4.2.

Example 4.2 Let M := {eix : x ∈ [0, 2π ]} and K := {
eix : x ∈ [1/4, 3/4]} . Then,

K is a geodesic convex subset. Define two set-valued mappings S, T : K ⇒ K as
follows:

Seix :=
{
eiy : y ∈

[
x20 + 1/4, x20 + 1/3

]
∪

[
x20 + 2/3, x20 + 17/24

]}

and

T eix :=
{
eiy : y ∈

[
x30 + 1/4, x15 + 17/24

]}
.

Then, we know that T eix is closed and compact for any given eix ∈ K . Moreover, for
any eix j ∈ K with j = 1, 2, . . . , n and 1/4 < x1 ≤ . . . ≤ xn < 3/4, one has

n⋃

j=1

Seix j =
{
eiy : y ∈

[
x201 + 1/4, x20n + 1/3

]
∪

[
x201 + 2/3, x20n + 17/24

]}
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and

n⋃

j=1

T eix j =
{
eiy : y ∈

[
x301 + 1/4, x15n + 17/24

]}
.

It is easy to check that

conv

⎛

⎝
n⋃

j=1

Seix j

⎞

⎠ =
{
eiy : y ∈

[
x201 + 1/4, x20n + 17/24

]}
⊂

n⋃

j=1

T eix j ,

and so T is an S-KKM mapping on K . Therefore, all conditions of Theorem 4.2 are
satisfied, and so

⋂
x∈K T eix �= ∅. In fact, we have

e
1
2 i ∈

⋂

x∈K
T eix �= ∅.

Corollary 4.2 ([13,20]) Let K be a geodesic convex set and the set-valued mapping
G : K ⇒ K be a KKM mapping on K . If for each x ∈ K, Gx is closed in K , and
there exists at least one point x0 ∈ K such that Gx0 is compact in K , then

⋂

x∈K
Gx �= ∅.

Proof For each X ∈ K , let Sx = {x}. Then, all the conditions of Theorem 4.2 are
satisfied, and Corollary 4.2 follows immediately from Theorem 4.2. This completes
the proof. 
�

5 Applications to Fixed Point Theorems on Hadamard Manifolds

As applications, in this section, we show a Fan–Browder-type fixed point theorem and
a fixed point theorem for the mapping class S-KKM(X, Y) on Hadamard manifolds.

Theorem 5.1 Let T : K ⇒ K be a set-valued mapping satisfying the following
conditions:

(i) for any x ∈ K, T x is nonempty and geodesic convex in K ;
(ii) for any y ∈ K, T−1y := {x ∈ K : y ∈ T x} is open in K ;
(iii) there exists at least one y∗ ∈ K such that K\T−1y∗ is compact in K .

Then, there exists x0 ∈ K such that x0 ∈ T x0.

Proof Let

F(y) := K\T−1y, ∀y ∈ K .
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Then, F : K ⇒ K such that F(y) is closed for each y ∈ K . Now we prove that F is
not a KKM mapping. Suppose that F : K ⇒ K is a KKM mapping. Then, it follows
from Corollary 4.2 that there exists y0 ∈ K such that

y0 ∈
⋂

y∈K
Fy = K\

⋃

y∈K
{x ∈ K : y ∈ T x}.

Thus, we have

y0 /∈ {x ∈ K : y ∈ T x} , ∀y ∈ K ,

which implies that

y /∈ T y0, ∀y ∈ K ,

and so

T y0 ∩ K = ∅,

which implies the absurd statement that for any x ∈ K , T x is nonempty in K . There-
fore, F is not a KKMmapping. Thus, there exists a finite subset {y1, y2, . . . , yn} ⊂ K
and x0 ∈ conv({y1, y2, . . . , yn}) such that

x0 /∈
n⋃

i=1

Fyi .

This implies that

x0 /∈ Fyi = K\T−1yi , i = 1, . . . , n,

and so

yi ∈ T x0, i = 1, . . . , n.

Since T x0 is geodesic convex, we know that

x0 ∈ conv({y1, y2, . . . , yn}) ⊂ T x0.

This completes the proof. 
�
Remark 5.1 Theorem 5.1 can be regarded as a generalization of the Fan–Browder-
type fixed point theorem involving a set-valued mapping from an Euclidean space to
a Hadamard manifold.
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Definition 5.1 Let X ⊂ M be a nonempty subset and Y ⊂ M a geodesic convex
subset. Assume that S : X ⇒ Y , T : Y ⇒ Y and F : X ⇒ Y are three set-valued
mappings. F is said to be an S-KKMmapping with respect to T on M iff for any finite
subset {x1, x2, . . . , xn} ⊂ X , one has

T conv

(
n⋃

i=1

Sxi

)
⊂

n⋃

i=1

Fxi .

Definition 5.2 A set-valued mapping T : Y ⇒ Y is said to have the S-KKM property
iff for any S-KKM mapping F with respect to T , one has

⋂

x∈X
Fx �= ∅.

The class S-KKM(X,Y ) is defined to be the set

{T : T has the S-KKM property} .

Remark 5.2 If T satisfies that, for any A ⊂ Y , A ⊆ T A, then T has the S-KKM
property. In fact,

conv

(
n⋃

i=1

Sxi

)
⊆ T conv

(
n⋃

i=1

Sxi

)
⊂

n⋃

i=1

Fxi .

It follows from Theorem 4.2 that the family {Fx : x ∈ X} has the finite intersection
property. In particular, let T be the identity mapping 1X , we have

conv

(
n⋃

i=1

Sxi

)
= T conv

(
n⋃

i=1

Sxi

)
.

Consequently, 1Y ∈ S-KKM(X,Y ) �= ∅.

Definition 5.3 Let x ∈ M and ε be any given positive number. An open ε-
neighbourhood of x on M is defined as

N (x, ε) := {z ∈ M : d(z, x) < ε} .

Proposition 5.1 For any x ∈ M and any ε > 0, ε-neighbourhood of x is a geodesic
convex set.

Proof For any z1, z2 ∈ N (x, ε), we know that d(z1, x) < ε and d(z2, x) < ε. By
Proposition 2.3, the geodesic distance function d(·, x) is a geodesic convex function.
For any t ∈ [0, 1], one has

d
(
expz1(texp

−1
z1 z2), x

)
≤ td(z1, x) + (1 − t)d(z2, x) < tε + (1 − t)ε = ε,

123



J Optim Theory Appl (2017) 172:824–844 841

and so expz1(texp
−1
z1 z2) ∈ N (x, ε). This completes the proof. 
�

We now prove the following lemma, which is the key to our main result in this
section.

Lemma 5.1 Let X be a nonempty, geodesic convex and compact subset of M and
S, T : X ⇒ X\{∅} two set-valued mappings satisfying T X = SX = X. If T ∈ S-
KKM(X, X), then there exists x∗ ∈ X such that, for any given 0 < ε ≤ εmax,

N (x∗, ε) ∩ T x∗ �= ∅

where εmax = supa,b∈X {d(a, b)}.
Proof Suppose that, for any x∗ ∈ X , N (x∗, ε) ∩ T x∗ = ∅. Define a set-valued
mapping F : X ⇒ X as follows:

Fx := T X\ {z ∈ X : d(z, Sx) < ε} ,

where d(z, Sx) = inf y∈Sx {d(z, y)}. Then, it is easy to see that

Fx = X ∩ {z ∈ X : ε ≤ d(z, Sx) ≤ εmax} .

Since X is a compact subset on the m-dimensional manifold and d is continuous, we
know that Fx is a nonempty and closed subset of X for any x ∈ X . Moreover, we
claim that F is an S-KKM mapping with respect to T . Otherwise, there exists a finite
set {x1, . . . , xn} ⊂ X , such that

T conv

(
n⋃

i=1

Sxi

)
�

n⋃

i=1

Fxi .

This implies that there exist u ∈ conv
(⋃n

i=1 Sxi
)
and p ∈ Tu such that

p /∈
n⋃

i=1

Fxi = T X\
n⋂

i=1

{z ∈ X : d(z, Sxi ) < ε} ,

and so

p ∈
n⋂

i=1

{z ∈ X : d(z, Sxi ) < ε},

which means that d(p, Sxi ) < ε for all i = 1, 2, . . . , n. By Proposition 2.3, the
geodesic distance function d(p, ·) is a geodesic convex function. It implies that

d

(
p, conv

(
n⋃

i=1

Sxi

))
< ε.
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Therefore, u ∈ conv
(⋃n

i=1 Sxi
)
implies that p ∈ N (u, ε). This means that p ∈

N (u, ε) ∩ Tu, which is a contradiction to the hypothesis. Therefore, F is an S-KKM
mapping with respect to T . Since Fx is closed and compact in X , we know that⋂

x∈X Fx �= ∅. Let

ξ ∈
⋂

x∈X
Fx = T X\

⋃

x∈X
{z ∈ X : d(z, Sx) < ε} .

Then, ξ ∈ T X = SX implies that there exists y0 ∈ X such that

ξ ∈ Sy0. (6)

On the other hand, it is easy to see that

ξ /∈
⋃

x∈X
{z ∈ X : d(z, Sx) < ε}

implies that
ξ /∈ {z ∈ X : d(z, Sy0) < ε} ,

which is a contradiction to (6). This completes the proof. 
�
Theorem 5.2 Let X be a nonempty, geodesic convex and compact subset of M and
S, T : X ⇒ X\{∅} two set-valued mappings satisfying T X = SX = X. If T ∈ S-
KKM(X, X) is closed in X, then T has a fixed point.

Proof For any point x ∈ X , let N (x, εα), α ∈ Λ, be a class of open εα-neighbourhood
of x . By Lemma 5.1, for each α ∈ Λ, there exists xα ∈ X such that

N (xα, εα) ∩ T xα �= ∅.

Choose yα ∈ N (xα, εα) ∩ T xα . Since T is compact in X , there exists a subsequence
{yα′ } ⊂ {yα} with {yα′ } → y0 and yα′ ∈ N (xα′ , εα′) ∩ T xα′ . It follows from yα′ ∈
N (xα′ , εα′) that xα′ ∈ N (yα′ , εα′), and so the sequence {xα′ } has a limit denoted by
x0. By the arbitrariness of εα′ , it follows that

{xα′ } → x0 = y0.

Furthermore, by the closedness of T , we know that y0 ∈ T x0 = T y0. This completes
the proof. 
�

6 Conclusions

In the course of this analysis, we give some new characterizations in connection with
the geodesic convex hull in Theorems 3.1 and 3.2. We prove the S-KKM theorem on
the Hadamard manifolds. Besides, some applications such as fixed point theorems on
Hadamard manifolds have also been given in this paper.
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In our opinion, there is some additional research which would be interesting. For
instance, readers may consider that whether the Carathéodory’s Theorem is true or not
on anm-dimensionalHadamardmanifold.Moreover, aswe have proven in Proposition
3.2 that every geodesic polytope is compact, the question now becomes for which
conditions would the infinite geodesic convex set be compact on a manifold. These
problems deserve consideration.
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