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Abstract In this paper, we address the nonconvex optimization problem, with the
goal function and the inequality constraints given by the functions represented by the
difference of convex functions. The effectiveness of the classical Lagrange function
and the max-merit function is being investigated as the merit functions of the original
problem. In addition to the classical apparatus of optimization theory, we apply the
new global optimality conditions for the auxiliary problems related to the Lagrange
and max-merit functions.
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1 Introduction

It is well known that contemporary (classical) optimization methods [1–4] certainly
remain a much more popular choice for a “generic” user of the optimization software.
Meanwhile, some existing implementations of the widely used global optimization
methods that offer theoretical guarantees of finding a global solution [5–7] also attract
a permanent attention from researchers. At the same time, according to the conver-
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gence theorems [1–4] for classical methods, the latter do not provide, in general, an
approximate global solution, but only a stationary one, for example, a KKT-point.
Nonetheless, in real-life problems, employment of the classical optimization methods
[1–4] often yields a rather satisfactory (for a user) feasible point. On the other hand,
the global optimization methods [5–7] also have numerous examples of successful
applications, regardless of the fact that these global search schemes suffer the curse
of dimension, when the volume of computations grows exponentially along with the
growth of the problem’s dimension [5–7].

In addition, in the seventies of twentieth century, important discoveries and achieve-
ments were made in the area of nondifferential optimization and variational principles
[8–14], which enabled the use of nonsmooth auxiliary functions. It is worth noting
that Demyanov [9,10] was not only one of the pioneers of the nonsmooth optimization
in the USSR, later in Russia, but he was also an outstanding researcher, the founder
and supervisor of the widely known Saint Petersburg school of the nonsmooth opti-
mization.

Nevertheless, the discoveries mentioned above do not influence considerably the
development of new methods for nonconvex problems. The situation can be partially
explained by the fact that the KKT-theorem and its modern generalizations [8–12]
turn out to be ineffective when it comes to a characterization of a global solution to
nonconvex problems. Hence, it is clear that users, as well as researchers, need new
theoretical tools (optimality conditions, numerical methods, etc.) allowing not only
to escape stationary or local solutions, but also to design new numerical procedures
(computationally implementable) that would be able to jump out of local pits and
improve the goal function at the same time.

One of the first attempts to develop advanced mathematical apparatus was under-
taken in [15–19] for special (elementary) nonconvex optimization problems such
as convex maximization, d.c. minimization and reverse-convex problems [5–7]. It
is important to highlight that our approach (the global search theory) successfully
employs all classical optimization methods (whenever suitable) and corresponding
software packages (IBM CPLEX, Xpress, Gurobi, etc.) within the schemes of special
local and global search methods [15–19].

In this paper, we address more general problems where the goal function and
inequality constraints are given by the (d.c.) function represented by the difference of
convex functions. After the statement of the problem in Sects. 2 and 5, we reduce the
original problem to the two auxiliary problems with the minimization of correspond-
ing merit functions: the so-called max-merit function and the classical Lagrangian. In
Sects. 4 and 5, for each merit function, we establish necessary and sufficient global
optimality conditions (GOC) and study its properties. Furthermore, we test the global
optimality conditions (GOC) on nonconvex examples, simultaneously comparing the
effectiveness of the merit functions.

The analysis of the research results will show that, although the GOC developed
belowproven effective, eachmerit function has its ownobjective different from this one
of the original problem. In particular, the Lagrangian aims to find a saddle point. This
becomes possible to reveal only with the help of the new global optimality conditions
for each of the merit functions.

The conclusions are presented in Sect. 6.
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2 Statement of the Problem

Let us consider the following problem:

(P) : min
x

f0(x) := g0(x) − h0(x), x ∈ S,

fi (x) := gi (x) − hi (x) ≤ 0, i ∈ I = {1, . . . ,m},

}
(1)

where the functions gi (·), hi (·), i = 0, 1, . . . ,m, are convex on IRn , so that the func-
tions fi (·), i = 0, 1, . . . ,m, are the (d.c.) functions of A.D. Alexandrov, represented
as a difference of two convex functions [4,8,11].

In order to avoid some singularities [4,11], we assume that S ⊂ int dom gi ∩
int dom hi , ∀i ∈ I ∪ {0}, where int and dom ϕ stand for the interior and the domain
dom ϕ = {x : ϕ(x) < ∞}, respectively, and the set S ⊂ IRn is convex and may be
given by the relations

S := {x ∈ S0 : ck(x) ≤ 0, k = 1, . . . , K ,

α j (x) := 〈a j , x〉 + β j = 0, j = 1, . . . , K1},

where ck(·), k = 1, . . . , K , are convex, and α j (·), j = 1, . . . , K1, are affine functions
on IRn , and the set S0 ⊂ IRn is convex as well. Besides, suppose that the set Sol(P)

of global solutions to Problem (P), Sol(P) = {z ∈ D : f0(z) = V(P)}, is nonempty,
where D := {z ∈ S : fi (x) ≤ 0, i ∈ I } �= ∅ and

V(P) := inf( f0, D) = inf
x

{ f0(x) : x ∈ S, fi (x) ≤ 0, i ∈ I } > −∞,

are the feasible set and the optimal value of Problem (P), respectively.

3 The Auxiliary Problem

Let us consider the following function [4,12–14]

F(x, η) := max{ f0(x) − η; f1(x), . . . , fm(x)}, (2)

where η ∈ IR. Below, for a feasible (in (P)) point z ∈ D, we denote ζ := f0(z).

Proposition 3.1 [4,12–14] Suppose z is a solution to Problem (P), z ∈ Sol(P). Then,
the point z is a solution to the following auxiliary problem

(Pζ ) : min
x

F(x, ζ ), x ∈ S. (3)

Proposition 3.2 [4] The point z ∈ D is a solution to Problem (P) if and only if z is
a solution to the auxiliary problem (Pζ ) with ζ = V(P). Under latter conditions, the
equality Sol(P) = Sol(Pζ ) holds.

Below we will use Proposition 3.1 in the contrapositive form as follows.

123



J Optim Theory Appl (2017) 173:770–792 773

Lemma 3.1 Suppose that the feasible for Problem (P) point z ∈ D is not a solution
to problem (Pζ ), so that there exists a point u ∈ S, such that F(u, ζ ) < 0 = F(z, ζ ).
Then, the point z ∈ D cannot be a solution to Problem (P): z /∈ Sol(P).

Proof From the inequality F(u, ζ ) < 0, it follows that u ∈ S, fi (u) < 0, and
f0(u) < f0(z) = ζ , so that u is feasible for Problem (P). Hence, z /∈ Sol(P). �

4 Optimality Conditions

First of all, let us show that the objective function F(x, η) of Problem (Pη)–(3),
given in (2), is a d.c. function. For that purpose, we employ the equality F(x, η) =
F(x, η) + H(x) − H(x) where

H(x) =
m∑
i=0

hi (x). (4)

From (4), due to (1) and (2), it immediately follows that

F(x, η) = max

{
f0(x) + H(x) − η; max

1≤i≤m
[ fi (x) + H(x)]

}
− H(x)

= max

⎧⎨
⎩g0(x) +

m∑
j=1

h j (x) − η; max
1≤i≤m

⎡
⎣gi (x) +

∑
j �=i

h j (x)

⎤
⎦

⎫⎬
⎭

−
m∑
i=0

hi (x) = G(x, η) − H(x), (5)

where

G(x, η) = max

{
f0(x) + H(x) − η; max

1≤i≤m
[ fi (x) + H(x)]

}

= max

⎧⎨
⎩g0(x) +

m∑
j=1

h j (x) − η; max
1≤i≤m

⎡
⎣gi (x) +

∑
j �=i

h j (x)

⎤
⎦

⎫⎬
⎭ . (6)

It can be readily seen that the functions G(·, η) and H(·) are convex, because the
set of convex functions is a convex cone [4,8,11–14]. Hence, the objective function
F(x, η) turns out to be a d.c. function. Nowwe present the major result of this section.

Theorem 4.1 Suppose that the point z is a solution to Problem (P) and ζ := f0(z).
Then, for every pair (y, β) ∈ IRn × IR, such that

H(y) = β, (7)
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the following inequality holds

G(x, ζ ) − β ≥
m∑
i=0

〈h′
i (y), x − y〉 ∀x ∈ S, (8)

with any subgradients h′
i (y) ∈ ∂hi (y) of the functions hi (·) at the point y, i =

0, 1, . . . ,m.

Proof Since z ∈ Sol(P), according to Proposition 3.1 z ∈ Sol(Pζ ), so that

0 = F(z, ζ ) ≤ F(x, ζ ) = G(x, ζ ) − H(x) ∀x ∈ S,

whence, on account of (7), it follows 0 ≤ G(x, ζ ) − β + H(y) − H(x) ∀x ∈ S.
Further, due to convexity of the functions hi (·), i = 0, . . . ,m, we derive from the

latter inequality that

G(x, ζ ) − β ≥
m∑
i=0

[hi (x) − hi (y)] ≥
m∑
i=0

〈h′
i (y), x − y〉 ∀x ∈ S,

which coincides with the inequality (8). �
Remark 4.1 Note that Theorem4.1 proposes to consider (for every pair (y, β) ∈ IRn×
IR satisfying (7)) the convex linearized problem

(∑m
i=0 h

′
i (y) =: H ′(y) ∈ ∂H(y))

)
(PL(y)) : min

x
Φζ (x) := G(x, ζ ) − 〈H ′(y), x〉, x ∈ S. (9)

Besides, the linearization is performed with respect to the “unified” nonconvexity of
Problem (P) (or, which is the same, with respect to the basic nonconvexity of Problem

(Pζ )) given by the function H(x) =
m∑
i=0

hi (x).

Hence, one can say that, in a sense, the message of Theorem 4.1 consists in reduc-
ing the nonconvex problem (P) (with the help of Proposition 3.1) to the family of
convex Problems (PL(y))–(9) depending also on (y, β), as parameters. Besides, the
inequality (8) can be rewritten, for example, as follows:

V(PL(y)) ≥ β − 〈H ′(y), y〉 =: N (y, β), (10)

where V(PL(y)) is the optimal value of the linearized problem (PL(y)) [4,8,11–14].

Remark 4.2 Suppose that there have been found a point u ∈ S and a pair (y, β) ∈
IRn × IR: H(y) = β, such that (8) is violated, i.e., 0 > G(u, ζ )−β −〈H ′(y), u− y〉.
Then, due to convexity of H(·) =

m∑
i=0

hi (·), we obtain with the help of (7) 0 >

G(u, ζ ) − β − H(u) + H(y) = G(u, ζ ) − H(u) = F(u, ζ ).
It yields F(u, ζ ) < 0 = F(z, ζ ), and, in virtue of Lemma 3.1, we conclude that

z is not a global solution to Problem (P). Moreover, the point u ∈ S is feasible for
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Problem (P) and, besides, it is better than the point z in question, since f0(z) = ζ >

f0(u). Hence, the conditions (7)–(8) of Theorem 4.1 possess the classical constructive
(algorithmic) property (once the conditions are violated, one can find a feasible point
which is better than the point under consideration). Let us demonstrate the effectiveness
of the constructive property by an example.

Example 4.1 Consider the problem

min
x

f0(x) := −1

2
x2, x ∈ IR, f1(x) := x2 − x − 2 ≤ 0. (11)

(a) Introduce the Lagrange function:L(x, λ) = − 1
2 x

2+λ(x2−x−2) and consider
the KKT-system

∂L
∂x

(x, λ) = −x + 2λx − λ = 0, f1(x) ≤ 0, λ ≥ 0, λ f1(x) = 0. (12)

It is easy to see that the point z1 = −1, f1(z1) = 0 satisfies (12) with λ = 1
3 .

(b) In order to verify whether the point z1 = −1 is a global solution to (11) or not,
let us apply the global optimality conditions (GOC) (7)–(8) of Theorem 4.1. First, it
can be readily seen that

g0(x) ≡ 0, h0(x) := 1

2
x2 = − f0(x), g1(x) = x2 − x − 2 = f1(x), h1(x) ≡ 0,

ζ := f0(z1) = −1

2
, H(y) = h0(x) = 1

2
x2.

⎫⎪⎬
⎪⎭

(13)

Therefore, from (13) and (6), we obtain G(x, ζ ) := max{g0(x)+ h1(x)− ζ ; g1(x)+
h0(x)} = max{ 12 ; 3

2 x
2 − x − 2}.

(c) Let us set y := 1. Then we have, according to (7), β = H(y) = 1

2
y2 = 1

2
.

Furthermore, for the point u = 4

3
, we have

3

2
u2 − u − 2 = −2

3
<

1

2
, and

G(u, ζ ) = 1

2
.

Besides, ∇H(y) = y = 1, 〈∇H(y), u − y〉 = 1
3 , G(u, ζ ) = 1

2 < 1
2 + 1

3 =
β + 〈∇H(y), u − y〉, so that the inequality (8) is violated. Moreover, F(z, ζ ) = 0 >

− 4
9 = F(u, ζ ).
Hence, according to Theorem 4.1 and Lemma 3.1, the point z1 = −1 is not a global

solution to (11). Actually, f0(u) = −1

2
u2 = −8

9
< −1

2
= f0(z). So, the point u = 4

3
violating (8) turns out to be better in the sense of Problem (P) than the critical point
z1 = −1 provided by the KKT-system (12). �
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Remark 4.3 Let us set in (7) y = z. Then, we have β = H(z) =
m∑
i=0

hi (z). Besides,

from (8) it follows

G(x, ζ ) − 〈H ′(z), x〉 ≥ β − 〈H ′(z), z〉 = H(z) − 〈H ′(z), z〉 ∀x ∈ S.

It means that for the linearized problem (PL(z))–(9), the number 
 := H(z) −
〈H ′(z), z〉 is a lower bound, so that Φζ (x) ≥ 
 ∀x ∈ S. On the other hand, it can be
readily seen that

G(z, ζ ) := max

⎧⎨
⎩g0(z) +

m∑
j=1

h j (z) − ζ ; g1(z) +
m∑
j �=1

h j (z); . . . , gm(z) +
m−1∑
j

h j (z)

⎫⎬
⎭

= max

{
H(z); max

1≤i≤m
[ fi (z) + H(z)]

}
= H(z), (14)

because max
1≤i≤m

[ fi (z)] ≤ 0. Therefore, Φζ (z) := G(z, ζ ) − 〈H ′(z), z〉 = H(z) −
〈H ′(z), z〉 = 
.

So, z is a solution to the convex Problem (PL(z)), and since the set S is convex,
the corresponding necessary and sufficient conditions [4,8–14] hold

0 ∈ ∂G(z, ζ ) −
m∑
i=0

h′
i (z) + N (z ; S), (15)

where ∂G(z, ζ ) is the subdifferential of G(·, ζ ) at z, and N (z ; S) is the normal cone
at z to S [4,8–14]. It means that the global optimality conditions (GOC) (7)–(8) of
Theorem 4.1 are somehow connected with the classical optimization theory [1–3]. �

In order to open the possibility to construct numerical methods of global search,
such results as Theorem 4.1 can be used in the contrariwise form as follows.

Theorem 4.2 Let us be given a feasible in Problem (P) point z, f0(z) =: ζ , and, in
addition, the following assumption holds:

(H) : ∃v ∈ IRn : F(v, ζ ) > F(z, ζ ) = 0. (16)

If z is not a solution to Problem (Pζ ), then one can find a pair (y, β) ∈ IRn × IR,
a point u ∈ D and a collection of subgradients {h′

00(y), h
′
10(y), . . . , h

′
m0(y)}, where

h′
i0(y) ∈ ∂hi (y), i = 0, 1, . . . ,m, such that

H(y) :=
m∑
i=0

hi (y) = β, (7)
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G(y, ζ ) � β, (17)

G(u, ζ ) − β <

m∑
i=0

〈h′
i0(y), u − y〉. (18)

Proof 1) Due to the assumption, there exists a point u ∈ IRn , such that

u ∈ S, F(u, ζ ) < F(z, ζ ) = 0, G(u, ζ ) < H(u). (19)

As above, we see that fi (u) < 0, i ∈ I, f0(u) < ζ , so that u ∈ D and the point u is
also better than z ∈ D in the sense of Problem (P). Let us introduce the following
convex set C

C := epi H(·) = {(x, γ ) : H(x) � γ } ⊂ IRn × IR. (20)

It is easy to see now that the latter inequality in (19) is equivalent to the relation

(u,G(u, ζ )) /∈ C = epi H. (21)

Due to the assumption (H)–(16), we have G(v, ζ ) > H(v), which is equivalent to
the inclusion

(v,G(v, ζ )) ∈ int C = int[epi H ]. (22)

2) Furthermore, due to the properties of the convex set C , and on account of (21)
and (22), there exists a number α, 0 < α < 1, such that (y, α) = α(u,G(u, ζ )) +
(1 − α)(v,G(v, ζ )) ∈ bdC , where bd C = {(x, γ ) : H(x) = γ } stands for the
boundary of the convex set C . Hence, we have

y = αu + (1 − α)v, β = αG(u, ζ ) + (1 − α)G(v, ζ ) = H(y). (23)

Thus, the pair (y, β) satisfies (7). In addition, with the help of convexity of the function
x �→ G(x, ζ ), we obtain that G(y, ζ ) � αG(u, ζ ) + (1 − α)G(v, ζ ) = β, so that
(17) is also proven. Besides, from (23), it follows

u = α−1[y − (1 − α)v], G(u, ζ ) = α−1[β − (1 − α)G(v, ζ )]. (23′)

3) Suppose now that, despite the assertion of Theorem 4.2, there does not exist a
tuple h′

i0(y) ∈ ∂hi (y), i = 0, 1, . . . ,m, such that (18) takes place with the pair (y, β)

constructed above, satisfying (7) and (17), and with the feasible point u. It means that

G(u, ζ )−β �
m∑
i=0

〈h′
i (y), u−y〉 for any subgradientsh′

i (y) ∈ ∂hi (y), i = 0, 1, . . . ,m.

Then, we obtain with the help of the presentation (23′)

0 � β − α−1[β − (1 − α)G(v, ζ )] + 〈H ′(y), α−1[y − (1 − α)v] − y〉
= 1 − α

α
[G(v, ζ ) − β] + 1 − α

α
〈H ′(y), y − v〉,
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where H ′(y) := ∑m
i=0 h

′
i (y). Furthermore, due to convexity of the function H(·) and

the assumption (H)–(16), and with the help of (7), we derive that

0� 1−α

α
[G(v, ζ )−β+H(y)−H(v)]= 1−α

α
[G(v, ζ )−H(v)]= 1−α

α
F(v, ζ )>0,

which is impossible. Hence, the hypothesis in the very beginning of the part 3) of the
proof turns out to be wrong. So, (18), together with Theorem 4.2, are proved. �
Remark 4.4 As it was shown in Remark 4.1, Theorem 4.1 proposes to reduce Problem
(Pζ ) to the family of linearized problems (PL(y))–(9) depending on the parameters
(y, β) ∈ IRn × IR, satisfying (7), with the consecutive verification of (8). On the other
hand, it was pointed out that Problem (PL(y))–(9) is not smooth, while the data of
Problem (P) can be differentiable. It turns out that this shortcoming of the approach
can be easily overcome with the help of the following result (see, for instance, [1,3]
and [14], exercise 3.32).

Consider the following problem

(Q) :
min
x

Θ(x) := σ(x) + f (x), x ∈ S,

σ (x) := max
j

{
ϕ j (x) : j ∈ J = {1, . . . , N }}.

⎫⎬
⎭ (24)

Together with Problem (Q)–(24), let us consider the auxiliary problem

(QA) : min
(x,t)

Φ(x, t) := t + f (x), x ∈ S, t ∈ IR, ϕ j (x) � t, j ∈ J.

(25)

Lemma 4.1 [1,3,14] A point z is a solution to Problem (Q)–(24) if and only if the
pair (z, t∗) is a solution to Problem (QA)–(25), where

t∗ = σ(z) = max
j

{ϕ j (z) : j ∈ J }. (26)

Lemma 4.2 Let the quadratic function q(x) := 1
2 〈x, Ax〉 − 〈b, x〉 with positive defi-

nite matrix A = A� and b ∈ IRn be given. Consider the optimization problem (with
a parameter u ∈ IRn)

max
(y,β)

Θ(y, β) := β + 〈∇q(y), u − y〉, (y, β) ∈ IRn+1 : q(y) = β − γ. (27)

Then, the solution (y∗, β∗) to the problem (27) is provided by the equalities

y∗ = u, β∗ = q(y∗) + γ. (28)

Proof Due to the equality constraint in (27), it can be readily seen that Θ(y, β) =
q(y) + γ + 〈∇q(y), u − y〉 = 1

2 〈y, Ay〉 − 〈b, y〉 + γ + 〈Ay − b, u − y〉 =: ψ(y) =
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γ − 1
2 〈y, Ay〉+ 〈Ay, u〉− 〈b, u〉. Hence, the function y �→ ψ(y) is strongly concave,

and the problem (27) amounts to the following unconstrained one: max
y

ψ(y), y ∈
IRn , which can be solved by the equation ∇ψ(y) = A(u − y) = 0 that proves the
relations (28). �

Let us now demonstrate the effectiveness of Theorem 4.2, Lemmas 4.1 and 4.2 by
examples.

Example 4.2 (See example 12.9 in [1]) Consider the following problem (x ∈ IR2)

min
x

f0(x) = x22 − 0, 1(x1 − 4)2, f1(x)=1 − x21−x22 �0, x ∈ S := [−2, 4] × IR.

(29)

It can be readily seen that g0(x) = x22 , h0(x) = 0.1(x1 − 4)2, g1(x) ≡ 1, h1(x) =
x21 + x22 . Besides, according to (5)–(6), we have

H(x) = 0, 1(x1 − 4)2 + x21 + x22 , (30)

G(x, η) = max{ f0(x) + H(x) − η, f1(x) + H(x)}
= max{2x22 + x21 − η; 1 + 0.1(x1 − 4)2}. (31)

Note that (see [1]) the point z = (1, 0)� satisfies the KKT-conditions with λ1 = 0.3.
Let us verify whether the point z is a global solution to (29). First, according to
Theorems 4.1 and 4.2, we have to choose parameters (y, β) ∈ IR2 × IR, fulfilling the
quadratic equality

β = H(y) = y21 + y22 + 0.1(y1 − 4)2, (30′)

and a point u ∈ S in order to violate (8) so that G(u, ζ ) < β + 〈∇H(y), u − y〉.
Here ζ := f0(z) = −0.1(z1 − 4)2 = −0.9 and, besides, G(u, ζ ) = max

{
u21 + 2u22 +

0.9; 1 + 0.1(u1 − 4)2
}
.

Let us look now for points y = (y1, y2) and u = (u1, u2) such that y2 = 0 = u2.
Then, denoting y := y1 and u := u1, we have β = H((y, 0)) = y2+0.1(y−4)2 =

1.1y2 − 0.8y + 1.6. Due to Lemma 4.2, we set y∗ = u, and in order to find a point
u ∈ S, we try to solve the problem

min
u

G(u, ζ ) = max
{
u2 + 0.9; 1 + 0.1(u − 4)2

}
, u ∈ [−2, 4]. (32)

Furthermore, due to Lemma 4.1, the problem (32) amounts to the following one

min
(u,t)

t, u ∈ [−2, 4], t ∈ IR, ϕ0(u, t) := u2 + 0.9 − t � 0,

ϕ1(u, t) := 0.1(u − 4)2 + 1 − t � 0. (32′)

This problem is obviously convex, and therefore, let us seek for a solution of
the KKT-system satisfying −2 < u < 4, which yields us L(u, t, μ) = t +
μ0

(
u2 + 9

10 − t
) + μ1[1 + 0.1(u − 4)2 − t],
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(a) ∂L
∂t = 1 − μ0 − μ1 = 0; μ0 � 0, μ1 � 0; (b) ∂L

∂u = 2μ0u + 0.2μ1(u − 4) = 0;
(c) μ0(u2 + 0.9 − t) = 0; (d) μ1[1 + 0.1(u − 4)2 − t] = 0.

}
(33)

Due toμ0+μ1 = 1, the condition (b)yields the equality 0.9μ0u+0.1u+0.4μ0−0.4 =
0. Then, the cases i) μ0 = 1, μ1 = 0 and ii) μ0 = 0, μ1 = 1 lead us to points i)
(u, t) = (0; 0.9)� and ii) (u, t) = (4, 1)� which are unfeasible for (32′).

iii) 0 < μ0, μ1 < 1, μ0 + μ1 = 1. In this case, according to (33)(c)(d), we obtain
the system of quadratic equations: u2 + 0.9 = t, 1+ 0.1(u2 − 8u + 16) = t , which
can be reduced to the single equation 0.9u2 + 0.8u − 1.7 = 0. The latter equation has
two solutions u = 1 and u = − 17

9 = −18
9 > −2. The first one produces the point

z = (1, 0)� under consideration, so it is not interesting for us.
Now, let us verify (18) only for u = − 17

9 = −18
9 , for which G(u, ζ ) = t∗ =

u2 + 0.9 = 1 + 0.1(u − 4)2 ≈ 4.4679. On the other hand (y∗
1 = u1 = − 17

9 ,
y∗
2 = u2 = 0), we have

θ(y∗, u∗) := β + 〈∇H(y), u − y〉 = 1.1u2 − 0.8u + 1.6 > 5.4 + 1.6

= 7.0 > 4.4679 ≈ G(u, ζ ).

So, we see that (8) has been violated. Hence, according to Theorems 4.1 and 4.2,
the point z = (1, 0)� with f0(z) = −0.9 is not a global solution to Problem (Pζ ). At
the same time, due to Lemma 3.1, it is not a solution to (29), which is confirmed by
the inequality f0(z) = −0.9 > f0((− 17

9 , 0)) ≈ −3.4679.
To sumup, one can say that the global optimality conditions (GOC) of Theorems 4.1

and 4.2 allow us not only to show that the stationary (critical) point z = (1, 0)� is not
a global solution to Problem (29), but, in addition, to construct a point u = (− 17

9 , 0)�,
which is better than z = (1, 0)� and closer to the global solution (−2, 0)� ∈ Sol(29).

�
Remark 4.5 (Remark4.3Revisited)Recall that z ∈ Sol(P) is a solution to the problem

(PL(z)) : min
x

Φζ (x) := G(x, ζ ) − 〈H ′(z), x〉, x ∈ S, (9′)

and the following equalities hold G(z, ζ ) = H(z), V(PL(z)) := Φζ (z) = H(z) −
〈H ′(z), z〉 =: 
.

All this yielded the inclusion (15). Now we will use another approach.
For that purpose, suppose that S = IRn , and all the functions gi (x), hi (·), i =

0, 1, . . . ,m, are differentiable on IRn . Then, due to Lemma 4.1, Problem (PL(z))–
(9′) is equivalent to the following problem

min
(x,t)

(
t −

m∑
i=0

〈∇hi (z), x〉
)
, (x, t) ∈ IRn+1,

f0(x) + H(x) − ζ − t � 0, fi (x) + H(x) − t � 0, i = 1, . . . ,m.

⎫⎬
⎭ (34)

The latter problem is obviously convex. Let us introduce the Lagrange function
LQ(x, t, λ) for Problem (34) (where λ = (λ0, λ1, . . . , λm)T ∈ IRm+1+ ) as follows
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LQ(x, t, λ) := t − 〈∇H(z), x〉 + λ0[ f0(x) + H(x) − ζ − t]

+
m∑
i=1

λi [ fi (x) + H(x) − t].

Note that here the multiplier, relative to the cost function in (34), has been taken
equal to 1, because in Problem (34), the Slater assumption is always satisfied with any
x ∈ S and rather large t̂ such that

f0(x) + H(x) − ζ − t̂ < 0, fi (x) + H(x) − t̂ < 0, i = 1, . . . ,m.

Thus, for the pair (z, t∗), t∗ = G(z, ζ ) = H(z) to be a solution to Prob-
lem (34), the KKT-theorem provides existence of Lagrange multipliers λ =
(λ0, λ1, . . . , λm)T ∈ IRm+1+ , such that the following conditions hold

(a)
∂LQ(z, t∗, λ)

∂t
= 0 ∈ IR, (b)

∂LQ(z, t∗, λ)

∂x
= 0n ∈ IRn; (35)

λ0[ f0(z) + H(z) − ζ − t∗] = λ0[H(z) − t∗] = 0

λi [ fi (z) + H(z) − t∗] = λi fi (z) = 0, i = 1, . . . ,m. (36)

From (35), it simply follows

(a)
m∑
i=0

λi = 1, (b) 0n = −∇H(z) +
m∑
i=0

λi [∇H(z) + ∇ fi (z)]

=
m∑
i=0

λi∇ fi (z) =
m∑
i=1

λi [∇gi (z) − ∇hi (z)].

⎫⎪⎪⎬
⎪⎪⎭ (35′)

Hence, from the conditions (7)–(8) of Theorem 4.1, we easily derived, in particular
(y = z), the classical KKT-results for Problem (P). So, we have ascertained the real
connection between the optimality conditions (7)–(8) of Theorem 4.1 and the classical
optimization theory. �

Now let turn to the case when the necessary conditions (7)–(8) of Theorem 4.1
become sufficient.

Theorem 4.3 Suppose that for a feasible (in Problem (P)) point z ∈ D, ζ := f0(z),
the assumption (H)–(16) is fulfilled. Suppose, in addition, that for every pair (y, β) ∈
IRn × IR, such that

(a) H(y) =
m∑
i=0

hi (y) = β, (b) G(y, ζ ) ≤ β, (37)

there exists a fixed collection of subgradients {h′
0∗(y), h′

1∗(y), . . . , h′
m∗(y)}, h′

i∗(y) ∈
∂hi (y), i = 0, 1, . . . ,m, for which the following inequality holds
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G(x, ζ ) − β ≥
m∑
i=0

〈h′
i∗(y), x − y〉 ∀x ∈ S. (38)

Then, the point z ∈ D is a global solution to Problem (Pζ ): z ∈ Sol(Pζ ).

Proof 1) Suppose that despite the assertion ofTheorem4.3, there exists a point u ∈ IRn

such that,

u ∈ S, F(u, ζ ) < F(z, ζ ) = 0, (19)

meanwhile the condition (37)–(38) takes place. Furthermore, we perform the similar
operations as it was done in the proof of Theorem 4.2 until the part 3).

3) Since the pair (y, β) constructed in parts 1) and 2) of the proof of Theorem 4.2
satisfies (23) and (37) (see (7) and (17)), then, according to the assumption of The-
orem 4.3, (38) must hold with x = u ∈ S and some ensemble of subgradients
h′
i∗(y) ∈ ∂hi (y), i = 0, 1, . . . ,m, so that

0 ≥ β − G(u, ζ ) +
m∑
i=0

〈h′
i∗(y), u − y〉. (39)

The latter inequality leads us to the absurdity 0 ≥ α−1(1 − α)F(v, ζ ) > 0, as it was
shown in the proof of Theorem 4.2. Thus, Theorem 4.3 is proved. �
Remark 4.6 Let us now pay attention to the fact that Theorem 4.3 provides the suffi-
cient conditions for z ∈ S to be a solution to Problem (Pζ ), ζ = f0(z), but not for the
original Problem (P). Only if we added the equality ζ = V(P) (which is, in particular,
rather difficult to verify in the majority of the applied problems, see Proposition 3.2),
then we would be able to make a conclusion about the global solution property in
Problem (P) of the feasible point z ∈ D in question. On the other hand, the equality
f0(z) = ζ = V(P) for a feasible point z ∈ D immediately provides that z ∈ Sol(P)

without any supplementary conditions. �
Example 4.3 Consider the problem

min
x

f0(x) = 1
2 (x1 − 4)2 + (x2 + 2)2,

f1(x) = (x1 − 1)2 − (x2 + 1)2 ≤ 0, f2(x) = (x2 − 2)2 − (x1 + 2)2 ≤ 0.

}

(40)

It is easy to see that the point z∗ = (4,−2)� is the global minimum of the strongly
convex function f0(·) on IR2, and f0(z∗) = 0 provides a lower bound for V(40) =
inf( f0, D) ≥ 0. Note that z∗ is unfeasible in (40), since f1(z∗) = 8 > 0. Let us

consider another point z = ( 4
3 ,− 2

3

)�
which is feasible for (40), since f1(z) = 0 and

f2(z) = −4 < 0. Besides, it can be readily seen that z satisfies the KKT-conditions
with λ0 = 1, λ1 = 4 > 0, λ2 = 0, ζ := f0(z) = 51

3 .
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In addition, because f1(x) = (x1 − x2 − 2)(x1 + x2) ≤ 0, f2(x) = (x2 − x1 −
4)(x2 + x1) ≤ 0, it can be readily shown that the feasible set D := {x ∈ IR2 :
fi (x) ≤ 0, i = 1, 2} is represented by the union of two convex parts: D = D1 ∪ D2,
D1 = {x : x1+x2 = 0}, D2 = {x : x1+x2 ≥ 0, x2−x1−4 ≤ 0, x1−x2−2 ≤ 0}.

Hence, from the geometrical view point, it is easy to see that the point z0 =
( 83 ,− 8

3 )
� is the global solution to the problem (40) with the optimal value V(40) =

f0(z0) =: ζ0 = 4
3 = 11

3 . So, the point z = ( 43 ,− 2
3 )

� turns out not to be a global solu-
tion to (40), since f0(z) = 51

3 = ζ . However, the goal function F(x, ζ ) of Problem
(Pζ ) does not distinguish between these two points. Actually,

F(z0, ζ ) = max{ f0(z0) − ζ ; f1(z0), f2(z0)} = 0

= max{ f0(z) − ζ ; f1(z); f2(z)} = F(z, ζ ),

because z ∈ D, z0 ∈ D = {x ∈ IR2 : fi (x) ≤ 0, i = 1, 2}.
Moreover, for all feasible (in Problem (40)) points which are better (in the sense

of the problem (40)) than the point z, i.e., u ∈ {x ∈ IR2 : x1 + x2 = 0, f0(x) <

ζ = 51
3 }, we have the same results: F(u, ζ ) = 0, because f1(u) = 0 = f2(u). For

instance, for any point x(α) of the form

x(α) = (v(α),−v(α))�, v(α) = 1.1α + 4.2(1 − α), α ∈ [0, 1],

we have F(x(α), ζ ) = 0, meanwhile f0(x(α)) < f0(z) = 51
3 ∀α ∈ [0, 1].

On the other hand, one can show that the GOC of Theorems 4.1 and 4.2 fail to
improve the point z = ( 4

3 ,− 2
3

)�
, albeit there exist a lot of points which are better

than z in the sense of Problem (40). �
So, Example 4.3 demonstrates that Problem (Pη) is not sufficiently adequate to

Problem (P). More precisely, taking into account Propositions 3.1 and 3.2, it is easy
to see that the set Sol(Pζ ) may contain a lot of points which do not belong to Sol(P),
so that the inclusion Sol(P) ⊂ Sol(Pζ ) may be really proper. Moreover, the inequal-
ity ζ > ζ0 = V(P) holds among with the inclusion Sol(P) ⊂ Sol(Pζ ), which is
inadmissible. Therefore, we move to another type of merit (or penalty, in a rough
sense) function.

5 The Lagrange Function

Consider the standard (normal) Lagrange function for Problem (P): L(x, λ) =
f0(x) +

m∑
i=1

λi fi (x).

It is common to call a pair (z, λ) a saddle point of the Lagrange function L(x, λ):
(z, λ) ∈ Sdl(L), if the following inequalities are satisfied [4,8–14]:

∀μ ∈ IRm+ L(z, μ) ≤ L(z, λ) ≤ L(x, λ) ∀x ∈ S. (41)
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Lemma 5.1 [4,8,11–14] For a pair (z, λ) ∈ S × IRm+ , the following two assertions
are equivalent:

i) max
μ

{L(z, μ) : μ ∈ IRm+} = L(z, λ); (42)

i i) z ∈ D, λ ∈ IRm+, λi fi (z) = 0, i = 1, . . . ,m. (43)

Recall that a vector λ ∈ IRm+ satisfying the KKT-conditions, including (43), is
called a Lagrange multiplier [4,8,11–14] at a point z ∈ D. The set of all Lagrange
multipliers at z will be denoted by M(z). Remember, in addition, that for a convex
optimization problem of type (P)–(1), when hi (x) ≡ 0 ∀i ∈ {0} ∪ I , we have
M(z1) = M(z2) = M, if zi ∈ Sol(P), i = 1, 2 [4].

Proposition 5.1 [4,8,11,13,14] If the pair (z, λ) ∈ S × IRm+ is a saddle point of the
Lagrange function L(x, μ) on the set S × IRm+ , then the point z is a global solution to
Problem (P).

We will employ this assertion in what follows in another form.

Proposition 5.2 Suppose z ∈ D, z is a KKT-point to (P), but it is not a global solution
to Problem (P).

Then, there does not exist a Lagrange multiplier λ ∈ M(z) such that (z, λ) ∈
Sdl(L).

Furthermore, since fi (x) = gi (x) − hi (x), i = 0, 1, . . . ,m, L(x, λ) has a very
clear d.c. representation

(a) L(x, λ) = Gλ(x) − Hλ(x),

(b) Gλ(x) = g0(x) +
m∑
i=1

λi gi (x), Hλ(x) = h0(x) +
m∑
i=1

λi hi (x).

⎫⎬
⎭ (44)

Taking into account (44), let us look at the normal Lagrange function from the view
point of the global optimality conditions (GOC) [15–19].

Theorem 5.1 Suppose (z, λ) ∈ Sdl(L),λ0 = 1, ζ := f0(z). Then,∀(y, β) ∈ IRn×IR
such that

Hλ(y) :=
m∑
i=0

λi hi (y) = β − ζ, (45)

the following inequality holds

Gλ(x) − β ≥
m∑
i=0

λi 〈h′
i (y), x − y〉 ∀x ∈ S, (46)

for any subgradients h′
i (y) ∈ ∂hi (y) of the functions hi (·) at the point y, i ∈ I ∪ {0}.
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Proof According to the assumption, we have the chain

ζ := f0(z) =
m∑
i=0

λi fi (z) = L(z, λ) ≤
m∑
i=0

λi fi (x) = L(x, λ) ∀x ∈ S,

from which, due to (44) and (45), it follows β − Hλ(y) = ζ ≤ L(x, λ) = Gλ(x) −
Hλ(x) ∀x ∈ S.

Then, by the convexity of Hλ(·) =
m∑
i=0

λi hi (·), λi ≥ 0, i ∈ I , we obtain

Gλ(x) − β ≥ Hλ(x) − Hλ(y) ≥
m∑
i=0

λi 〈h′
i (y), x − y〉 ∀x ∈ S,

which coincides with (46). �
Remark 5.1 Due to Proposition 5.1, it can be readily seen that for a global solution
z ∈ Sol(P), for which one can find a multiplier λ ∈ M(z) such that (z, λ) ∈ Sdl(L),
the global optimality conditions (GOC) (45)–(46) turn out to be necessary optimality
conditions.

Remark 5.2 As it was in Theorem 4.1, we see that Theorem 5.1 reduces the nonconvex
problem

(L) : min
x

L(x, λ), x ∈ S,

to the verification of (46) for the family of parameters (y, β): Hλ(y) = β − ζ , or,
more precisely, to solving the family of the convex linearized problems

(LL(y)) : min
x

Φλ(x) = Gλ(x) − 〈H ′
λ(y), x〉, x ∈ S, (47)

with the subsequent verification of (46) with x = u = u(y, β) ∈ Sol(LL(y)).

Example 4.1 (Revisited) Taking into account that z1 = 1 is a KKT-point with λ1 = 1
3 ,

f0(z1) = − 1
2 =: ζ , we get L(x, λ) = − 1

2 x
2 + 1

3 (x
2 − x − 2) = Gλ(x) − Hλ(x),

Gλ(x) = 1
3 (x

2 − x − 2), Hλ(x) = 1
2 x

2, H ′
λ(x) = x . By setting y = 0, we obtain

Hλ(y) = 0 = β − ζ , whence we derive β = ζ = − 1
2 , H

′
λ(y) = y = 0. Then, the

convex linearized (at y) problem

(LL(y)) : min
x

Φλ(x) := Gλ(x)−〈H ′
λ(y), x〉 = 1

3
(x2−x−2)−〈y, x〉, x ∈ IR,

yields the point u = 1
2 , which is feasible: f1(u) = 0.25−0.5−2 = −2.25 < 0. Then,

θ(y, β) := β+〈H ′
λ(y), u−y〉 = β = − 1

2 > − 3
4 = 1

3 (u
2−u−2) = Gλ(u). The latter

inequality means that (46) is violated, so that (z1, λ1) = (−1, 1
3 ) is not a saddle point.

In addition, the GOC of Theorem 5.1 provided the point u = 1
2 , with f0(u) = − 1

8 ,
which is worse in the sense of Problem (29) in comparison with z1 = −1, since
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f0(z1) = − 1
2 < f0(u) = − 1

8 . On the other hand, matching the values of the Lagrange
function, we see that L(u, λ1) := − 1

2u
2 + 1

3 (u
2 − u − 2) = − 7

8 < L(z1, λ1) = − 1
2 .

So, the improvement happened, but at the value of the Lagrange function. �

Remark 5.3 Let us now set in (45) y = z. Then, we have β = f0(z) +
m∑
i=0

λi hi (z) =
L(z, λ) + Hλ(z) = Gλ(z). Furthermore, from the inequality (46), it follows Gλ(x) −
Gλ(z) ≥ 〈H ′

λ(z), x − z〉 ∀x ∈ S.
It means that the point z is a solution to the convex problem (LL(y))–(47) with

y = z, z ∈ Sol(LL(z)).
Hence, the following optimality condition takes place [4,8,11–14]

0∗ ∈ ∂Gλ(z) − H ′
λ(z) + N (z; S). (48)

The inclusion (48) in the smooth case is very standard for experts in the optimization
theory [4,8–11,13,14]. Actually, in the smooth case where z ∈ int S or S = IRn , the
inclusion (48) transmutes itself into the equality

m∑
i=0

λi [∇gi (z) − ∇hi (z)] =
m∑
i=0

λi∇ fi (z) = ∇L(z, λ) = 0 ∈ IRn . (48′)

It can be readily seen that those are the KKT-conditions, because the complementarity
conditions can be produced from (48) [1,2,4,12–14] as well. Hence, we conclude that
the conditions (45)–(46) of Theorem 5.1 are connected, in a natural way, with the
classical optimality conditions [1–4,8,11–14].

Remark 5.4 Furthermore, suppose that there exists a tuple (y, β, u), such that (y, β)

satisfies the equality (45) and violates (46), i.e., Gλ(u) − β < 〈H ′
λ(y), u − y〉. Then,

due to convexity of Hλ(·) =
m∑
i=0

λi hi (·), it follows Gλ(u) − β < Hλ(u) − Hλ(y).

Moreover, on account of (44) and (45), we have

L(u, λ) = Gλ(u) − Hλ(u) < β − Hλ(y) = ζ = f0(z) = L(z, λ),

whereλ ∈ M(z). Hence, the right-hand side inequality in (41) is violatedwithu ∈ S. It
means that the pair (z, λ) is not a saddle point: (z, λ) /∈ Sdl(L). So, the GOC (45),(46)
possess the constructive (algorithmic) property, which is demonstrated by the follow-
ing example. �

Example 5.1 (Example 4.2 Revisited) Let us return to the problem (29), where z =
(1, 0)� is a KKT-point with λ1 = 0.3, so that L(x, λ) = f0(x) + 0.3 f1(x) = x22 −
0.1(x1 − 4)2 + 0.3(1 − x21 − x2), S = [−2, 4] × IR.

Then, we see that Gλ(x) = x22 + 0.3, Hλ(x) = 0.1(x1 − 4)2 + 0.3(x21 + x22 ). Let
us show that z = (1, 0)� with ζ := f0(z) = −0.9 is not a global solution to (29).
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First, by setting y = (0, 0)�, u = (−0.5; 0)�, we see that Hλ(y) = 1.6 = β − ζ ,
β = 0.7,

∇Hλ(y) = (0.2(y1 − 4) + 0.6y1, 0.6y2)� = (−0.8, 0)�,

〈∇Hλ(y), u − y〉 = 〈(−0.8, 0)�, (−0.5, 0)�〉 = 0.4,
θ(y, β) := β + 〈∇Hλ(y), u − y〉 = 1.1,

while Gλ(u) = 0.3. Hence, we obtain Gλ(u) = 0.3 < 1.1 = β + 〈∇H(y), u − y〉,
so that (z, λ1) is not a saddle point of L(x, λ1) in virtue of Theorems 5.1. Besides,
z = (1, 0)� is not a global solution to (29), since f0(u) = −0.1(− 1

2−4)2 = −2.025 <

−0.9 = f0(z) that confirms the assertion. �
Furthermore, regardless of the effectiveness of GOC demonstrated in Examples 4.1

and 4.2 (Revisited), the question arises when there exists such a tuple (y, β, u) which
violates (46). An answer is given by the following result.

Theorem 5.2 Let a KKT-point z ∈ D with the corresponding multipliers λ ∈ M(z),
λ0 = 1, be given. Besides, the following assumption takes place

(H) : ∃v ∈ IRn : L(v, λ) > L(z, λ) = f0(z) =: ζ. (49)

Suppose, in addition, that the pair (z, λ) is not a saddle point of L(z, λ) on S × IRm+ .
Then, one can find a tuple (y, β, u), where (y, β) ∈ IRn+1, u ∈ S, and a fixed

collection of subgradients {h′
00(y), h

′
10(y), . . . , h

′
m0(y)}, h′

i0(y) ∈ ∂hi (y), i ∈ {0}∪ I ,
such that

Hλ(y) :=
m∑
i=0

λi hi (y) = β − ζ, (50)

Gλ(y) ≤ β, (51)

Gλ(u) − β <

m∑
i=0

λi 〈h′
i0(y), u − y〉. (52)

Proof 1) According to the assumption, there exists a point u ∈ S such that L(u, λ) <

L(z, λ) = f0(z) = ζ .
In particular, it may be a feasible in Problem (P) point, which is better than z:

fi (u) ≤ 0, i ∈ I , f0(u) < f0(z). In fact, since λi ≥ 0, i ∈ I , we have L(u, λ) :=
f0(u) +

m∑
i=1

λi fi (u) ≤ f0(u) < f0(z) = L(z, λ).

The proof is carried out further in the same fashion as the proof of Theorem 4.2.
Actually, introducing the convex set C := epi

[
Hλ(·) + ζ

] = {(x, γ ) ∈ IRn+1 :
Hλ(x)+ζ ≤ γ }, we establish the relations as follows (u,Gλ(u)) /∈ C, (v,Gλ(v)) ∈
intC .

Then, there exists a number α, 0 < α < 1, such that (y, β) = α(u,Gλ(u)) + (1−
α)(v,Gλ(v)) ∈ bdC , or, which is the same, y = αu + (1−α)v, β = αGλ(u)+ (1−
α)Gλ(v) = Hλ(y) + ζ .

So, (50) is proved, and (51) can be proved by the convexity of x �→ Gλ(x).
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Furthermore, the negation of the assertion of Theorem 5.2 leads us to the absurdity

0 ≥ β − Gλ(u)+
m∑
i=0

λi 〈h′
i (y), u − y〉= 1 − α

α

[
Gλ(v)−β

]+ 1 − α

α
〈H ′

λ(y), y − v〉

≥ 1 − α

α

[L(v, λ) − ζ
]

> 0.

The latter inequality follows from (H)–(49). Hence, Theorem 5.2 is proven. �
Now let us compare the effectiveness of the GOC of Theorems 5.1, 5.2 and of

Theorems 4.1, 5.1.

Example 5.2 (Example 4.3 Revisited) Recall that Theorems 4.1 and 4.2 fail to help

escape the KKT-point z = ( 4
3 ,− 2

3

)�
with λ1 = 4, λ2 = 0 and improve the value of

the function F(z, ζ ) = 0, ζ := f0(z) = 51
3 . Meanwhile, there exist points feasible in

the problem (40), which are better than z in the sense of the problem (40).
Now, let us employ the Lagrange function L(x, λ) with λ = (4, 0) ∈ M(z):

L(x, λ) = f0(x) + λ1 f1(x) = 1

2
(x1 − 4)2 + (x2 + 2)2 + 4[(x1 − 1)2 − (x2 + 1)2].

Then, we have L(x, λ) = Gλ(x) − Hλ(x), where Gλ(x) = 1
2 (x1 − 4)2 + (x2 +

2)2 + 4(x1 − 1)2, Hλ(x) = 4(x2 + 1)2. Let us choose y = (0,− 1
2 )

�, u = ( 4
3 , 0

)�
,

f1(u) = − 8
9 < 0, f2(u) = −71

9 < 0. Besides, it yields ∇Hλ(y) = (0, 8(y2 +
1))� = (0, 4)�. Then, we obtain that β = Hλ(y) + ζ = 4(− 1

2 + 1)2 + 51
3 = 61

3 ,
〈∇Hλ(y), u − y〉 = 〈

(0, 4)�, ( 43 , 0.5)
�〉 = 2. Now it can be readily seen that

ψ(y, β) := β + 〈∇Hλ(y), u − y〉 = 8
1

3
, Gλ(u) = 1

2

(
4

3
− 4

)2
+ 22 + 4

(
4

3
− 1

)2
= 8.

Hence, we see that Gλ(u) = 8 < 81
3 = β + 〈∇Hλ(y), u − y〉. So, (46) is violated.

Due to Theorems 5.1 and 5.2, it means that (z, λ) is not a saddle point of the Lagrange
function. Actually L(u, λ) := f0(u)+4 f1(u) = 75

9 +4 · (− 8
9

) = 4 < 51
3 = f0(z) =

L(z, λ). On the other hand, it is easy to compute that

f0(u) = 1

2

(
4

3
− 4

)2

+ 22 = 32

9
+ 4 = 7

5

9
> f0(z) = 5

1

3
,

so that there is no improvement at all in the problem (40). Hence, we see that, in
contrast to the GOC of Theorems 4.1 and 4.2, those ones of Theorems 5.1 and 5.2
allow us to improve the point z in the sense of the Lagrange function, since they aim
at minimizing the Lagrange function with respect to the variable x .

However, they do not aim at the minimization of f0(x) over D, i.e., to solve Prob-
lem (P). �
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Remark 5.5 The volume of the paper allows only a few words about the practical use
of GOC of Theorems 4.1–4.3 and 5.1–5.2. First, a local search method, which is “a
brick” or “a workhorse” of a general global search, can be produced as follows. Let
us give an approximate xs ∈ S for problem (L), then next iterate can be chosen as an
approximate solution to the linearized (convex) problem

(LLs) : min
x

Φs
λ(x) := Gλ(x) − 〈H ′

λ(x
s), x〉, x ∈ S.

The convergence of the method can be investigated in the same manner as in [15,17,
18]. Furthermore, we consider Theorems 4.2 and 5.2 as a hint of a procedure enabling
to escape a local pitfall with the help of parameters (y, β): Hλ(y) = β − ζk , where
ζk = f0(zk), zk is a current iterate, zk ∈ D, which is not a solution to (P).

For finding (numerically) such a pair (y, β), we fixe some β ∈ [β−, β+] (see
[15,18]) and approximate the level surface UH (β) = {y ∈ IRn : Hλ(y) = β − ζk} by
a finite approximation Ak(β) = {yi ∈ IRn : Hλ(yi ) = β − ζk, i = 1, . . . , N }. For
instance, in the case Hλ(x) = ‖x‖2 or Hλ(x) = 1

2 〈x, Aλx〉 with a positive definite
matrix A = A�, one can use yi = ±μi ei , with ei from a basis in IRn and μi as a
solution to the quadratic equations with respect to μi , i = 1, . . . , n. Furthermore, we
solve the linearized problem

(PLi ) : min
x

(Gλ(x) − 〈H ′
λ(y

i ), x〉), x ∈ S,

providing ui ∈ S. Finally, we have to verify the inequalityGλ(ui )−β ≥ 〈H ′
λ(y

i ), ui−
yi 〉 ∀i = 1, . . . , n and decide by means of constructive property of GOC about the
effectiveness of the points ui ∈ S, i = 1, . . . , n. It is a simplest and rough scheme of
global search. �

More practical and effective GSmethods were developed in [15–17]. The sufficient
GOC for (L) are presented below.

Theorem 5.3 Let us be given a feasible in Problem (P) point z ∈ D, ζ := f0(z),
and, besides, the following assumption takes place

(H(L)) : ∃v ∈ IRn : ∃λ = (λ1, . . . , λm)� ∈ M(z), λ0 = 1, for which

L(v, λ) := Gλ(v) − Hλ(v) =
m∑
i=0

λi fi (v) > ζ = f0(z) = L(z, λ).

(53)

Suppose, in addition, that for every pair (y, β) ∈ IRn × IR, such that

(a) Hλ(y) =
m∑
i=0

λi hi (y) = β − ζ, (b) Gλ(y) ≤ β, (45′)
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there exists a fixed collection of subgradients {h′
00(y), h

′
10(y), . . . h

′
m0(y)}, where

h′
i0(y) ∈ ∂hi (y), i = 0, 1, . . . ,m, for which the following inequality holds

Gλ(x) − β ≥
m∑
i=0

λi 〈h′
i0(y), x − y〉 ∀x ∈ S. (46′)

Then, the pair (z, λ) ∈ S× IRm+ turns out to be a saddle point of the function L(x, μ).
�

The proof of Theorem 5.3 is similar to those ones of Theorems 4.2 and 4.3 presented
in Sect. 4, and it is therefore omitted. Besides, it can be readily seen that inTheorem5.3,
for every pair (y, β), satisfying GOC (45′), the inequality (46′) must be fulfilled
for only one fixed tuple of subgradients h′

i0(y) ∈ ∂hi (y) (and not for any h′
i (y) ∈

∂hi (y), i ∈ {0} ∪ I , as it was in Theorem 5.1). On the other hand, with the help of
Propositions 5.1 and 5.2, we obtain from Theorem 5.3 the following results.

Corollary 5.1 Suppose all the assumptions of Theorem 5.3 are fulfilled. Then, the
point z ∈ D is a global solution to Problem (P).

However, let us stress the fact that, in virtue of Theorem 5.1, the conditions (45)–
(46) are not regretfully necessary for a point z ∈ D to be a global solution to (P). On
the other hand, Theorem 5.3 provides for the inclusion (z, λ) ∈ Sdl(L), λ ∈ M(z),
which, in turn, yields that z ∈ Sol(P).

At the same time, note that, if (z, λ) is not a saddle point of L(x, λ), meanwhile
z is a KKT-point, then we are not able to say that z ∈ Sol(P), which is our major
goal. Naturally, the question arises whether for every global solution z to Problem (P),
there exists a correspondingLagrangemultiplierλ ∈ M(z), such that (z, λ) ∈ Sdl(L),
which can help us to find a solution to Problem (P).We propose to see a supplementary
example.

Example 5.3 (of G.R.Walsh, [20], p. 67) Consider the problem

min
x

f0(x) = x1x2 − 2x21 − 3x22 ,

f1(x) = 3x1 + 4x2 − 12 ≤ 0, f2(x) = x22 − x21 + 1 ≤ 0,
f3(x) = −x1 ≤ 0, f4(x) = x1 − 4 ≤ 0, f5(x) = −x2 ≤ 0, f6(x) = x2 − 3 ≤ 0.

⎫⎪⎬
⎪⎭

(54)

Let us study the unique solution z = (4, 0)� to the problem (54), f0(z) = ζ = −32.
Clearly, the Lagrange function at z takes the form L(x, λ) = x1x2 − 2x21 − 3x22 +
λ1(3x1 + 4x2 − 12)+λ4(x1 − 4)−λ5x2, S = IR2, because λ2 = λ3 = λ6 = 0 due to
the complementarity conditions: λi fi (x) = 0, i = 1, 6. In addition, with the help of
the KKT-conditions at z = (4, 0)�, we derive that λ1 = 2, λ4 = 10, λ5 = 12, so that

L(x, λ) = x1x2 − 2x21 − 3x22 + 16x1 − 4x2 − 64. (55)

Besides, L(z, λ) = −32 = ζ = f0(z), as it should be. Furthermore, it can be readily
seen that the function x �→ L(x, λ) is a d.c. one. We use the d.c. representation as
follows: L(x, λ) = Gλ(x) − Hλ(x), where
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Gλ(x) = 2(x21 + x22 ) + 16x1 − 4x2 − 64, Hλ(x) = 4x21 + 5x22 − x1x2. (56)

Therefore, one can see thatβ = Hλ(y)+ζ = Hλ(y)−32,∇Hλ(x) = (8x1−x2, 10x2−
x1)�, 〈∇H(y), u− y〉 = 8y1u1 − y2u1 +2y1y2 −8y21 −10y22 +10y2u2 − y1u2, from
what it follows that

θ(y, β) := β + 〈∇H(y), u − y〉 = ψ(y)

:= (8u1 − u2)y1 + (10u2 − u1)y2 + y1y2 − 4y21 − 5y22 − 32. (57)

Moreover, Lemma 4.2 leads us to the equality: y∗ = u. Now, let us choose the vector
u as u = (− 1

5 ,− 4
5 )

�, since S = IR2. Then, one can compute that Gλ(u) = −6216
25 <

−42 = ψ(y∗) = θ(y∗, β∗), so that (46) is violated. Therefore, due to Theorems 5.1
and 5.2, it implies that the pair (z, λ) is not a saddle point ofL(u, λ). The latter assertion
can be easily verified by the direct calculations L(u, λ) = −6521

25 < −32 = L(z, λ).
So, we see that even for unique (global) solution z ∈ Sol(P), there does not exist a
Lagrange multiplier λ such that (z, λ) ∈ Sdl(L). �

6 Conclusions

In this paper,we addressed the general optimization problemwith the d.c. goal function
and the d.c. inequality constraints. Besides, the original problem has been reduced
to optimization problems with two types of the cost function given by the classical
Lagrangian and the max-merit function.

The objective was to evaluate these merit functions from the view point of a global
solution to the original problem via the global optimality conditions (GOC) and the
classical OC, mainly the KKT-theorem.

The results of investigations demonstrated that both merit functions do not ade-
quately reflect the features of the original problem (P), regardless of the effectiveness
of the new GOG developed above. Besides, one merit function has some advantages
in comparison with another one in a number of examples and vice versa in other exam-
ples. Moreover, both merit functions have their own objective different to that one of
the original problem. For instance, the GOC and examples showed that it may happen
that there is no a saddle point for a global solution to the original problem. Hence, it
is necessary to consider other types of the merit or penalty functions [1–4,8–12] more
relevant to the problem in question.
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