
J Optim Theory Appl (2016) 171:70–89
DOI 10.1007/s10957-016-0986-y

Approximate Karush–Kuhn–Tucker Condition
in Multiobjective Optimization

Giorgio Giorgi1 · Bienvenido Jiménez2 ·
Vicente Novo2

Received: 12 October 2015 / Accepted: 15 July 2016 / Published online: 21 July 2016
© Springer Science+Business Media New York 2016

Abstract We extend the so-called approximate Karush–Kuhn–Tucker condition from
a scalar optimization problem with equality and inequality constraints to a multiob-
jective optimization problem. We prove that this condition is necessary for a point
to be a local weak efficient solution without any constraint qualification, and is also
sufficient under convexity assumptions. We also state that an enhanced Fritz John-
type condition is also necessary for local weak efficiency, and under the additional
quasi-normality constraint qualification becomes an enhanced Karush–Kuhn–Tucker
condition. Finally, we study some relations between these concepts and the notion
of bounded approximate Karush–Kuhn–Tucker condition, which is introduced in this
paper.
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1 Introduction

Karush–Kuhn–Tucker (KKT) optimality conditions play an important role in opti-
mization theory, both for scalar optimization and for multiobjective optimization. The
KKT conditions are satisfied at a weak efficient point, provided a suitable constraint
qualification holds.

Other kind of optimality conditions, named Fritz John-type conditions, do not
require any constraint qualification. Such conditions are true in the scalar case and
also for the multiobjective problem.

Another type of necessary optimality conditions in scalar problems, that do
not require a constraint qualification, are the so-called “approximate optimality
conditions” or also “asymptotic optimality conditions” or “sequential optimality con-
ditions,” in which appropriate sequences of points and multipliers are considered.
These conditions are investigated since several decades. We can quote the works of
Kortanek and Evans [1], for pseudoconcave programming, the paper of Fiacco and
McCormick [2], the paper of Zlobec [3], where this last author generalizes, in an
asymptotic way, the classic optimality conditions given by Guignard and the book of
Hestenes [4]. Asymptotic versions of the Karush–Kuhn–Tucker conditions are con-
sidered also by McShane [5], Craven [6] and Trudzik [7].

Recently, several works have been devoted to the study of such conditions for
the interest they have in the design and analysis of algorithms to check this kind
of approximate optimality conditions; see, for example, Haeser and Schuverdt [8],
Andreani, Haeser and Martínez [9], Andreani, Martínez and Svaiter [10], Dutta et al.
[11] and Haeser and Melo [12].

Despite of its great interest, this type of optimality conditions has not been studied
in multiobjective optimization; in our knowledge this paper is the first dedicated to
this topic.

In this paper, we deal with the study of the approximate KKT condition for a
continuously differentiablemultiobjective problem infinite dimensional spaces,whose
feasible set is defined by inequality and equality constraints. In the main result (Sect.
3) we extend to this context the necessary optimality conditions obtained for scalar
problems via approximate KKT conditions. We also prove that these conditions are
also sufficient conditions under convexity assumptions. Illustrative examples are given.

In Sect. 4 we obtain a necessary optimality condition of enhanced Fritz John-type
(in this case, in addition to the classic Fritz John conditions, the multipliers satisfy
some additional sensitivity-like conditions). This class of multipliers was obtained by
Bertsekas and Ozdaglar [13] for scalar optimization problems.Moreover, we study the
relationships between these conditions and the above one, we introduce the notions
of enhanced (respectively weak enhanced) KKT-point and state that the approximate
KKT condition is sufficient to have an enhanced KKT-point under a weak constraint
qualification, called quasi-normality constraint qualification. We also introduce the
notion of bounded approximate KKT condition and study the relations with the above
concepts.
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2 Preliminaries

Recall that, for a scalar function, the so-called Clarke subdifferential is defined as
follows [14]: The upper Clarke directional derivative of a locally Lipschitz function
ϕ : R

n → R at x ∈ R
n in the direction d ∈ R

n is

ϕ◦(x, d) := lim sup
y→x, t↓0

ϕ(y + td) − ϕ(y)

t
,

and the Clarke subdifferential of ϕ at x is given by

∂Cϕ(x) := {ξ ∈ R
n : 〈ξ, d〉 ≤ ϕ◦(x, d) ∀d ∈ R

n},

where 〈·, ·〉 stands for the Euclidean scalar product. When ϕ is continuously dif-
ferentiable, one has ∂Cϕ(x) = {∇ϕ(x)}. Next, we collect some properties of this
subdifferential that can be found in [14].

Proposition 2.1 (i) Let ϕ : R
n → R be locally Lipschitz and ψ : R

n → R continu-
ously differentiable. Then,

∂C (ϕ + ψ)(x) = ∂Cϕ(x) + {∇ψ(x)}.

(ii) If x0 is a local minimum of ϕ, then 0 ∈ ∂Cϕ(x0).
(iii) If ϕ(x) = max{ϕ1(x), . . . , ϕp(x)}, where ϕ1, . . . , ϕp : R

n → R are continu-
ously differentiable, then

∂Cϕ(x) = conv{∇ϕ j (x) : j = 1, . . . , p such that ϕ j (x) = ϕ(x)},

(here conv denotes the convex hull).

We denote by B(x0, δ) (respectively B̄(x0, δ)) the open (respectively closed) ball
centered at x0 ∈ R

n and radius δ > 0. In general, for a vector x ∈ R
n , we denote its

components by xi (i = 1, . . . , n). We denote by R
n+ the nonnegative orthant of R

n .
For a ∈ R, we denote a+ := max{0, a}, a2+ := (a+)2, ‖ · ‖ is the Euclidean norm

of R
n except otherwise is specified. For y, z ∈ R

n , as usual we write y ≤ z if yi ≤ zi
for i = 1, . . . , n; y < z if yi < zi for i = 1, . . . , n.

We consider the following multiobjective optimization problem:

(MOP) min
R

p
+ f (x) subject to x ∈ S,

where S := {x ∈ R
n : g(x) ≤ 0, h(x) = 0}, f : R

n → R
p, g : R

n → R
m and

h : R
n → R

r are continuously differentiable functions. The components of these
functions are fl (l = 1, . . . , p), g j ( j = 1, . . . ,m) and hi (i = 1, . . . , r). The set of
active indexes at a point x ∈ S is given by J (x) := { j : g j (x) = 0}.

A point x0 ∈ S is an efficient (respectively weak efficient) solution for (MOP)
iff there exists no x ∈ S such that f (x) ≤ f (x0), f (x) �= f (x0) (respectively
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f (x) < f (x0)). The set of all efficient (respectively weak efficient) solutions of
(MOP) is denoted by Min( f, S) (respectively WMin( f, S)). A point x0 ∈ S is a local
weak efficient solution for (MOP) if there exists a neighborhoodU of x0 such that x0

is a weak efficient solution on S ∩U .

3 Approximate KKT Condition for Multiobjective Optimization
Problems

Next we introduce the concept of approximate Karush–Kuhn–Tucker condition for
the multiobjective problem (MOP) inspired by the works by Andreani, Haeser and
Martínez [9], Andreani, Martínez and Svaiter [10], Haeser and Schuverdt [8] and
Dutta et al. [11]. We point out that all the mentioned authors are concerned with scalar
optimization problems.

Definition 3.1 We say that the approximateKarush–Kuhn–Tucker condition (AKKT)
is satisfied for (MOP) at a feasible point x0 ∈ S iff there exist sequences (xk) ⊂ R

n

and (λk, μk, τ k) ⊂ R
p
+ × R

m+ × R
r such that

(A0) xk → x0,

(A1)
p∑

l=1

λkl ∇ fl(x
k) +

m∑

j=1

μk
j∇g j (x

k) +
r∑

i=1

τ ki ∇hi (x
k) → 0,

(A2)
p∑

l=1

λkl = 1,

(A3) g j (x
0) < 0 ⇒ μk

j = 0 for sufficiently large k, j = 1, . . . ,m.

This condition is introduced here for the first time in multiobjective optimization
problems, and it extends in a natural way the AKKT condition studied in scalar opti-
mization problems (see, for example, [8]). Points satisfying the AKKT condition will
be called AKKT points. Let us observe that the sequence of points (xk) is not required
to be feasible.

Remark 3.1 Assuming μk ∈ R
m+, condition (A3) is clearly equivalent to

μk
j g j (x

k) ≥ 0 for sufficiently large k,∀ j /∈ J (x0). (1)

Each of these conditions implies the condition

μk
j g j (x

k) → 0 ∀ j /∈ J (x0). (2)

In order to establish necessary optimality conditions for problem (MOP), we are
going to scalarize it. To this aim, we consider the nonsmooth function φ : R

p → R

defined by

φ(y) := max
1≤i≤p

{yi }.

Clearly, φ(y) ≤ 0 ⇔ y ≤ 0, and φ(y) < 0 ⇔ y < 0.
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Furthermore the following result is well known. We report here for the reader’s
convenience the result and its proof.

Lemma 3.1 If x0 ∈ WMin( f, S), then x0 ∈ Min(φ( f (·) − f (x0)), S).

Proof Suppose that x0 /∈ Min(φ( f (·) − f (x0), S), then there exists x̂ ∈ S such that
φ( f (x̂)− f (x0)) < φ( f (x0)− f (x0)) = 0. It follows that f (x̂)− f (x0) < 0, which
contradicts the hypothesis. ��
Theorem 3.1 If x0 ∈ S is a local weak efficient solution of problem (MOP), then x0

satisfies the AKKT condition with sequences (xk) and (λk, μk, τ k). In addition, for
these sequences we have that

(E1) μk = bkg(x
k)+ and τ k = ckh(xk), where bk, ck > 0, ∀k,

(E2) fl(x
k) − fl(x

0) +
m∑

j=1

μk
j g j (x

k) +
r∑

i=1

τ ki hi (x
k) ≤ 0, ∀k, l = 1, . . . , p.

Proof By assumption, there exists δ > 0 such that x0 ∈ WMin( f, S ∩ B(x0, δ)),
and by Lemma 3.1, we deduce that x0 ∈ Min(φ( f (·) − f (x0)), S ∩ B(x0, δ)). In
consequence, we may suppose that x0 is the unique solution of problem

Minimize φ( f (x) − f (x0)) + 1
2‖x − x0‖2, subject to x ∈ S, ‖x − x0‖ ≤ δ (3)

(choosing a small δ if necessary).
We define, for each k ∈ N,

ψk(x) := φ( f (x) − f (x0)) + 1
2‖x − x0‖2 +

m∑

j=1

kg j (x)
2+ +

r∑

i=1

khi (x)
2,

and let xk be a solution of problem

Minimize ψk(x), subject to ‖x − x0‖ ≤ δ. (4)

Let us observe that xk exists because ψk is continuous and B̄(x0, δ) is compact.
Let z be an accumulation point of (xk). We may suppose that xk → z (choosing a

subsequence if necessary).
On one hand, we have

φ( f (xk) − f (x0)) ≤ ψk(x
k)

because

ψk(x
k) − φ( f (xk) − f (x0)) = 1

2‖xk − x0‖2 +
m∑

j=1

kg j (x
k)2+ +

r∑

i=1

khi (x
k)2 ≥ 0.

123



J Optim Theory Appl (2016) 171:70–89 75

On the other hand, as x0 is a feasible point of problem (4) and xk is a solution, one
has

ψk(x
k) ≤ ψk(x

0) = 0 ∀k ∈ N (5)

since x0 ∈ S and φ( f (x0) − f (x0)) = φ(0) = 0.
Let us prove that z is a feasible point of problem (3).
Indeed, first as ‖xk − x0‖ ≤ δ if follows that ‖z − x0‖ ≤ δ.
Second, suppose that

m∑

j=1

g j (z)
2+ +

r∑

i=1

hi (z)
2 > 0.

Then, there exists c > 0 such that

m∑

j=1

g j (x
k)2+ +

r∑

i=1

hi (x
k)2 > c

for all k large enough, by continuity and because xk → z. Now, as

ψk(x
k) = φ( f (xk) − f (x0)) + 1

2‖xk − x0‖2 + k

( m∑

j=1

g j (x
k)2+ +

r∑

i=1

hi (x
k)2

)

> φ( f (xk) − f (x0)) + kc,

taking the limit we obtain ψk(xk) → +∞, which contradicts (5). In consequence,∑m
j=1 g j (z)2+ + ∑r

i=1 hi (z)
2 = 0, and this implies that z ∈ S.

From (5) one has

ψk(x
k) = φ( f (xk)− f (x0))+ 1

2‖xk −x0‖2+
m∑

j=1

kg j (x
k)2++

r∑

i=1

khi (x
k)2 ≤ 0 (6)

and, as
∑m

j=1 kg j (xk)2+ + ∑r
i=1 khi (x

k)2 ≥ 0, we get

φ( f (xk) − f (x0)) + 1
2‖xk − x0‖2 ≤ 0.

Taking the limit it results

φ( f (z) − f (x0)) + 1
2‖z − x0‖2 ≤ 0.

As x0 is the unique solution of problem (3) with value 0, we conclude that z = x0.
Therefore, xk → x0 and ‖xk − x0‖ < δ for all k sufficiently large.
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Now, as xk is a solution of the nonsmooth problem (4) and it is an interior point of the
feasible set, for k large enough, from Proposition 2.1(ii) it follows that 0 ∈ ∂Cψk(xk).
By applying Proposition 2.1, parts (i) and (iii), we have

0 ∈ conv

( ⋃

1≤l≤p

{∇ fl(x
k)}

)
+ xk − x0 +

m∑

j=1

kg j (x
k)+∇g j (x

k)

+
r∑

i=1

khi (x
k)∇hi (x

k).

Hence, there exist λkl ≥ 0, l = 1, . . . , p, such that
∑p

l=1 λkl = 1 and

p∑

l=1

λkl ∇ fl(x
k) +

m∑

j=1

kg j (x
k)+∇g j (x

k) +
r∑

i=1

khi (x
k)∇hi (x

k) = x0 − xk → 0.

Choosing for each k

μk
j = kg j (x

k)+ ≥ 0 ( j = 1, . . . ,m) and τ ki = khi (x
k) (i = 1, . . . , r) (7)

we see that x0 satisfies conditions (A1), (A2) and (E1). If g j (x0) < 0, then g j (xk) < 0
for all k large enough, and so μk

j = kg j (xk)+ = 0; therefore (A3) is also satisfied.
From (7), clearly for all j = 1, . . . ,m and for all i = 1, . . . , r ,

μk
j g j (x

k) = μk
j g j (x

k)+ = kg j (x
k)2+ and τ ki hi (x

k) = khi (x
k)2 ∀k.

In consequence, (6) can be rewritten as

φ( f (xk) − f (x0)) + 1
2‖xk − x0‖2 +

m∑

j=1

μk
j g j (x

k) +
r∑

i=1

τ ki hi (x
k) ≤ 0.

From here, condition (E2) follows and the proof is finished. ��
We highlight that in Theorem 3.1, we do not require any constraint qualification,

that is, these necessary optimality conditions are true for any local weak efficient
solution without additional requirements. Let us observe also that condition (E1) says
that the multipliers μk and τ k are proportional, respectively, to g(xk)+ and h(xk).
Condition (E1) is usually satisfied, for example, when the external penalty method is
applied [8].

Next we illustrate Theorem 3.1 with an example.

Example 3.1 Consider the following multiobjective problem:

Min f (x1, x2) = ( f1(x1, x2), f2(x1, x2)) subject to g(x1, x2) = x22 − x1 ≤ 0,
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where
f1(x1, x2) = 4x1 − x22 , f2(x1, x2) = −2x1 − x2.

Let us note that it is a nonconvex problem. The point x0 = (1, 1) is a weak efficient
solution as can be checked, and so Theorem 3.1 can be applied. In order to find
sequences satisfying (A0)–(A3), (E1) and (E2), first let us solve the equation

λ1∇ f1(x1, x2) + λ2∇ f2(x1, x2) + μ∇g(x1, x2) = (0, 0), (8)

with λ1, λ2, μ ≥ 0, λ1 + λ2 = 1. We obtain for x2 < −1 or x2 ≥ 0,

λ1 = 4x2 + 1

10x2 + 1
, λ2 = 6x2

10x2 + 1
, μ = 4x2 + 4

10x2 + 1
. (9)

Second, consider the nonfeasible points xε = (1, 1 + 6ε), ε > 0. Then, from (9) it
results

λε
1 = 5 + 24ε

11 + 60ε
, λε

2 = 6 + 36ε

11 + 60ε
, μ̄ε = 8 + 24ε

11 + 60ε
.

Let με = 8
11+60ε and μ̃ε = 24ε

11+60ε so that μ̄ε = με + μ̃ε. In view of (8), one has
λε
1∇ f1(xε) + λε

2∇ f2(xε) + (με + μ̃ε)∇g(xε) = 0, ∀ε > 0. From here,

λε
1∇ f1(x

ε) + λε
2∇ f2(x

ε) + με∇g(xε) = −μ̃ε∇g(xε) → 0 when ε ↓ 0.

Clearly, (A0)–(A3) are satisfied with (xε, λε
1, λ

ε
2, μ

ε) (if necessary we transform the
points in sequences selecting ε = 1

k ). Moreover, (E1) is fulfilled selecting bε =
με

g(xε)+ > 0. Condition (E2) is also satisfied since (after some calculations)

f1(x
ε) − f1(x

0) + μεg(xε) = −(2160ε + 588)ε2

11 + 60ε
< 0 ∀ε > 0,

f2(x
ε) − f2(x

0) + μεg(xε) = −192ε2

11 + 60ε
< 0 ∀ε > 0.

Conditions (E1) and (E2) are good properties as it is showed in Remark 3.2 and in
Theorem 4.1, but it may not be easy to find a sequence with such properties. However,
sequences satisfying (A0)–(A3) are easily obtained. As instance, if x0 is a KKT-
point (see Definition 4.4) and

∑p
l=1 λl = 1, then every sequence (xk, λk, μk, τ k) ⊂

R
n ×R

p
+ ×R

m+ ×R
r converging to (x0, λ, μ, τ) satisfy (A0)–(A3) whenever μk

j = 0

for sufficiently large k if g j (x0) < 0.
The reciprocal of Theorem 3.1 is not true, as the following example shows.

Example 3.2 Consider problem (MOP) with the following data:

f1 = x1 − 2x22 , f2 = −x2, g = −x1 ≤ 0,
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x0 = (0, 0), xk =
(

−1

k
,
1

k

)
, λk1 = 1, λk2 = 0, μk = 1.

One has

λk1∇ f1(x
k) + λk2∇ f2(x

k) + μk∇g(xk) =
(
0,

−4

k

)
→ (0, 0).

Therefore conditions (A0)–(A3) are fulfilled. Moreover, (E1) is satisfied with bk =
μk

g(xk )+ = k. Condition (E2) is also fulfilled since

f1(x
k) − f1(x

0) + μkg(xk) = −2

k2
< 0 ∀k,

f2(x
k) − f2(x

0) + μkg(xk) = 0 ∀k.

However x0 is not a local weak efficient solution, because for the feasible points
x(t) = (t2, t) one has f (x(t)) = (−t2,−t) < f (x0) for all t > 0.

In the following remark we study the relationships between conditions (E1) and
(E2) and other conditions, some of them already considered in the literature.

Remark 3.2 The following implications are true:

(i) Condition (E1) implies the following condition (sign condition, SGN in short):
for every k one has

(SGN) μk
j g j (x

k) ≥ 0 (∀ j = 1, . . . ,m) and τ ki hi (x
k) ≥ 0 (∀i = 1, . . . , r),

(10)

and, moreover, μk
j > 0 ⇔ g j (xk) > 0, and τ ki �= 0 ⇔ hi (xk) �= 0.

(ii) Conditions (A0), (E2) and (SGN) imply the following convergence condition:

(CVG) μk
j g j (x

k) → 0 (∀ j = 1, . . . ,m) and τ ki hi (x
k) → 0 (∀i = 1, . . . , r).

(11)

(iii) (CVG) implies the following condition, that we call sum converging to zero
condition:

(SCZ)

m∑

j=1

μk
j g j (x

k) +
r∑

i=1

τ ki hi (x
k) → 0.

(iv) (SGN) and (SCZ) imply (CVG).

Indeed, part (i) is immediate since μk
j g j (xk) = bkg j (xk)2 if g j (xk) ≥ 0 and

μk
j g j (xk) = 0 if g j (xk) < 0. Soμk

j g j (xk) ≥ 0. Similarly, τ ki hi (x
k) = ckhi (xk)2 ≥ 0.

The rest of part (i) is obvious.
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For part (ii), let sk := ∑m
j=1 μk

j g j (xk) + ∑r
i=1 τ ki hi (x

k). Using (SGN) and (E2),

we have 0 ≤ sk ≤ fl(x0) − fl(xk) for all k and l. From here, sk → 0 follows by the
continuity of fl and property (A0).

Parts (iii)–(iv) are obvious.

Taking into account Remark 3.2(i), from (E2) it follows that fl(xk) ≤ fl(x0),
l = 1, . . . , p, i.e., the points xk are better than x0. This condition is similar to the
property given by (22), which is used further on to define a strong EFJ-point. As a
consequence, if we wish a sequence (xk) satisfying (E1) and (E2), then we have to
look for it in the set defined by the system fl(x) ≤ fl(x0), l = 1, . . . , p.

Remark 3.3 In some works, in order to define the AKKT condition for scalar opti-
mization problems, several variants of condition (A3) or some of the above ones are
used. For example, in [10] the authors use the CAKKT condition, in which (A3) is
replaced with

m∑

j=1

|μk
j g j (x

k)| +
r∑

i=1

|τ ki hi (xk)| → 0, (12)

which is clearly equivalent to (CVG).

We summarize the above relations in the following diagram (where the arrowmeans
“implies”):

local WMin −→ (E2)
+(SGN)+(A0)−−−−−−−−→ (CVG) −−→←−− (12)

↓ ↓↑+(SGN)

(E1) −→ (SGN) (SCZ)

In next remark, we show that the reciprocal implications of Remark 3.2 are not true
and the invalidity if any assumption is not satisfied.

Remark 3.4 (i) (SGN) � (E1). Consider Example 3.1, with x0 = (1, 1), xk = (1 +
1
k , 1), λ

k
1 = 5

11 , λ
k
2 = 6

11 , μ
k = 8

11 . With these data, (SGN) is satisfied but (E1) is
not since g(xk)+ = 0, and so bkg(xk)+ = 0 �= μk for all bk > 0.

(ii) (CVG) � (E2) even if (SGN) holds. Consider Example 3.1, with x0 = (1, 1),
xk = (1− 1

k , 1), λ
k
1 = 5

11 , λ
k
2 = 6

11 , μ
k = 8

11 . One has μkg(xk) → 0 and (SGN)
is satisfied, but (E2) is not since

f2(x
k) − f2(x

0) + μkg(xk) = 6k − 8

11k2
> 0 ∀k > 1.

(iii) (E2) � (CVG) if (SGN) is not satisfied. Consider the following data in problem
(MOP):

f1 = x1 + x2, f2 = −x1 + x2, g1 = x21 − x2 ≤ 0, g2 = −2x21 + x2 ≤ 0,

x0 = (0, 0), xk = (0,− 1
k ), λ

k
1 = 1

2 , λ
k
2 = 1

2 , μ
k
1 = 1 + k, μk

2 = k. One has that
(E2) is satisfied since

fl(x
k) − fl(x

0) + μk
1g1(x

k) + μk
2g2(x

k) = 0 ∀k, l = 1, 2,
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however (CVG) is not satisfied because μk
1g1(x

k) = (1 + k) 1
k = 1

k + 1 → 1.
(iv) (SCZ) � (CVG) if (SGN) is not satisfied. The same data of part (iii) show this

fact since

μk
1g1(x

k) + μk
2g2(x

k) = (1 + k)
1

k
+ k

−1

k
= 1

k
→ 0,

so (SCZ) holds but (CVG) does not.

Theorem 3.1 extends to multiobjective optimization (and improves in some cases)
Theorem 3.3 in Andreani, Martínez and Svaiter [10], Theorem 2.1 in Haeser and
Schuverdt [8] and Theorem 2.1 (with I = ∅) in Andreani, Haeser and Martínez [9].

Next we establish that the reciprocal of Theorem 3.1 is true for convex programs.

Theorem 3.2 Assume that fl (l = 1, . . . , p) and g j ( j = 1, . . .m) are convex and hi
(i = 1, . . . , r) are affine. If x0 ∈ S satisfies the AKKT condition and (SCZ) is fulfilled,
then x0 is a (global) weak efficient solution of (MOP).

Proof Suppose that x0 is not a weak efficient solution. Then, there exists x̂ ∈ S such
that

fl(x̂) < fl(x
0) l = 1, . . . , p. (13)

Let (xk), and (λk, μk, τ k) be the sequences that satisfy (A0)–(A3). Without any loss
of generality we may assume that λk → λ0, with λ0 ≥ 0 and

∑p
l=1 λ0l = 1. As fl , g j

are convex and hi are affine, for all k one has

fl(x̂) ≥ fl(x
k) + ∇ fl(x

k)(x̂ − xk) ∀l = 1, . . . , p, (14)

g j (x̂) ≥ g j (x
k) + ∇g j (x

k)(x̂ − xk) ∀ j = 1, . . . ,m, (15)

hi (x̂) = hi (x
k) + ∇hi (x

k)(x̂ − xk) ∀i = 1, . . . , r. (16)

Multiplying (14) by λkl , (15) by μk
j and (16) by τ ki and adding up, it results (the first

inequality is valid because x̂ ∈ S)

p∑

l=1

λkl fl(x̂) ≥
p∑

l=1

λkl fl(x̂) +
m∑

j=1

μk
j g j (x̂) +

r∑

i=1

τ ki hi (x̂)

≥
p∑

l=1

λkl fl(x
k) +

m∑

j=1

μk
j g j (x

k) +
r∑

i=1

τ ki hi (x
k) + γk, (17)

where γk = (
∑p

l=1 λkl ∇ fl(xk)+∑m
j=1 μk

j∇g j (xk)+∑r
i=1 τ ki ∇hi (xk))(x̂ − xk). As

xk → x0, γk → 0 by (A1) and
∑m

j=1 μk
j g j (xk) + ∑r

i=1 τ ki hi (x
k) → 0 by (SCZ),

taking the limit in (17) we obtain

p∑

l=1

λ0l fl(x̂) ≥
p∑

l=1

λ0l fl(x
0). (18)
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As λ0 ≥ 0 and λ0 �= 0, from (13) it follows that
∑p

l=1 λ0l fl(x̂) <
∑p

l=1 λ0l fl(x
0),

which contradicts (18). ��
This theorem extends to multiobjective optimization Theorem 4.2 in Andreani,

Martínez and Svaiter [10] and Theorem 2.2 in Haeser and Schuverdt [8].
We illustrate Theorem 3.2 with the following example.

Example 3.3 Consider problem (MOP) with the following data:

f1 = x21 + x22 , f2 = −x1, g = x1 − 2 ≤ 0,

x0 = (2, 1), xk = (2, 1), λk1 = 0, λk2 = 1, μk = 1.

With these data, x0 satisfiesAKKTandmoreover (SCZ)holds, so by applyingTheorem
3.2 we conclude that x0 is a global weak efficient solution.

The conclusion of Theorem 3.2 cannot be that x0 is a global efficient solution as
this example shows, because x0 is not efficient since f (2, 0) ≤ f (x0) and f (2, 0) �=
f (x0).

4 Relations of the AKKT Condition with Other Optimality Conditions

Next we state necessary optimality conditions, which are alternative to the conditions
of Theorem 3.1 and we study the relations with AKKT conditions. These conditions,
in scalar optimization, are called by Bertsekas and Ozdaglar [13] “enhanced Fritz
John” conditions because the associated multipliers have some additional properties
(see also Hestenes [4, Theorem5.7.1]).

Definition 4.1 We say that a point x0 ∈ S satisfies the enhanced Fritz John conditions
(EFJ) (or it is an EFJ-point) iff there exist (λ, μ, τ) ∈ R

p
+ × R

m+ × R
r such that

(EFJ1)
∑p

l=1 λl∇ fl(x0) + ∑m
j=1 μ j∇g j (x0) + ∑r

i=1 τi∇hi (x0) = 0,
(EFJ2) (λ, μ, τ) �= 0,
(EFJ3) if the index set J ∪ I is nonempty, where

J = { j : μ j �= 0}, I = {i : τi �= 0},

then there exists a sequence (xk) ⊂ R
p that converges to x0 and is such that,

for all k,

μ j g j (x
k) > 0, ∀ j ∈ J, τi hi (x

k) > 0, ∀i ∈ I, (19)

g j (x
k)+ = o(w(xk)), ∀ j /∈ J, |hi (xk)| = o(w(xk)), ∀i /∈ I, (20)

where

w(x) = min

{
min
j∈J

{g j (x)+},min
i∈I {|hi (x)|}

}
. (21)
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We say that x0 satisfies the strong EFJ-condition (or it is a strong EFJ-point) iff it
satisfies (EFJ1)–(EFJ3) and, in addition, the sequence (xk) in (EFJ3) satisfies

f (xk) < f (x0). (22)

We say that x0 satisfies theweak EFJ-condition (or it is a weak EFJ-point) iff it satisfies
(EFJ1)–(EFJ3), but conditions (20)–(21) are removed.

Remark 4.1 Condition (EFJ3) implies μ j = 0 if g j (x0) < 0, i.e., the usual comple-
mentary condition, since if μ j > 0, then in view of (19) one has that g j (xk) > 0 for
xk near x0, and this is a contradiction.

Extending the above definition, we say that x0 ∈ S is an EKKT-point iff it satisfies
the conditions (EFJ1), (EFJ3) and, moreover, λ �= 0 instead of (EFJ2). Similarly it is
defined a strong EKKT-point and a weak EKKT-point.

In scalar optimization, multipliers satisfying (EFJ1), (EFJ2) and (EFJ3) with (22)
are called by Bertsekas and Ozdaglar [13] informative multipliers. See [13] for inter-
esting properties of this class of multipliers. Let us observe that (EFJ3) with (22) says
that, whenever (μ, τ) �= 0, the constraints whose indexes are in the set J ∪ I can be
violated by a sequence of (infeasible) points xk converging to x0, that improve all the
objectives fl ; the remaining constraints, whose indices do not belong to J ∪ I , may
also be violated, but the degree of their violation is arbitrarily small relative to the other
constraints according to (20)–(21). Another consequence of (19) is the following: if
g j (x) ≤ 0 on some neighborhood of x0, then μ j = 0.

In order to obtain a multiplier rule with λ �= 0, usually a constraint qualifica-
tion is utilized. The following constraint qualification is one of the weakest and was
introduced by Hestenes [4].

Definition 4.2 We say that x0 ∈ S satisfies the quasi-normality constraint qualifica-
tion (QNCQ) iff there is not any multiplier (μ, τ) ∈ R

m+ × R
r such that

(i) (μ, τ) �= 0,
(ii)

∑m
j=1 μ j∇g j (x0) + ∑r

i=1 τi∇hi (x0) = 0,

(iii) in every neighborhood of x0 there is a point x ∈ R
n such that μ j g j (x) > 0 for

all j having μ j �= 0, and τi hi (x) > 0 for all i having τi �= 0.

It is well known that quasi-normality implies regularity (see Hestenes [4, The-
orem5.8.1]), i.e., the Abadie constraint qualification is satisfied, and this property
implies the existence of KKT multipliers at a local minimum.

Next, we establish that a point satisfying conditions AKKT and (E1)–(E2) is an
EFJ-point, and if additionally quasi-normality holds, then it is an EKKT-point.

Theorem 4.1 Assume that x0 ∈ S satisfies the AKKT condition with the sequences
(xk) and (λk, μk, τ k) and condition (E1), with ck = bk for all k. Then,

(i) x0 is an EFJ-point.
(ii) If, in addition, condition (E2) is satisfied, then x0 is a strong EFJ-point.
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Proof We simultaneously prove parts (i) and (ii). Let tk := ‖(λk, μk, τ k)‖, where ‖ ‖
is the �1-norm. Then, tk ≥ 1 since

∑p
l=1 λkl = 1 and λk ≥ 0. As ‖ 1

tk
(λk, μk, τ k)‖ = 1

∀k, without any loss of generality we may suppose that 1
tk

(λk, μk, τ k) → (λ0, μ0, τ 0)

with (λ0, μ0, τ 0) �= 0. Clearly λ0 ≥ 0 and μ0 ≥ 0. Dividing in (A1) by tk and taking
the limit it results (EFJ1) (with (λ, μ, τ) = (λ0, μ0, τ 0)).

For checking condition (EFJ3), assume that (μ0, τ 0) �= 0 and set sk :=∑m
j=1 μk

j g j (xk) + ∑r
i=1 τ ki hi (x

k). By Remark 3.2(i), one has that (SGN) holds.

If μ0
j > 0, as μ0

j = lim
μk

j
tk
, then it follows that μk

j > 0 for all k large enough.

By Remark 3.2(i), we derive that g j (xk) > 0 [the first part of (19) holds] and so
μ0

j g j (xk) > 0 and μk
j g j (xk) > 0 for all k large enough. Therefore, taking into

account (10), one has sk > 0.

If τ 0i �= 0, as τ 0i = lim
τ ki
tk

= lim ckhi (xk )
tk

one has hi (xk) �= 0 and the second part
of (19) follows. To prove (22), we analyze two possibilities:

(a) If τ 0i > 0, then τ ki > 0 and hi (xk) > 0, so τ ki hi (x
k) > 0 and τ 0i hi (x

k) > 0 for
all k large enough. In consequence, according with (10), one has sk > 0.

(b) If τ 0i < 0, then τ ki < 0 and hi (xk) < 0, so τ ki hi (x
k) > 0 and τ 0i hi (x

k) > 0 for
all k large enough. In consequence, in view of (10), one has sk > 0.

Therefore, if (μ0, τ 0) �= 0, then one has sk > 0, and consequently, making use of
(E2), fl(x0) − fl(xk) < 0 for all l = 1, . . . , p and condition (22) is proved.

In order to prove (20), assume that in (E1) ck = bk for all k. Then, g j (xk)+ = μk
j

bk

for j = 1, . . . ,m and |hi (xk)| = |τ ki |
bk

for i = 1, . . . , r , and so

w(xk) = 1

bk
min

{
min
j∈J

{μ j },min
i∈I {|τi |}

}
.

Therefore

g j0(x
k)+

w(xk)
= g j0(x

k)+/tk
w(xk)/tk

= μ j0/tk
min

{
min j∈J {μ j/tk},mini∈I {|τi |/tk}

} .

Now, clearly this quotient tends to zero for j0 /∈ J because μ j0/tk → μ0
j0

= 0 and
the denominator is equal to εk ≥ α > 0 for some α and for all k large enough, since
μk

j/tk → μ0
j > 0 ∀ j ∈ J and |τ ki |/tk → |τ 0i | > 0 ∀i ∈ I . ��

Remark 4.2 Note that the multipliers given in Theorem 3.1, which are defined by (7),
satisfy condition (E1) with bk = ck .

Proposition 4.1 If x0 ∈ S is an EFJ-point (respectively strong EFJ-point or weak
EFJ-point) and (QNCQ) holds, then x0 an EKKT-point (respectively strong EKKT-
point or weak EKKT-point).

Proof If λ0 = 0, it follows that (QNCQ) does not hold since in every neighborhood of
x0 there is a point xk that does not satisfy condition (iii) of the definition of (QNCQ).

��
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Part (ii) of Theorem 4.1, taking into account Proposition 4.1, extends to multiob-
jective optimization and improves Theorem 2.3 in Haeser and Schuverdt [8], which
is true for scalar problems and where it is not required that the multipliers satisfy
(20)–(22).

The following result is an immediate consequence of Theorems 3.1 and 4.1 taking
into account Remark 4.2 and Proposition 4.1.

Theorem 4.2 If x0 ∈ S is a local weak solution of (MOP), then

(i) x0 is a strong EFJ-point.
(ii) If, in addition, (QNCQ) holds at x0, then x0 is a strong EKKT-point.

Part (i) of this theorem extends to multiobjective optimization and improves The-
orem 5.7.1 in Hestenes [4] and Proposition 3.3.5 in Bertsekas [15] (in both, only it
is proved that x0 is a weak EFJ-point). It also extends (partially) Proposition 2.1 in
Bertsekas and Ozdaglar [13], where a scalar problem is considered with equality and
inequality constraints, but also with a set constraint.

Next we introduce a new notion of approximate KKT type, requiring boundedness
of the multipliers, and then we will prove that this condition is stronger than AKKT,
and we will study its relations with weak EKKT-points and KKT-points.

Definition 4.3 We say that the bounded approximate Karush–Kuhn–Tucker condition
(BAKKT, in short) is satisfied at a feasible point x0 ∈ S iff there exist sequences
(xk) ⊂ R

n and (λk, μk, τ k) ⊂ R
p
+ × R

m+ × R
r such that conditions (A0)–(A3) hold

and

the sequence (λk, μk, τ k) is bounded . (23)

Clearly condition (23) can be replaced with the convergence condition of the mul-
tipliers:

the sequence (λk, μk, τ k) converges to (λ0, μ0, τ 0). (24)

Proposition 4.2 If x0 ∈ S satisfies (BAKKT), then x0 satisfies also the AKKT condi-
tion and, in addition, (CVG) holds.

Proof We only have to prove condition (CVG), but this follows immediately from
(24), the continuity of g j and hi and the fact that xk → x0. ��

The converse implication is not true, as the next example shows.

Example 4.1 Consider problem (MOP) with the data f (x1, x2) = x1 and g(x1, x2) =
−x31 + x22 . Clearly x0 = (0, 0) is a minimum of f subject to g ≤ 0. So by Theorem
3.1, the AKKT condition is satisfied.

Let us check that (BAKKT) does not hold. Suppose that there exist sequences
xk = (xk1 , x

k
2 ) ∈ R

2 and μk ∈ R+ such that xk → x0 and

∇ f (xk) + μk∇g(xk) =: (wk
1, w

k
2) → (0, 0).
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From here,(1, 0) + μk
(−3(xk1 )

2, 2xk2
) = (wk

1, w
k
2). Therefore there is solution μk =

1−wk
1

3(xk1 )2
→ +∞ whenever xk1 �= 0 and

xk2
(xk1 )2

→ 0. So every solution (μk) is not

bounded, and consequently (BAKKT) is not satisfied at x0. Note that this can also be
deduced from Theorem 4.4 since x0 is not a KKT-point.

Let us note that by Theorem 4.2(i), x0 is an EFJ-point, and also that any constraint
qualification does not hold because x0 is not a KKT-point.

Next theorem proves that the converse of Proposition 4.2 is true if a constraint
qualification holds at the point x0.

Recall that the Mangasarian–Fromovitz constraint qualification (MFCQ) holds at
x0 ∈ S if the gradients ∇h1(x0), . . . ,∇hr (x0) are linearly independent and there
exists a vector d ∈ R

n such that ∇g j (x0)d < 0 for all j ∈ J (x0) and ∇hi (x0)d = 0
for all i = 1, . . . , r . It is well known that (MFCQ) is equivalent to the positive linearly
independent constraint qualification [4], i.e., the following implication is true:μ j ≥ 0,
j ∈ J (x0), τ ∈ R

r ,

∑

j∈J (x0)

μ j∇g j (x
0) +

r∑

i=1

τi∇hi (x
0) = 0 ⇒ μ j = 0, ∀ j ∈ J (x0), τ = 0.

It is also known that (MFCQ) is stronger than the so-called constant positive linear
dependence condition, which implies (QNCQ) [16].

Theorem 4.3 Assume that (MFCQ) holds at x0. Then, for every pair of sequences
(xk) ⊂ R

n and (λk, μk, τ k) ⊂ R
p
+ × R

m+ × R
r that satisfy (A0)–(A3), one has that

the second sequence is bounded.

Proof Let (sk) be the sequence defined by

sk :=
∥∥∥∥

p∑

l=1

λkl ∇ fl(x
k) +

m∑

j=1

μk
j∇g j (x

k) +
r∑

i=1

τ ki ∇hi (x
k)

∥∥∥∥ → 0. (25)

If the sequence (μk, τ k) is not bounded, then, without any loss of generality we can
suppose that tk := ‖(μk, τ k)‖ → +∞ and that 1

tk
(μk, τ k) converges to (μ0, τ 0) with

‖(μ0, τ 0)‖ = 1. Dividing (25) by tk , one has

∥∥∥∥
p∑

l=1

λkl

tk
∇ fl(x

k) +
m∑

j=1

μk
j

tk
∇g j (x

k) +
r∑

i=1

τ ki

tk
∇hi (x

k)

∥∥∥∥ = sk
tk

.

The sequence (λk) is bounded since λ ≥ 0 and (A2) holds. So λk/tk → 0, and as
sk/tk → 0, taking the limit it results

m∑

j=1

μ0
j∇g j (x

0) +
r∑

i=1

τ 0i ∇hi (x
0) = 0. (26)
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By (A3), μ0
j = 0 for all j /∈ J (x0). With this observation, (26) contradicts (MFCQ)

because (μ0, τ 0) �= 0 and μ0 ≥ 0. Therefore, the sequence (μk, τ k) is bounded and
so condition (23) holds. ��
Definition 4.4 We say that a feasible point x0 ∈ S is a KKT-point iff there exist
(λ, μ, τ) ⊂ R

p
+ × R

m+ × R
r such that

(K1)
p∑

l=1

λl∇ fl(x
0) +

m∑

j=1

μ j∇g j (x
0) +

r∑

i=1

τi∇hi (x
0) = 0,

(K2) λ �= 0,

(K3) μ j = 0 if g j (x
0) < 0, j = 1, . . . ,m.

Theorem 4.4 If x0 ∈ S satisfies (BAKKT), then x0 is a KKT-point.

Proof Let (xk), (λk, μk, τ k) be the sequences that satisfy (A0)–(A3) and (24). Then,
taking the limit in (A1) and (A2), we obtain

p∑

l=1

λ0l ∇ fl(x
0) +

m∑

j=1

μ0
j∇g j (x

0) +
r∑

i=1

τ 0i ∇hi (x
0) = 0 (27)

and
∑p

l=1 λ0l = 1,withλ0 ≥ 0,μ0 ≥ 0. The conditionμ0
j g j (x0) = 0 for all j /∈ J (x0)

follows from (A3). ��
The following result is a direct consequence of Theorems 4.3 and 4.4

Theorem 4.5 If x0 ∈ S satisfies the AKKT condition and (MFCQ) holds at x0, then
x0 is a KKT-point.

Following a notion due to Dutta et al. [11], given a sequence of positive numbers
εk ↓ 0 and points xk → x0, we say that (xk) is a sequence of εk-KKT-points if there
exist (λk, μk, τ k) ⊂ R

p
+ × R

m+ × R
r such that

∥∥∥∥
p∑

l=1

λkl ∇ fl(x
k) +

m∑

j=1

μk
j∇g j (x

k) +
r∑

i=1

τ ki ∇hi (x
k)

∥∥∥∥ ≤ εk,

μk
j g j (xk) = 0 for j = 1, . . . ,m and (A2) holds.

Note that we do not require xk to be feasible. It is obvious that, if (xk) is a sequence
of εk- KKT-points, then x0 satisfies the AKKT condition, and so the following result
is an immediate consequence of Theorem 4.5.

Proposition 4.3 If (xk) is a sequence of εk-KKT-points and (MFCQ) holds at x0, then
x0 is a KKT-point.

Theorem 3.2 inDutta et al. [11] is a particular case of Proposition 4.3. These authors
only consider a scalar function f and inequality constraints.
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Theorem 4.6 If x0 ∈ S is a KKT-point, then x0 is a weak EKKT-point. In addition,
the sequence (xk) satisfying (19) also satisfies

p∑

l=1

λl fl(x
k) <

p∑

l=1

λl fl(x
0).

Proof To give a unified treatment to the multipliers we transform the multipliers
associated with equality constraints as follows: if τi ≥ 0, then we define gm+i (x) :=
hi (x) and μm+i := τi ; if τi < 0, then we define gm+i (x) := −hi (x) and μm+i :=
−τi > 0. In this way, (K1) can be written

p∑

l=1

λl∇ fl(x
0) +

s∑

j=1

μ j∇g j (x
0) = 0, (28)

where s = m + r . Rearranging, we may assume that μ1, . . . , μq are positive and
μq+1, . . . , μs are zero. Let us observe that the indices j satisfying (K3) are in the sec-
ond group. Through the following reduction process, we can assume that the gradients
∇g1(x0), . . . ,∇gq(x0) are positive linearly independent.

Indeed, assume that there exist nonnegative numbers α1, . . . , αq , not all zero, such
that

∑q
j=1 α j∇g j (x0) = 0. Then, the multipliers μ̂ j = μ j − tα j ( j = 1, . . . , q),

μ̂ j = μ j (∀ j > q) satisfy (28) for all t ∈ R. So we can choose t0 > 0 so that μ̂ j ≥ 0
∀ j = 1, . . . , q and μ̂ j0 = 0 for some index j0 ≤ q. So, rearranging we obtain a proper
subset of subgradients ∇g1(x0), . . . ,∇gq ′(x0) and positive multipliers μ̂1, . . . , μ̂q ′
with q ′ < q (the rest of multipliers is zero).

If q ′ = 0 (i.e., if for t0, μ̂ j = 0 for all j = 1, . . . , q), then (28) is satisfied with
μ j = 0, j = 1, . . . , s, and there is nothing to do in order to prove (EFJ3).

If q ′ > 0, repeating the process if necessary, we can assume that the gradients
∇g1(x0), . . . ,∇gq(x0) are positive linearly independent. So, by a theorem of the
alternative, there exists u ∈ R

n such that

∇g j (x
0)u > 0 ∀ j = 1, . . . , q.

As g j (x0) = 0, there exists δ > 0 such that g j (x0 + tu) > 0 ∀t ∈]0, δ[ and for all
j = 1, . . . , q. Therefore (22) is satisfied for this set of multipliers sinceμ j g j (x(t)) >

0 ∀t ∈]0, δ[ and for all j = 1, . . . , q, where x(t) = x0 + tu. Let us observe that, if
g j = −hi (and μ j = −τi > 0), then one has τi hi (x(t)) > 0. This proves that x0 is a
weak EKKT-point.

Finally, if we apply (28) to the vector u, then it results that

p∑

l=1

λl∇ fl(x
0)u = −

s∑

j=1

μ j∇g j (x
0)u < 0,

and so for a suitable δ > 0 we have that
∑p

l=1 λl( fl(x(t)) − fl(x0)) < 0. ��
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Corollary 4.1 The following statements are equivalent for x0 ∈ S:

(a) x0 is a KKT-point.
(b) x0 is a weak EKKT-point.
(c) x0 satisfies (BAKKT).

Proof (a) ⇒ (b) and (c) ⇒ (a) follow from Theorems 4.6 and 4.4, respectively. Let
us prove the implication (b) ⇒ (c). Assume that x0 is a weak EKKT-point. We may
suppose that (EFJ1) is satisfied with

∑p
l=1 λl = 1. Then, we can choose xk = x0,

λk = λ, μk = μ, τ k = τ , and it is obvious that (BAKKT) is satisfied. ��

5 Conclusions

We have presented two type of results: sequential optimality conditions and enhanced
FJ and KKT conditions for differentiable multiobjective optimization problems with
equality and inequality constraints.

In scalar optimization, Bertsekas and Ozdaglar [13] considered a problem with a
set constraint, but in [8–10,16] the set constraint is not considered. It would be very
interesting to extend the results of the present paper to a differentiable multiobjective
problem with a set constraint, in such a way that in particular the results of [13] will
be also generalized.

In the proof of Theorem 3.1, mainly properties of Clarke subdifferential are used.
For this reason, we think that another promising research line is to extend our results
to a multiobjective problem involving locally Lipschitz functions.

Another interesting investigation line is to study a necessary sequential AKKT
condition for a point to be a solution of a vector variational inequality extending
the results in [8, Sect. 3]. We believe that the sequential optimality conditions here
exposedmaybe useful in order to generate or improve algorithms. Thus, in our opinion,
further investigation is needed to provide suitable conditions that can be utilized in
numerical structures for solving multiobjective problems and therefore for practical
applications. See Haeser and Melo [12] where an AKKT-type condition is discussed
as a stop criterion for an interactive algorithm.
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