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1 Introduction

Recent interests are focused on the topic on basic results related to affine functions on
Riemannian manifolds; see, e.g., [1–3]. In particular, fixing a point x0 in a Hadamard
manifold and a nonzero vector u0 in the tangent space at x0, one considers the special
function f0, generated by the inner product between vector u0 and the inverse of the
exponential map at point x0, and the associated parallel vector field X0, formed by the
parallel transportation of the given vector u0 (see (5) and (6) in Sect. 3, respectively).
Assertions (i) and (ii) below were claimed in [2, Proposition 3.4] (without the proof
for assertion (ii)).

(i) The gradient of f0 is the associated parallel vector field X0;
(ii) f0 is linear affine.
Assertions (i) and (ii) have been used in [2,4] to study the proximal point algorithm

for quasi-convex/convex functions with Bregman distances on Hadamard manifolds,
while assertion (ii) was also used in [5,6] to establish some existence results of
solutions for equilibrium problems and vector optimization problems on Hadamard
manifolds, respectively. However, assertion (ii) is clearly not true in general because,
by [1, p. 299, Theorem 2.1]), any twice differentiable linear affine function on Poincaré
planeH (a two-dimensional Hadamard manifold of constant curvature −1) is constant.
Indeed, it has been further shown in [3, Theorem 2.1] that assertion (ii) is true for all
points x0 in the Hadamard manifold and vectors u0 in the corresponding tangent space
if and only if the manifold is isometric to the Euclidean space R

n . Furthermore, one
can easily check that the function f0 is even not convex, in general, because, otherwise,
one has that both f0 and − f0 are convex (and so linear affine). This motivates us to
consider the following problems:

Problem 1 Is f0 quasi-convex?

Problem 2 Is assertion (i) true?

The first purpose of this paper is to present a characterization for linear affine
functions on Hadamard manifolds in terms of assertion (i) and parallel transports, and
to provide a counterexample on Poincaré plane to illustrate that the answer to each
problem is negative. In particular for Problem 2, we show that the vector field X0 is
even not a gradient field.

Our second purpose in the present paper is, in spirit of the negative answer to
Problem 1, to study the convexity issue of sub-level sets of the function f0 mentioned
above in Riemannian manifolds with constant sectional curvatures. Our main results
provide the exact estimate of the constant c such that the sub-level set Lc, f0 , consisting
of all points x with value f0(x) being no more than c, is strongly convex, which in
particular improves and extends the corresponding result in [7, Corollary 3.1].

The paper is organized as follows. We review, in Sect. 2, some basic notions,
notations, and some classical results of Riemannian geometry that will be needed
afterward. The characterization for linear affine functions on Hadamard manifolds
and the counterexample on Poincaré plane are presented in Sect. 3. Finally, in Sect.
4, the convexity properties of the sub-level sets of the function f0 in Riemannian
manifolds with constant sectional curvatures are discussed.
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2 Notations, Notions, and Preliminaries

In the present section, we present some basic notations, definitions, and properties
of Riemannian manifolds. The readers are referred to some textbooks for details, for
example [1,8,9].

Let M be a complete, simply connected n-dimensional Riemannian manifold with
the Levi-Civita connection ∇ on M . We denote the tangent space at x ∈ M by
TxM , and Let X (M) denote all (C∞) vector fields on M . By 〈·, ·〉x and ‖ · ‖x , we
mean the corresponding Riemannian inner product and the norm on TxM , respectively
(where the subscript x is sometimes omitted). For x, y ∈ M , let γ : [0, 1] → M
be a piecewise smooth curve joining x to y. Then, the arc-length of γ is defined
by l(γ ) := ∫ 1

0 ‖γ̇ (t)‖dt , while the Riemannian distance from x to y is defined by
d(x, y) := infγ l(γ ), where the infimum is taken over all piecewise smooth curves
γ : [0, 1] → M joining x to y. We use B(x, r) to denote the open metric ball at x
with radius r , that is,

B(x, r) := {y ∈ M : d(x, y) < r}.

For a smooth curve γ , if γ̇ is parallel along itself, then γ is called a geodesic, that
is, a smooth curve γ is a geodesic if and only if ∇γ̇ γ̇ = 0. A geodesic γ : [0, 1] → M
joining x to y is minimal if its arc-length equals its Riemannian distance between x
and y. By the Hopf–Rinow theorem [8], (M, d) is a complete metric space, and there
is at least one minimal geodesic joining x to y. The set of all geodesics γ : [0, 1] → M
with γ (0) = x and γ (1) = y is denoted by Γxy , that is,

Γxy := {γ : [0, 1] → M : γ (0) = x, γ (1) = y and ∇γ̇ γ̇ = 0}.

We use γxy : [0, 1] → M to denote the minimal geodesic satisfying γxy(0) = x and
γxy(1) = y if it is unique.

Let γ be a geodesic. We use Pγ,·,· to denote the parallel transport on the tangent
bundle T M (defined below) along γ with respect to ∇, which is defined by

Pγ,γ (b),γ (a)v = X (γ (b)) for all a, b ∈ R and v ∈ Tγ (a)M, (1)

where X is the unique vector field satisfying

X (γ (a)) = v and ∇γ̇ X = 0. (2)

Then, for any a, b ∈ R, Pγ,γ (b),γ (a) is an isometry from Tγ (a)M to Tγ (b)M . We will
write Py,x instead of Pγ,y,x in the case when γ is a minimal geodesic joining x to y
and no confusion arises.

The exponential map of M at x ∈ M is denoted by expx (·) : TxM → M . For a
C∞ function f : M → R, grad f and Hess f denote its gradient vector and Hessian,
respectively. Let X, Y ∈ X (M). The Riemannian connection has the expression in
terms of parallel transportation, that is,
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(∇XY )(x) = lim
t→0

1

t

{
Pγ,γ (0),γ (t)Y (γ (t)) − Y (x)

}
for any x ∈ M, (3)

where the curve γ with γ (0) = x and γ̇ (0) = X (x) (see, e.g., [9, p. 29 Exercise 5]).
A complete simply connected Riemannian manifold of non-positive sectional cur-

vature is called a Hadamard manifold. The following proposition is well known about
the Hadamard manifolds; see, e.g, [9, p. 221].

Proposition 2.1 Suppose that M is a Hadamard manifold. Let p ∈ M. Then, expp :
TpM → M is a diffeomorphism, and for any two points p, q ∈ M, there exists a
unique normal geodesic joining p to q, which is in fact a minimal geodesic.

The following definition presents the notions of different convexities, where item
(a) and (b) are known in [10]; see also [11–13].

Definition 2.1 Let Q be a non-empty subset of the Riemannian manifold M . Then,
Q is said to be

(a) Weakly convex if, for any x, y ∈ Q, there is a minimal geodesic of M joining
x to y and it is in Q;

(b) Strongly convex if, for any x, y ∈ Q, there is just one minimal geodesic of M
joining x to y, and it is in Q.

All convexities in a Hadamard manifold coincide and are simply called the con-
vexity. Let f : M → R be a proper function, and let dom f denote its domain, that
is, dom f := {x ∈ M : f (x) 	= ∞}. We use Γ

f
xy to denote the set of all γ ∈ Γxy such

that γ ⊆ dom f . In the following definition, item (a) is known in [14,15] and item (b)
is an extension of the one in [1, p. 59], which is introduced for the case when dom f
is totally convex.

Definition 2.2 Let f : M → R be a proper function and suppose that dom f is
weakly convex. Then, f is said to be

(a) convex if

f ◦ γ (t) ≤ (1 − t) f (x) + t f (y) for all x, y ∈ dom f, γ ∈ Γ
f
xy, t ∈ [0, 1];

(b) quasi-convex if

f ◦ γ (t) ≤ max{ f (x), f (y)} for all x, y ∈ dom f, γ ∈ Γ
f
xy, t ∈ [0, 1].

Clearly, for a proper function f with a weakly convex domain, the convexity implies
the quasi-convexity. Fixing c ∈ R, we use Lc, f to denote the sub-level set of f defined
by

Lc, f := {x ∈ M : f (x) ≤ c}.

The following proposition describes the relationship between the convexities of a
function f and its sub-level sets.
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Proposition 2.2 Let f : M → R be a proper function with weakly convex domain
dom f . Then, f is quasi-convex if and only if, for each c ∈ R, the sub-level set Lc, f

is totally convex with restricted to dom f in the sense that for any x, y ∈ Lc, f , if

γ ∈ Γ
f
xy then γ ⊆ Lc, f . In particular, f is quasi-convex if and only if Lc, f is strongly

convex for each c ∈ R in the case when dom f is strongly convex.

Proof We only consider the case when dom f is weakly convex (otherwise when
dom f is strongly convex, the result is immediate by definition).

Suppose that f is quasi-convex. Take c ∈ R. Let x, y ∈ Lc, f ⊆ dom f and let

γ ∈ Γ
f
xy . Then, f (x) ≤ c and f (y) ≤ c. Noting that f is quasi-convex, it follows

that

f ◦ γ (t) ≤ max{ f (x), f (y)} ≤ c for all t ∈ [0, 1].

This implies that γ ⊆ Lc, f and so Lc, f is totally convex restricted to dom f since

x, y ∈ Lc, f and γ ∈ Γ
f
xy are arbitrary.

Conversely, suppose that Lc, f is totally convex restricted to dom f for each c ∈ R.

Let x, y ∈ dom f and let γ ∈ Γ
f
xy . Set c0 := max{ f (x), f (y)}. Then, by assumption,

γ ⊆ Lc0, f , that is,

f ◦ γ (t) ≤ c0 = max{ f (x), f (y)} for all t ∈ [0, 1].

This implies that f is quasi-convex since x, y ∈ dom f and γ ∈ Γ
f
xy are arbitrary.

The proof is complete. 
�

3 Linear Affine Functions and Counterexampls on Hadamard Manifolds

For the whole section, we assume that M is a Hadamard manifold. Consider a proper
convex function f : M → R on M . The subdifferential of f at x ∈ dom f is defined
by

∂ f (x) := {
v ∈ TxM : f (y) ≥ f (x) + 〈v, γ̇xy(0)〉 for all y ∈ dom f.

}

By [1, p. 74] (see also [15, Proposition 6.2]), ∂ f (x) is a non-empty, compact and
convex set for any x ∈ int(dom f ), where intQ denotes the topological interior of a
subset Q of M . Let f : M → R be a proper function with convex domain. Recall that
f is linear affine if both f and − f are convex. Furthermore, if f is of C2 and dom f
is open, its Hess f is defined by

Hess f (X,Y ) = 〈∇Xgrad f,Y 〉 for any X,Y ∈ X (M).

Then, by [1, p. 83, remark 6], we have that

f is linear affine ⇐⇒ ∇Xgrad f = 0 for any X ∈ X (M). (4)
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Let x0 ∈ M , and let u0 ∈ Tx0 M . Then, the function f0 and the vector field X0
considered in the introduction can be formulated as

f0(x) := 〈u0, exp−1
x0

x〉 for any x ∈ M (5)

and
X0(x) := Px,x0u0 for any x ∈ M, (6)

respectively. Thus, assertions (i) and (ii) in [2, Proposition 3.4] can be restated as
follows:

(i) Grad f0 = X0.
(ii) f0 is linear affine on M .
The following theorem presents, in particular, a characterization in Hadamard man-

ifolds for assertion (ii) to be true in terms of assertion (i) and the parallel transports.

Theorem 3.1 Let f : M → R be a proper function and suppose that dom f is a non-
empty open convex subset. If function f is linear affine, then, for any x0 ∈ dom f ,
there exists u0 ∈ Tx0 M such that

Px,x0u0 = Px,z ◦ Pz,x0u0 for any (z, x) ∈ dom f × dom f, (7)

grad f (x) = Px,x0u0 for any x ∈ dom f (8)

and
f (x) = f (x0) + 〈u0, exp−1

x0
x〉 for any x ∈ dom f. (9)

Conversely, if there exist x0 ∈ dom f and u0 ∈ Tx0 M such that (7) and (8) hold, then
f is linear affine.

Proof Assume that f is linear affine. Then, both f and − f are convex. Take x0 ∈
dom f and note that dom f is open. It follows that both ∂ f (x0) and ∂(− f (x0)) are
non-empty. Thus, one can chose u0 ∈ ∂ f (x0) and u′

0 ∈ ∂(− f (x0)), respectively.
Then, by definition, we have that, for any x ∈ dom f ,

f (x) ≥ f (x0) + 〈
u0, exp−1

x0
x
〉

and − f (x) ≥ − f (x0) + 〈
u′

0, exp−1
x0

x
〉 ; (10)

hence 〈u0 + u′
0, exp−1

x0
x〉x0 ≤ 0 for any x ∈ dom f . This implies that

u0 + u′
0 = 0, that is u′

0 = −u0 (as dom f is open). Thus, (9) follows from (10).
Furthermore, noting that f is of class C∞ by (9), one then has that Hess f = 0 on
dom f , that is,

Hess f (X,Y ) = 〈∇Xgrad f,Y 〉 = 0 for any X,Y ∈ X (dom f ).

In particular, one has that

∇γ̇xzgrad f = 0 for any x, z ∈ dom f,
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where γxz is the geodesic joining x and z, which lies in dom f . This, together with
the definition of parallel transport (e.g., (1)), implies that

grad f (x) = Px,zgrad f (z) for any x, z ∈ dom f. (11)

Note further that, for any u ∈ Tx0 M , one has

〈grad f (x0), u〉x0 = d

dt
f ◦ expx0

tu |t=0= 〈u0, u〉x0 .

It follows that grad f (x0) = u0. This, together with (11), implies that (7) and (8) hold.
Now, suppose that (7) and (8) hold for some x0 ∈ dom f and u0 ∈ Tx0 M . Let

x ∈ dom f and X ∈ X (dom f ). Let γ : [−ε, ε] → dom f be the geodesic contained
in dom f with γ (0) = x and γ̇ (0) = X (x). Let t ∈ [−ε, ε]. We see from (8) that

grad f (x) = Px,x0u0, grad f (γ (t)) = Pγ (t),x0u0.

In light of (7), it follows that

Px,γ (t)grad f (γ (t)) = Px,γ (t) ◦ Pγ (t),x0u0 = Px,x0u0 = grad f (x).

Noting that Px,γ (t) = Pγ,x,γ (t), one gets by (3) that

(∇Xgrad f )(x) = lim
t→0

1

t
{Px,γ (t)grad f (γ (t)) − grad f (x)} = 0.

Since X ∈ X (dom f ) and x ∈ dom f are arbitrary, we conclude that Hess f = 0 on
dom f , and so f is linear affine. The proof is complete. 
�

Before considering Problems 1–2 proposed in the introduction which are related
to the function f0 defined by (5), we make a remark regarding the quasi-convexity
properties about composite functions. To this end, we have the following theorem,
which is due to Udriste [1, p. 101, Theorem 10.9] in the special case when M = M̃ .
The idea of the proof is the same as that for [1, p. 101, Theorem 10.9] (although the
arguments presented there are not completely clear), and so we omit the proof here.

Theorem 3.2 Let (M̃, ∇̃) be a Riemannian manifold with Levi-Civita connection ∇̃
and D ⊆ M̃ be a totally convex subset. If ϕ : D → R is a quasi-convex function
on (M̃, ∇̃) and F : M̃ → M is a diffeomorphism, then ϕ ◦ F−1 is a quasi-convex
function on (M, F∗∇̃).

Remark 3.1 Recall that M is with the Levi-Civita connection ∇ and x0 ∈ M , u0 ∈
Tx0 M . Set M̃ := Tx0 M , and let M̃ be endowed with the Riemannian metric g̃ given
by g̃x (·, ·) := 〈·, ·〉x0 for each x ∈ M̃ (i.e., M̃ is an n-dimensional Hilbert space). Let
∇̃ be the Levi-Civita connection compatible with the metric. Then, f0 (defined by (5))
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can be written as f0 = ϕ ◦ F−1, where F : M̃ → M and ϕ : M̃ → R are defined by
F(·) := expx0

(·) and

ϕ(v) := 〈u0, v〉x0 for any v ∈ M̃,

respectively. It is evident that ϕ is linear affine on M̃ and F is a diffeomorphism by
Proposition 2.1. Thus, one could apply Theorem 3.2 to conclude that the function f0
is quasi-convex on M with the connection F∗∇̃ but not the Levi-Civita connection ∇.
Indeed, we shall see from Example 3.1 below that f0 is not quasi-convex.

Recalling the equivalence (4), the following problem related to Problems 1-2 is also
natural:

Problem 3 Does the vector field X0 satisfy

∇X X0 = 0 for any X ∈ X (M)?

The remainder of this section is to construct a counterexample on Poincaré plane to
show that the answer to each of Problems 1–3 is negative. To do this, let

M = H =: {(t1, t2) ∈ R
2 : t2 > 0},

be the Poincaré plane endowed with the Riemannian metric, in terms of the natural
coordinate system, defined by

g11 = g22 := 1

t2
2

, g12 := 0 for each (t1, t2) ∈ H. (12)

The sectional curvature of H is equal to −1 (see, e.g., [8, p. 160]), and the geo-
desics on H are the semilines γ (a; ·) := (γ 1(a; ·), γ 2(a; ·)) (through (a, 1)), and the
semicircles γ (b, r; ·) := (γ 1(b, r; ·), γ 2(b, r; ·)) with center at (b, r) and radius r ),
which admit the following natural parameterizations:

{
γ 1(a; s) = a
γ 2(a; s) = es

and

{
γ 1(b, r; s) = b − r tanh s
γ 2(b, r; s) = r

cosh s
for any s ∈ R, (13)

respectively; see, e.g., [1, p. 298].
By [1, p. 297], the Riemannian connection ∇ onH (in terms of the natural coordinate

system) has the components:

Γ 1
11 = Γ 1

22 = Γ 2
12 = Γ 2

21 = 0, Γ 1
12 = Γ 1

21 = Γ 2
22 = − 1

t2
and Γ 2

11 = 1

t2
.

Hence, noting the expression of the connection ∇ given in [8, p. 51], one has the

following formula for the connection ∇(·)(·) :=
(
∇1

(·)(·),∇2
(·)(·)

)
on H with

∇1
Y X = Y 1 ∂X1

∂t1
+ Y 2 ∂X1

∂t2
− 1

t2
X1Y 2 − 1

t2
X2Y 1 (14)
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and

∇2
Y X = Y 1 ∂X2

∂t1
+ Y 2 ∂X2

∂t2
+ 1

t2
X1Y 1 − 1

t2
X2Y 2 (15)

for any X := (X1, X2),Y := (Y 1,Y 2) ∈ X (H), where and in sequel, for a differential
function φ on H, ∂φ

∂t1
and ∂φ

∂t2
denote the classical partial derivatives of φ in R

2 with
respect to the first variable t1 and the second variable t2, respectively. Consider a
differentiable function f : H → R. Then, using (12), one concludes that the gradient
vector grad f and the differential d f of f are, respectively, given by

grad f (x) = t2
2

(
∂ f (x)

∂t1

∂

∂t1
+ ∂ f (x)

∂t1

∂

∂t2

)

(16)

and

d f (x) = ∂ f (x)

∂t1
dt1 + ∂ f (x)

∂t2
dt2 (17)

for any x = (t1, t2) ∈ H; see, e.g., [1, p. 8].
For convenience, we also need the expressions of the exponential map exp−1

x y and
the geodesic γxy joining x to y, which can be found in [16]. To this end, let x := (t1, t2)
and y := (s1, s2) be in H, and set for any x, y with t1 	= s1,

bxy := (s1)
2 + (s2)

2 − ((t1)2 + (t2)2)

2(s1 − t1)
(18)

and
rxy :=

√
(s1 − bxy)2 + (s2)2. (19)

For saving of printing space, we use ω to denote the inverse function of the hyperbolic
tangent function tanh, that is,

ω(t) := tanh−1t for all t ∈ R.

Then, one has

exp−1
y x =

⎧
⎨

⎩

(
0, s2 ln t2

s2

)
, if t1 = s1,

s2
rxy

(
ω

(
bxy−s1
rxy

)
− ω

(
bxy−t1
rxy

))
(s2, bxy − s1), if t1 	= s1.

(20)

and γxy :=
(
γ 1
xy, γ

2
xy

)
with γ 1

xy and γ 2
xy defined, respectively, by

γ 1
xy(s) :=

{
t1, if t1 = s1,

bxy − rxy tanh
(
(1 − s) ω

(
bxy−t1
rxy

)
+ s ω

(
bxy−s1
rxy

))
, if t1 	= s1,

(21)
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and

γ 2
xy(s) :=

⎧
⎨

⎩

e(1−s)·ln t2+s·ln s2 , if t1 = s1,
rxy

cosh
(
(1−s) ω(

bxy−t1
rxy

)+s ω(
bxy−s1
rxy

)
) , if t1 	= s1, (22)

for any s ∈ [0, 1]. Now, we are ready to present the counterexample.

Example 3.1 Let x0 := (0, 1), and let u0 := (0, 1) ∈ Tx0H be a unit vector. Let
f0 : H → R and X0 : H → TH be the function and the vector field defined by

f0(x) := 〈u0, exp−1
x0

x〉 for any x ∈ M (23)

and
X0(x) := Px,x0u0 for any x ∈ M, (24)

respectively. We claim that, for each x = (t1, t2) ∈ H,

f0(x) =
{

ln t2, if t1 = 0,
bx
rx

(
ω( bxrx

) − ω( bx−t1
rx

)
)

, if t1 	= 0,
(25)

and

X0(x) =
⎧
⎨

⎩

(0, t2), if t1 = 0,(
bx t22 −t2(bx−t1)

b2
x+1

,
bx t2(bx−t1)+t22

b2
x+1

)

, if t1 	= 0,
(26)

where, for any x with t1 	= 0,

bx := bxx0 = t2
1 + t2

2 − 1

2t1
and rx := rxx0 =

√
b2
x + 1. (27)

Indeed, let x = (t1, t2) ∈ H. Then, by (20), we get that

exp−1
x0

x =
{

(0, ln t2), if t1 = 0,
1
rx

(
ω

(
bx
rx

)
− ω

(
bx−t1
rx

))
(1, bx ), if t1 	= 0;

thus (25) follows immediately from definition. To check (26), let γ be the geodesic
through x and x0. By the definition of X0 and thanks to (2), we have to show ∇γ̇ X0 = 0.
To do this, write X0 := (X1

0, X
2
0) and γ := (γ 1, γ 2). Then,

X1
0(x) =

{
0, if t1 = 0,
bx t22 −t2(bx−t1)

b2
x+1

, if t1 	= 0,
(28)

and

X2
0(x) =

{
t2, if t1 = 0,
bx t2(bx−t1)+t22

b2
x+1

, if t1 	= 0.
(29)
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In expression of the differential equations (see, e.g., [8, p. 53]), we only need to verify
that X0 and γ satisfy

d
(
X1

0 ◦ γ
)

ds
− X1

0 ◦ γ

γ 2

dγ 2

ds
− X2

0 ◦ γ

γ 2

dγ 1

ds
= 0,

d
(
X2

0 ◦ γ
)

ds
+ X1

0 ◦ γ

γ 2

dγ 1

ds
− X2

0 ◦ γ

γ 2

dγ 2

ds
= 0. (30)

Without loss of generality, we assume that t1 	= 0 and adopt the expression (13) of the
geodesic, that is, (γ 1(·), γ 2(·)) = (γ 1(bx , rx ; ·), γ 2(bx , rx ; ·)) with

γ 1(bx , rx ; s) = bx − rx tanh s and γ 2(bx , rx ; s) = rx
cosh s

(31)

for any s ∈ R

(
noting x0 = γ

(
bx , rx ;ω( bxrx

)
)

and x = γ
(
bx , rx ;ω( bx−t1

rx
)
))

, where

bx and rx are defined by (27). Thus, using (31), one conclude that, for each s ∈ R,

X1
0 ◦ γ (bx , rx ; s) = 1

b2
x + 1

(
bxr2

x

cosh2 s
− r2

x sinh s

cosh2 s

)

,

X2
0 ◦ γ (bx , rx ; s) = 1

b2
x + 1

(
bxr2

x sinh s

cosh2 s
+ r2

x

cosh2 s

)

,

and so

dX1
0 ◦ γ (bx , rx ; s)

ds
= 1

b2
x + 1

(

−2bxr2
x sinh s

cosh3 s
− r2

x (1 − sinh2 s)

cosh3 s

)

,

dX2
0 ◦ γ (bx , rx ; s)

ds
= 1

b2
x + 1

(
bxr2

x (1 − sinh2 s)

cosh3 s
− 2r2

x sinh s

cosh3 s

)

.

Moreover, we also have that

dγ 1(bx , rx ; s)
ds

= − rx
cosh2 s

and
dγ 2(bx , rx ; s)

ds
= −rx sinh s

cosh2 s

for any s ∈ R. Thus, (30) is seen to hold. Hence, ∇γ̇ X0 = 0, and (26) is checked.
Below we show the following assertions:
(i) f0 is not quasi-convex.
(ii) Grad f0 	= X0.
(iii) ∇ ∂

∂t1
X0 	= 0.

(iv) X0 is not a gradient vector field.
To show assertion (i), take x = ( 1

2 , 1
2 ), y = (− 1

2 , 1
2 ) ∈ H, and let c0 := −0.4.

Then, x, y ∈ Lc0, f0 because, by (25) and (27),

f0(x) = f0(y) = 1√
5

(

ω

(
2√
5

)

− ω

(
1√
5

))

= −0.4304 · · · < −0.4.
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1
2
,
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2
,
1
2
)

w = γxy(
1
2
) = (0,

1√
2
)

x0 = (0, 1)

γxy

u0 = (0, 1)

L−0.4,f

t1

t 2

Fig. 1 Non-convexity of the sub-level set L−0.4, f

Let γxy = (γ 1
xy, γ

2
xy) be the geodesic segment joining x to y. Then, for any s ∈ [0, 1],

γ 1
xy(s) := − 1√

2
tanh

(

(2s − 1)ω

(
1√
2

))

and

γ 2
xy(s) := 1√

2 cosh
(
(2s − 1)ω

(
1√
2

))

thanks to (18), (19), (21), and (22). Hence, γxy(
1
2 ) = (0, 1√

2
), and

f0

(

γxy

(
1

2

))

= ln
1√
2

= −0.3465 · · · > −0.4

by (25). This means that γxy(
1
2 ) /∈ Lc, f0 , and so Lc, f0 is not convex; see Fig. 1. In

view of Proposition 2.2, we see that f0 is not quasi-convex, and assertion (i) holds.
To show assertion (ii), take z := (2, 1). Then,

bz = 1 and rz = √
2 (32)
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(see (27)). Therefore, we have by (26) that X0(z) = (1, 0). On the other hand, we get
from (16) that

grad f0(z) =
(

∂ f0
∂t1

,
∂ f0
∂t2

)

where ∂ f0
∂t1

and ∂ f0
∂t2

are classical partial derivatives in R
2. Then, using (25) and (27),

one calculates

grad f0(z) =
(√

2

8
ln(3 + 2

√
2) + 1

2
,

√
2

8
ln(3 + 2

√
2) − 1

2

)

.

Therefore, grad f0(z) 	= X0(z), and assertion (ii) is checked. We further have that

∇ ∂
∂t1

X0(z) 	= 0. (33)

Granting this, assertion (iii) is also checked. To show (33), we get from (14) and (15)
that

∇ ∂
∂t1

X0 =
(

∂X1
0

∂t1
− 1

t2
X2

0,
∂X2

0

∂t1
+ 1

t2
X1

0

)

. (34)

(noting that ∂
∂t1

= (1, 0) for any x ∈ H). Recalling that X1
0 and X2

0 are given by

(28), (29), and z := (2, 1), we have that X1
0(z) = 1 and X2

0(z) = 0 (noting (32)).
Furthermore, by elemental calculus, we can calculate the partial derivatives

∂X1
0

∂t1
|z= 0 and

∂X2
0

∂t1
|z= −1

2
.

Thus, we conclude from (34) that ∇ ∂
∂t1

X0 |z= (0, 1
2 ) 	= 0, as desired to show.

For assertion (iv), we suppose on the contrary that there exists a C∞ function f
such that X0 = grad f . Then, d ◦ d f = 0 by the fundamental property (see, e.g., [9,
p. 17]). To proceed, note that X0 = X1

0
∂

∂t1
+ X2

0
∂

∂t2
, where X1

0 and X2
0 are defined by

(28) and(29), respectively. Then, we calculate by elementary calculus that

⎛

⎜
⎜
⎝

∂

(
1
t22
X1

0

)

∂t2
−

∂

(
1
t22
X2

0

)

∂t1

⎞

⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
x=(2,1)

= 1

2
	= 0. (35)

Furthermore, by (16) and (17), one has that

d f = 1

t2
2

X1
0dt1 + 1

t2
2

X2
0dt2,
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and so the exterior differentiation

d ◦ d f =

⎛

⎜
⎜
⎝

∂

(
1
t22
X2

0

)

∂t1
−

∂

(
1
t22
X1

0

)

∂t2

⎞

⎟
⎟
⎠ dt1 ∧ dt2,

where ∧ is the exterior product; see, e.g., [9, p. 17]. This, together with (35), means
that d ◦ d f 	= 0, and so assertion (iv) is shown.

4 Convexity Properties of Sub-Level Sets on Riemannian Manifolds

Throughout this section, let κ ∈ R and assume that M is a n-dimensional complete,
simply connected Riemannian manifold of constant sectional curvature κ . Let Rn be
the n-dimensional Euclidean space, Snρ be the n-dimensional sphere of radius 1√

ρ
in

R
n+1 and H

n
ρ be the manifold obtained from the hyperbolic space H

n by multiplying

the Riemannian metric by the positive constant 1
ρ

> 0. Then, M is isometric to
(a) Hn

κ , if κ < 0,
(b) Snκ , if κ > 0,
(c) Rn , if κ = 0;

see, e.g., [9, p. 135]. As usual, define Dκ := π√
κ

if κ > 0 and Dκ := +∞ otherwise.
The proposition below is a direct consequence of [17, Propositions 1.4 and 1.7]; see
also [15, Proposition 4.1].

Proposition 4.1 Let x, y ∈ M. We have the following assertions:
(i) If d(x, y) < Dκ , then Γxy contains a unique minimal geodesic γxy .
(ii) Any open ball B(x, r) with r ≤ Dκ

2 is strongly convex.

Let x0 ∈ M and u0 ∈ Tx0 M \ {0}. Consider the following function f0 : M → R

defined by

f0(x) =
{ 〈u0, γ̇x0x (0)〉, if x ∈ B(x0,

Dκ

2 ),

+∞, otherwise,
(36)

where γx0x (0) ∈ Γx0x is the unique minimal geodesic lying in B(x0,
Dκ

2 ). It is clear

that dom f0 = B(x0,
Dκ

2 ) is strongly convex. If M is a Hadamard manifold, function
(36) is reduced to the function defined by (23), that is,

f0(x) :=
〈
u0, exp−1

x0
x
〉

for any x ∈ M. (37)

For any c ∈ R, the sub-level set of f0 is denoted by Lc, f0(c ∈ R) and defined by

Lc, f0 := {x ∈ M : f0(x) ≤ c}.

Note by Example 3.1 that Lc, f0 is not strongly convex in general. This section
is devoted to estimating the constant c such that the sub-level set Lc, f0 is strongly
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convex. For this purpose, we first recall that a geodesic triangle �(p1 p2 p3) in
M is a figure consisting of three points p1, p2, p3 (the vertices of �(p1 p2 p3))
and three minimal geodesic segments γi (the edges of �(p1 p2 p3)) such that
γi (0) = pi−1 and γi (1) = pi+1 with i = 1, 2, 3 ( mod3). For each i = 1, 2, 3
( mod3), the inner angle of �(p1 p2 p3) at pi is denoted by 	 pi , which equals the
angle between the tangent vectors γ̇i+1(0) and −γ̇i−1(1). The following proposition
(i.e., comparison theorem for triangles) follows immediately from [9, p.161 Theo-
rem 4.2 (ii), p. 138 Low of Cosines and p. 167 Remark 4.6].

Proposition 4.2 Let �(p1 p2 p3) be a geodesic triangle in M of the perimeter less
than 2Dκ . Set li = d(pi+1, pi−1) for each i = 1, 2, 3. Then, the following relations
hold:

l2i < l2i−1 + l2i+1 − 2li−1li+1 cos 	 pi if κ > 0, (38)

and
l2i > l2i−1 + l2i+1 − 2li−1li+1 cos 	 pi if κ < 0. (39)

Recall from [18, p. 104] that a k-dimensional submanifold N ⊂ M is totally
geodesic if any geodesic in N is also a geodesic in M . Another property for a complete,
simply connected Riemannian manifolds of constant curvature, which will be used in
sequel, is the axiom of plane described as follows: (see, e.g., [9, p. 137]):

Proposition 4.3 Let x ∈ M, and let W be am-dimensional subspace of Tx M (m ≥ 2).
Then, the submanifold N := expx W is am-dimensional totally geodesic and complete
simply connected Riemannian manifold of constant curvature κ , that is, N is isometric
to Hm

κ if κ < 0 and to Smκ if κ > 0.

The following lemma, taken from [19, Theorem 3.1 and Remark 3.6], plays a very
key role in our study afterward.

Lemma 4.1 Let �(ypq) be a geodesic triangle in M of the perimeter less than 2Dκ .
Let �(ỹ p̃q̃) be a triangle in R

2 such that

d(y, p) = ‖−→̃y p̃‖, d(y, q) = ‖−→̃yq̃‖ and 	 pyq = 	 p̃ ỹq̃. (40)

Let x be in the minimal geodesic joining p to q, and x̃ be the corresponding point in
the interval [ p̃, q̃] satisfying

	 pyx = 	 p̃ ỹ x̃ and 	 qyx = 	 q̃ ỹ x̃ (41)

(see Fig. 2). Then, the following assertions hold:

d(y, x) ≥ ‖−→̃yx̃‖ if κ ≥ 0 and d(y, x) ≤ ‖−→̃yx̃‖ if κ ≤ 0. (42)

Recall that γxy is the unique minimal geodesic joining x to y for any x, y ∈ M
with d(x, y) < Dκ (see Proposition 4.1(i)).
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p
x

q

y

p̃ x̃ q̃

ỹ

Fig. 2 Geodesic triangle �ypq in M and its comparison triangle �ỹ p̃q̃ in R
2 in Lemma 4.1 and 4.2

Lemma 4.2 Let �(ypq) be a geodesic triangle in M of the perimeter less than 2Dκ .
Let γ := γpq : [0, 1] → M be the unique minimal geodesic joining p to q. Then, for
each t ∈]0, 1[, there exist two positive numbers at and bt satisfying

at + bt

{≥ 1, if κ ≥ 0,

≤ 1, if κ ≤ 0,
(43)

such that
γ̇yγ (t)(0) = at γ̇yp(0) + bt γ̇yq(0). (44)

Proof Set N := expy{span{γ̇yp(0), γ̇yq(0)}}. By assumption, we see from Proposition
4.3 that γ ⊂ N , and so

γ̇yγ (t)(0) ∈ TyN = span{γ̇yp(0), γ̇yq(0)} for any t ∈ [0, 1]. (45)

Thus, there exist some at , bt ∈ R such that (44) holds (see Fig. 2).
Below, we show that at , bt are positive and satisfy (43). To this end, as in Lemma

4.1 (see Fig. 2), set x = γ (t), and let �(ỹ p̃q̃) be the corresponding triangle of
�(ypq) in R

2 satisfying (40) and x̃ be the corresponding point in the interval [ p̃, q̃]
satisfying (41). Without loss of generality, we may assume by (40) that

−→̃
y p̃ = γ̇yp(0)

and
−→̃
yq̃ = γ̇yq(0). Note, by (45), that the vectors

−→̃
yx̃ and γ̇yx (0) are in the same 2-

dimensional Euclidean plane. It follows from (41), together with (44), that there exists
some λ > 0 such that

λ
−→̃
yx̃ = γ̇yx (0) = at γ̇yp(0) + bt γ̇yq(0). (46)

Note that x̃ lies actually in the open interval ( p̃, q̃) in R
2 (as 0 < t < 1 and so

	 p̃ ỹ x̃ > 0, 	 q̃ ỹ x̃ > 0 by (41)). It follows from (46) that

at > 0, bt > and
at + bt

λ
= 1. (47)

Furthermore, in view of (42), we see that λ ≤ 1 if κ ≥ 0 and λ ≥ 1 if κ ≤ 0. This,
together with (47), implies that (43) holds and the proof is complete. 
�

Recall that M is assumed to be of constant sectional curvature κ . Now, we are ready
to verify the first theorem in the present section.
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Theorem 4.1 Suppose κ > 0, and let f0 be the function defined by (36). Then, the
sub-level set Lc, f0 is strongly convex if and only if either c ≤ 0 or c ≥ ‖u0‖Dκ

2 .

Proof We first show the sufficiency part. To do this, suppose that c ≤ 0 or c ≥ ‖u0‖Dκ

2 .

Note that if c ≥ ‖u0‖Dκ

2 , then Lc, f0 = B(x0,
Dκ

2 ) is strongly convex because

f0(x) = 〈u0, γ̇x0x (0)〉 ≤ ‖u0‖ · ‖γ̇x0x (0)‖ ≤ ‖u0‖Dκ

2
≤ c.

holds for all x ∈ B(x0,
Dκ

2 ). Thus, we need only to consider the case when c ≤ 0. To
proceed, fix c ≤ 0, and let p, q ∈ Lc, f0 , that is,

〈u0, γ̇x0 p(0)〉 ≤ c and 〈u0, γ̇x0q(0)〉 ≤ c. (48)

Then, p, q ∈ B(x0,
Dκ

2 ) and the geodesic triangle �(x0 pq) is well defined with
perimeter less than 2Dκ . Let t ∈ [0, 1]. By assumption, Lemma 4.2 is applicable to
concluding that there exist two positive numbers at and bt satisfying with at + bt ≥ 1
such that

γ̇x0γ (t)(0) = at γ̇x0 p(0) + bt γ̇x0q(0),

where γ := γpq : [0, 1] → M is the unique minimal geodesic joining p and q. It
follows from (36) and (48) that

f0(γ (t)) = at 〈u0, γ̇x0 p(0)〉 + bt 〈u0, γ̇x0q(0)〉 ≤ c(at + bt ) ≤ c

(note that c < 0). This means that γp,q(t) = γ (t) ∈ Lc, f0 for all t ∈ [0, 1], and
so Lc, f0 is strongly convex as desired to show. The proof for the sufficiency part is
complete.

To show the necessity part, without loss of generality, we may assume that‖u0‖ = 1.
Let 0 < c < Dκ

2 . It suffices to verify that Lc, f0 is not strongly convex, or equivalently,
to construct two points p, q and a number t̄ ∈]0, 1[ such that

p, q ∈ Lc, f0 and z̄ := γpq(t̄) /∈ Lc, f0 . (49)

To do this, consider the geodesic γ : [0, Dκ

2 ) → M defined by

γ (t) := expx0
tu0 for each t ∈

[

0,
Dκ

2

[

. (50)

Clearly, it is contained in B

(
x0,

Dκ

2

)
. Since B

(
x0,

Dκ

2

)
is strongly convex, we see

that, for each t ∈ [0, Dκ

2 [, the unique minimal geodesic joining x0 and γ (t) can be
expressed as

γx0γ (t)(s) = expx0
s(tu0) for each s ∈ [0, 1].

123



800 J Optim Theory Appl (2016) 170:783–803

This in particular implies that, for each t ∈ [0, Dκ

2 [, γ̇x0γ (t)(0) = tu0 and so

f0(γ (t)) = 〈u0, γ̇x0γ (t)(0)〉 = 〈u0, tu0〉 = t.

Hence,

γ (t) ∈ Lc, f0 for all t ∈ [0, c] and γ (t) /∈ Lc, f0 for all t ∈
]

c,
Dκ

2

[

(51)

In particular, z := γ (c) ∈ Lc, f0 with

d(x0, z) = c <
Dκ

2
(52)

by the choice of c. Take u ∈ TzM such that u ⊥ γ̇ (c). Then, by (52), there exists some
ε > 0 such that the geodesic τ : [−ε, ε] → M , determined by

τ(0) = z and τ̇ (0) = u, (53)

is contained in B

(
x0,

Dκ

2

)
∩ B

(
z, Dκ

2

)
. Set pε := τ(ε) and qε := τ(−ε). Then,

pε, qε ∈ B

(

x0,
Dκ

2

)

∩ B

(

z,
Dκ

2

)

. (54)

Below, we shall show that

pε, qε ∈ Lc, f0 with f0(pε) < c and f0(qε) < c. (55)

Consider the geodesic triangle �(x0zpε). Then, its perimeter is less than 2Dκ thanks
to (52) and (54). Thus, Proposition 4.2 is applicable, and using (39), we have that

d2(x0, pε) < d2(x0, z) + d2(z, pε) − 2d(x0, z)d(z, pε) cos 	 pεzx0

= d2(x0, z) + d2(z, pε)

(noting that 	 pεzx0 = π
2 as τ̇ (0) ⊥ γ̇ (c)), and

d2(z, pε) < d2(x0, z) + d2(x0, pε) − 2d(x0, z)d(x0, pε) cos 	 pεx0z.

Combining these two inequalities, we get that

d(x0, pε) cos 	 pεx0z < d(x0, z).

Thus,

f0(pε) = d(x0, pε) · ‖u0‖ · cos 	 pεx0z = d(x0, pε) cos 	 pεx0z < d(x0, z) = c,
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γx0 γ

x0

p

pε

z̄

z

q

γpq

τ

Fig. 3 Non-convexity of the sub-level set Lc, f for some 0 < c <
Dκ
2 in Theorem 4.1

where the last equality holds because of (52). Similarly, we have f0(qε) < c and (55)
is shown.

Let γx0 : [0,∞) → M be the geodesic satisfying γx0 |[0,1]= γx0 pε . In light of (54)
and (55), we get by the continuity of f0 that there exists t0 > 1 such that γx0 |[0,t0]
is the minimal geodesic joining x0 and γx0(t0) and γx0(t0) ∈ Lc, f0 . Set p := γx0(t0)

and q := qε. Then, p, q ∈ Lc, f0

(
and so p, q ∈ B

(
x0,

Dκ

2

))
. Since B

(
x0,

Dκ

2

)
is

strongly convex by Proposition 4.1(ii), it follows that γpq ⊂ B(x0,
Dκ

2 ). We further
show that

z̄ := γpq(t̄) /∈ Lc, f0 for some t̄ ∈]0, 1[. (56)

Granting this, (49) is established. To show (56), write

N := expz{span{γ̇ (c), τ̇ (0)}}

where τ andγ are geodesics defined by (53) and (50), respectively. Then, N is isometric
toS2

κ by Proposition 4.3, and we assume that N = S
2
κ without loss of generality. Noting

that x0 = γ (0), z = γ (c) = τ(0), pε = τ(ε) and q = τ(−ε), we have that x0, q, pε, z
lie in S

2
κ . Recall that γx0 is the geodesic passing through x0 and pε. It follows that

p = γx0(t0) is also in S
2
κ . By the definition of the geodesic γ and the choice of the

points p, q in the two-dimensional sphere S
2
κ , one checks that γpq must meet γ at

some point z̄ := γpq(t̄) = γ (c0) with t̄ ∈ (0, 1) and c0 > c (see Fig. 3). Hence,
z̄ /∈ Lc, f0 thanks to(51). Thus, (56) is shown, and the proof is complete. 
�

Our second theorem in this section is Theorem 4.2 below, which is an analogue
of Theorem 4.1 on Hadamard manifold of constant sectional curvature. In particular,
Theorem 4.2 improves and extends the corresponding result in [7, Corollary 3.1],
where it was shown that the sub-level sets Lc, f0 are convex in the special case when
c = 0. The proof of Theorem 4.2 is quite similar to that we did for Theorem 4.1 and
so we omit it here.

Theorem 4.2 Suppose κ < 0, and let f0 be the function defined by (37). Then, Lc, f0
is convex if and only if c ≥ 0.
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As a direct consequence of Theorems 4.1 and 4.2, together with Proposition 2.2,
we have the following corollary which shows that the function defined by (36) is not
quasi-convex in general.

Corollary 4.1 Suppose that M is of nonzero constant sectional curvature. Let x0 ∈ M
and u0 ∈ Tx0 M \ {0}. Then, the functions defined by (36) are not quasi-convex.

5 Conclusions

The function f0 : M → R defined by (36) is widely used in equilibrium problems, vec-
tor optimization problems, and the proximal point algorithm in Riemannian manifolds.
Such class of functions is clearly linear affine in Euclidean spaces; we obtain some
basic results related to the function f0, and our results show that it is not quasi-convex
even in Poincaré plane. Moreover, we estimate the constant c such that the sub-level set
Lc, f0 is strongly convex in Riemannian manifolds of constant curvatures. The results
could be used to study some existence results in equilibrium problems and vector
optimization problems in Riemannian manifolds of constant curvatures. However, it
remains open to estimate the constant c such that the sub-level set Lc, f0 is strongly
convex in general Riemannian manifolds, or in Riemannian manifolds of bounded
constant curvatures, and this is one possible direction for our future work.
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