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Abstract In this paper, we generalize the Markowitz measure of the risk proposed
in a stationary setting. We provide an evolutionary Markowitz-type measure of the
risk with a memory term and show that this function is effective, namely an existence
theorem for the general financial problem can be proved.
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1 Introduction

In the previous papers [1–3], where the authors deal with the financial equilibrium
problem, they assume that significant utility functions there exist and provide the
properties they need to have in order to ensure the existence of solutions to the finan-
cial equilibrium problem. This paper aims at covering a lack providing the existence
of a significant evolutionary measure of the risk, which satisfies all the assumptions
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requested to ensure the existence of a solution to the financial equilibrium problem.
This evolutionary financial measure of the risk is obtained by generalizing the cele-
brated measure of the financial risk introduced byMarkowitz in [4,5] in the stationary
setting. So this paper gives an example of an evolutionary risk measure which plays
in the evolutionary case the same role as the Markowitz risk measure plays in the
stationary case.

Then, such a concrete example of evolutionary risk measure of Markowitz type
allows us to be sure that in the previous papers [1–3], we are not working on empty
sets. Of course, the evolutionary measure is interesting in itself because we can see
how to pass from the stationary to the evolutionary case.

The measure of the risk due to Markowitz in the stationary case is a quadratic
form built starting from a variance–covariance matrix Qi which denotes the sector
i’s assessment of the standard deviation of prices for each instrument j . Markowitz’s
fundamental idea is that the variability of the prices is an index of the increase in risk.

The evolutionary Markowitz-type measure of the risk is a function constituted of
two terms: The first one is a quadratic form built starting from the variance–covariance
matrix Qi , and the second one is a memory term, which expresses the influence of the
previous equilibrium solutions in the evolution of the risk. Here the evolutionary nature
of the new risk measure appears. The variance–covariance matrix Qi is calculated at a
certain instant which is called instant zero, taking into account the equilibrium prices
in a finite set of previous times.We note that without thememory term, the prices in the
period [0,Δ] would not have influence on the measure of the risk. Then, we consider
a financial equilibrium problem equipped with this risk measure and we show that the
new risk measure is effective, namely an existence theorem of equilibrium solution
holds true. Since we are in an infinite-dimensional setting, to prove the existence
theorem, we need to verify a lot of functional tools, as, for instance, we need to show
that the related utility function is Fan-hemicontinuous and so on, and these proofs are
demanding and very delicate.

Further, we make a comparison between the solution of the financial problems with
and without memory terms (see Remark 4.1) and we obtain that the model without
memory terms is the first approximation of the other one.

Here, it is not worth to spend many words on the importance of the memory term.
We only refer to the papers [6–8] for the interested readers.

In the general model, we are considering, using this new evolutionary Markowitz-
type measure of the risk, the amount of investments as assets and as liabilities is
assumeddepending on the expected solutions, namelywe require that the set of feasible
solutions is flexible and adaptive and this objective is achieved just assuming that
the equality constraints depend on the expected solution in an average manner. We
make such an assumption in order to take into account that when one chooses an
investment, he takes care of the expected forecasts of the market. This is realistic
because none invests without having an idea of the future behavior. Since our model
evolves in time, surely investors cannot have an evaluation instant by instant, but
they use a mean evaluation. This is the reason why imposing a dependence on the
mean value is not an ad hoc requirement, but it is what happens in real life. In many
fields of mathematical physics and engineering, the elastic or adaptive dependence
is a characterizing phenomenon. For the seminal work on elastic constraints, see the
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book [9]. We point out that we are able to derive a quasi-variational formulation of this
financial equilibrium problemwith memory and adaptive constraints. For the previous
papers on the evolutionary financial model, see [10–24].

Of course many of the examined phenomena are affected by intrinsic randomness.
However, this paper is deterministic and can be extended to a stochastic financialmodel
where the used time variable can be replaced by a random variable. Some authors have
already presented papers in this field (see [25–27]).

In the evolutionary formulation and in the considered functional spaces L p, our
paper has common points with some consumption-based capital asset pricing model
studied, for instance, by Duffie and Zame (see [28]), who present the existence of
equilibria of the above problem. However, we have used a different methodology to
develop the research of existence.

Finally, it is worth remarking that the financial equilibrium problem equipped with
the evolutionary Markowitz measure of the risk turns out to be continuous. Indeed,
we show that, in a special but sufficiently general case, the obtained utility function
satisfies all the properties which lead to the continuity of the solution.

A similar methodology, based on variational inequalities, has been used in [29] (see
also [30]) and in the field of the Walras general equilibrium model of economy.

The paper is organized as follows. In Sect. 2, we present the financial model with
memory terms and adaptive constraints. In Sect. 3, we prove the main results of this
paper. In Sect. 4, we study two concrete examples of financial networks.

2 The Financial Model

We consider a financial economy consisting of m sectors, for example households,
domestic businesses, banks and other financial institutions, as well as state and local
governments, with a typical sector denoted by i , and of n instruments, for example
mortgages,mutual funds, saving deposits,moneymarket funds,with a typical financial
instrument denoted by j , in the time interval [0,Δ]. At time t , we denote the amount
of instrument j held as an asset in sector i’s portfolio by xi j (t) and the amount of
instrument j held as a liability in sector i’s portfolio by yi j (t). The assets and liabilities
in all the sectors are grouped into the m × n matrices x(t) and y(t). We denote the
price of instrument j held as an asset at time t by r j (t) and the price of instrument j
held as a liability at time t by (1 + h j (t))r j (t), where h j is a nonnegative function
defined into [0,Δ] and belonging to L∞([0,Δ]). We introduce the term h j (t) not just
for mathematical generality, but because there are real-world effects that one fails to
capture by neglecting this. Indeed, as it is continuously shown by experience, the prices
of liabilities are generally greater than or equal to the prices of assets. A fundamental
reason for this is that these increments are necessary to pay the bank expenses, the
financial intermediation, the salaries, etc.We group the instrument prices held as assets
into the vector r(t) = [r1(t), . . . , rn(t)]T and the instrument prices held as liabilities
into the vector (1+h(t))r(t) = [

(1 + h j (t))r j (t)
]T
j=1,...,n . In our problem, the prices

of each instrument appear as unknown variables. Under the assumption of perfect
competition, each sector will behave as if it has no influence on the instrument prices
or on the behavior of the other sectors, but the equilibrium prices depend on the total
amount of investments and the liabilities of each sector.
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In order to express the time-dependent equilibrium conditions by means of an
evolutionary variational inequality, we choose as a functional setting the very general
Lebesgue space

L2([0,Δ],Rp) =
{
f : [0,Δ] → R

p measurable:
∫ Δ

0
‖ f (t)‖2p dt < +∞

}

where

(∫ Δ

0
‖ f (t)‖2p dt

) 1
2

= ‖ f ‖L2([0,Δ],Rp) .

To denote the norm in the Hilbert space L2([0,Δ],Rp), we shall use the symbol
‖ f ‖L2 when there is no possibility of confusion. As it is well known, the dual space
of L2([0,Δ],Rp) is still L2([0,Δ],Rp) and we define the canonical bilinear form in
L2([0,Δ],Rp) × L2([0,Δ],Rp) as

〈〈G, f 〉〉 =
∫ Δ

0
〈G(t), f (t)〉 dt, f ∈ L2([0,Δ],Rp),

where 〈G(t), f (t)〉 denotes the scalar product in Rp.
Now let us define the feasible set for each sector i = 1, . . . ,m. Let si (t) and li (t)

denote the total financial volume held by sector i at time t as assets and let li (t) as
liabilities, respectively. We assume that the total financial volumes si and li depend
besides on time also on the expected solution w∗(t), in an average way, namely by
∫Δ

0 w∗(s)ds, so si is given by si
(
t,
∫Δ

0 w∗(s)ds
)
and li is given by li

(
t,
∫Δ

0 w∗(s)ds
)
.

Then, in order to define the constraint set, let us introduce the set

E =
{
w = (x(t), y(t), r(t)) ∈ L2([0,Δ],R2mn+n) : x(t) ≥ 0,

y(t) ≥ 0, r(t) ≤ r(t) ≤ r(t) a.e. in [0,Δ]} ,

with0 ≤ r(t) ≤ r(t) ∈ L2([0,Δ],Rn).Wedenote by r(t) j the ceilingprice associated
with instrument j and by r j the nonnegative floor price associated with instrument
j . The meaning of the constraint r j (t) ≤ r j (t) a.e. in [0,Δ] is that to each investor,
a minimal price r j for the assets held in instrument j is guaranteed, whereas each
investor is requested to pay for the liabilities not less than theminimal price (1+h j )r j .
Analogously each investor cannot obtain for an asset a price greater than r j and as
a liability the price cannot exceed the maximum price (1 + h j )r j . Let us group the
instrument ceiling prices r j into the column vector r(t) = [r1(t), . . . , rn(t)]T , the
instrument floor prices r j into the column vector r(t) = [r1(t), . . . , rn(t)]T .

It is easy to verify that E is a convex, bounded and closed subset of L2([0,Δ],
R
2mn+n).

If K : E ⇒ 2E is the set-valued map defined as

K (w∗) =
{
w = (x(t), y(t), r(t)) ∈ E :

n∑

j=1

xi j (t) = si

(
t,
∫ Δ

0
w∗(s) ds

)
,
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n∑

j=1

yi j (t) = li

(
t,
∫ Δ

0
w∗(s) ds

)
a.e. in [0,Δ], i = 1, . . . , n

}
, (1)

then K (w∗) is the feasible set for every w∗ ∈ E .

As it is well known, the governments impose some taxes on the financial operations
and the reason is that the state wants to ensure a certain welfare. In our situation, the
state control can be formulated by means of a given tax rate ηi j levied on sector i’s
net yield on financial instrument j . We group the tax rates into the matrix η(t) ∈ R

mn .
Assume that the tax rates lie in the interval [0, 1) and belong to L∞([0,Δ]). Therefore,
the government in this model has the flexibility of levying a distinct tax rate across
both sectors and instruments.

In order to determine for each sector i the optimal composition of instruments held
as assets and as liabilities, we consider, as usual, the influence due to risk-aversion and
the process of optimization of each sector in the financial economy, namely the desire
to maximize the value of the asset holdings and to minimize the value of liabilities.
Then, for each sector i , we introduce the utility function:

Ui (xi (t), yi (t), r(t))

= ui (t, xi (t), yi (t)) +
n∑

j=1

r j (t)(1 − ηi j (t))[xi j (t) − (1 + h j (t))yi j (t)],

where the term−ui (xi (t), yi (t)) represents a measure of the risk of the financial agent
and r j (t)(1 − ηi j (t))[xi (t) − (1 + h j (t))yi (t)] represents the value of the difference
between the asset holdings and the liabilities.

In this paper, as we said, we consider a particular but significant example of utility
function ui (xi (t), yi (t)), namely:

[
xi (t)
yi (t)

]T
Qi

[
xi (t)
yi (t)

]
+

∫ t

0

[
xi (t − z)
yi (t − z)

]T
Qi

[
xi (t − z)
yi (t − z)

]
dz. (2)

In order to determine the equilibrium prices, we establish the equilibrium condition
which expresses the equilibration of the total assets, the total liabilities and the portion
of financial transactions per unit Fj employed to cover the expenses of the financial
institutions including possible dividends, as in [1–3]. Hence, the equilibrium condition
for the price r j of instrument j is the following:

m∑

i=1

(1 − ηi j (t))
[
x∗
i j (t) − (1 + h j (t))y

∗
i j (t)

]
+ Fj (t)

⎧
⎨

⎩

≥ 0 if r∗
j (t) = r j (t)

= 0 if r j (t) < r∗
j (t) < r j (t).

≤ 0 if r∗
j (t) = r j (t)

(3)

Now, we can give different but equivalent equilibrium conditions, each of which is
useful to illustrate particular features of the equilibrium. To this end, let us recall that
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we have:

− ∂ui (x, y)

∂xi j
= 2

[
Qi

11

]T

j
· xi (t) + 2

[
Qi

21

]T

j
· yi (t)

+
∫ t

0

(
2
[
Qi

11

]T

j
· xi (τ ) + 2

[
Qi

21

]T

j
· yi (τ )

)
dτ, (4)

−∂ui (x, y)

∂yi j
= 2

[
Qi

22

]T

j
· yi (t) + 2

[
Qi

12

]T

j
· xi (t)

+
∫ t

0

(
2
[
Qi

22

]T

j
· yi (τ ) + 2

[
Qi

12

]T

j
· xi (τ )

)
dτ. (5)

The aim of the financial sectors is to maximize the utility function, namely to maxi-
mize the assets and to minimize the risk and the liabilities, simultaneously. Such an
optimization is obtained using some necessary and sufficient conditions expressed by
the following equilibrium conditions by means of the Lagrange multipliers.

Definition 2.1 A vector of sector assets, liabilities and instrument prices w∗ =
(x∗(t), y∗(t), r∗(t)) ∈ K (w∗) is an equilibrium of the dynamic financial model if
and only if ∀i = 1, . . . ,m, ∀ j = 1, . . . , n, and a.e. in [0,Δ], it satisfies the system
of inequalities

−∂ui (x∗, y∗)
∂xi j

− (1 − ηi j (t))r
∗
j (t) − μ

(1)∗
i (t) ≥ 0, (6)

−∂ui (x∗, y∗)
∂yi j

+ (1 − ηi j (t))(1 + h j (t))r
∗
j (t) − μ

(2)∗
i (t) ≥ 0, (7)

and equalities

x∗
i j (t)

[
− ∂ui (x∗, y∗)

∂xi j
− (1 − ηi j (t))r

∗
j (t) − μ

(1)∗
i (t)

]
= 0, (8)

y∗
i j (t)

[
− ∂ui (x∗, y∗)

∂xi j
+ (1 − ηi j (t))(1 + h j (t))r

∗
j (t) − μ

(2)∗
i (t)

]
= 0, (9)

and ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑

i=1

(
x∗
i j (t) − (1 + h j (t))y

∗
i j (t)

)
+ Fj (t) ≥ 0

m∑

i=1

[(
x∗
i j (t) − (1 + h j (t))y

∗
i j (t)

)
+ Fj (t)

]
r∗
j (t) = 0, r∗ ∈ R,

(10)

where μ
(1)∗
i (t), μ(2)∗

i (t) ∈ L2([0,Δ]) are Lagrange functions, and verify conditions
(3) a.e. in [0,Δ] and ui is given by (2).

Let us explain the meaning of the above conditions. To each financial volume si and
li held by sector i , we associate the functions μ

(1)
i (t), μ(2)

i (t), related, respectively, to
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the assets and to the liabilities and which represent the “equilibrium disutilities” per
unit of sector i . Then, (6) and (8) mean that the financial volume invested in instrument
j as assets x∗

i j is greater than or equal to zero if the j th component − ∂ui (x∗,y∗)
∂xi j

−
(1 − ηi j (t))r∗

j (t) of the disutility is equal to μ
(1)
i (t), whereas if − ∂ui (x∗,y∗)

∂xi j
− (1 −

ηi j (t))r∗
j (t) > μ

(1)
i (t), then x∗

i j (t) = 0. The same occurs for the liabilities and (3)
represents the equilibrium of prices.

Using the same technique as in [3] and [1] (see Theorem 2.1), it is possible to
prove the following theorem which shows the equivalence between Definition 2.1 and
a quasi-variational inequality.

Theorem 2.1 A vector (x∗, y∗, r∗) ∈ K (w∗) is a dynamic financial equilibrium if
and only if it satisfies the following quasi-variational inequality

m∑

i=1

∫ Δ

0

{ n∑

j=1

[
− ∂ui (x∗

i (t), y∗
i (t))

∂xi j
− (1 − ηi j (t))r

∗
j (t)

]
[xi j (t) − x∗

i j (t)]

+
n∑

j=1

[
− ∂ui (x∗

i (t), y∗
i (t))

∂yi j
+ (1 − ηi j (t))r

∗
j (t)(1 + h j (t))

]

[yi j (t) − y∗
i j (t)]

}
dt

+
n∑

j=1

∫ Δ

0

m∑

i=1

{
(1 − ηi j (t))

[
x∗
i j (t) − (1 + h j (t))y

∗
i j (t)

]
+ Fj (t)

}

×[
r j (t) − r∗

j (t)
]
dt ≥ 0, ∀(x, y, r) ∈ K (w∗).

(11)

We want to stress that the variational inequality obtained from (11) setting r = r∗,
namely:

m∑

i=1

∫ Δ

0

{ n∑

j=1

[
− ∂ui (x∗

i (t), y∗
i (t))

∂xi j
− (1 − ηi j (t))r

∗
j (t)

]
[xi j (t) − x∗

i j (t)]

+
n∑

j=1

[
− ∂ui (x∗

i (t), y∗
i (t))

∂yi j
+ (1 − ηi j (t))r

∗
j (t)(1 + h j (t))

]

[yi j (t) − y∗
i j (t)]

}
dt ≥ 0, ∀(x, y) ∈ P

is equivalent to the maximization problem:

max
P

m∑

i=1

∫ Δ

0

{
ui (xi (t), yi (t)) + (1 − ηi (t))r

∗(t) × [xi (t) − (1 − h(t)yi (t))]
}
dt,

(12)
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where

P =
{
(x(t), y(t)) ∈ L2([0,Δ],R2mn) :

n∑

j=1

xi j (t) = si

(
t,
∫ Δ

0
w∗(s) ds

)
,

n∑

j=1

yi j (t) = li

(
t,
∫ Δ

0
w∗(s) ds

)
, x(t), y(t) ≥ 0, a.e. in [0,Δ]

}
.

Then, variational inequality (11) expresses both the optimality conditions (12) and
the price equilibrium conditions (3).

Let us remark that, with the simple substitution t − z = τ , the memory term can
be rewritten in the following way:

∫ t

0

(
2
[
Qi

11

]T

j
· xi (τ ) + 2

[
Qi

21

]T

j
· yi (τ )

)
dτ

and
∫ t

0

(
2
[
Qi

22

]T

j
· yi (τ ) + 2

[
Qi

12

]T

j
· xi (τ )

)
dτ.

Hence, taking into account (4) and (5), our quasi-variational inequality, becomes:

∫ Δ

0

m∑

i=1

n∑

j=1

[
2
[
Qi

11

]T

j
· x∗

i (t) + 2
[
Qi

21

]T

j
· y∗

i (t)

+
∫ t

0

(
2
[
Qi

11

]T

j
· x∗

i (τ ) + 2
[
Qi

21

]T

j
· y∗

i (τ )

)
dτ − (

1 − ηi j (t)
)
r∗
j (t)

]

×
[
xi j (t) − x∗

i j (t)
]
dt

+
∫ Δ

0

m∑

i=1

n∑

j=1

[
2
[
Qi

22

]T

j
· y∗

i (t) + 2
[
Qi

12

]T

j
· x∗

i (t)

+
∫ t

0

(
2
[
Qi

22

]T

j
· y∗

i (τ ) + 2
[
Qi

12

]T

j
· x∗

i (τ )

)
dτ + (

1 − ηi j (t)
)
r∗
j (t)

(
1 + h j (t)

) ]

×
[
yi j (t) − y∗

i j (t)
]
dt

+
n∑

j=1

∫ Δ

0

{
m∑

i=1

(
1 − ηi j (t)

) [
x∗
i j (t) − (

1 + h j (t)
)
y∗
i j (t)

]
+ Fj (t)

}

×
[
r j (t) − r∗

j (t)
]
dt ≥ 0,

∀w = (x, y, r) ∈ K (w∗). (13)

In compact form:

〈〈A(t, w∗), w − w∗〉〉 ≥ 0 ∀w = (x, y, r) ∈ K (w∗),
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where A : [0,Δ]×E → L2([0,Δ],R2mn+n) is defined by the following components:

A(t, w) =
([

2
[
Qi

11

]T

j
· xi (t) + 2

[
Qi

21

]T

j
· yi (t)

+
∫ t

0

(
2
[
Qi

11

]T

j
· xi (τ ) + 2

[
Qi

21

]T

j
· yi (τ )

)
dτ − (

1 − ηi j (t)
)
r j (t)

]

i=1,...,m
j=1,...,n

,

[
2
[
Qi

22

]T

j
· yi (t) + 2

[
Qi

12

]T

j
· xi (t) +

∫ t

0

(
2
[
Qi

22

]T

j
· yi (τ )

+ 2
[
Qi

12

]T

j
· xi (τ )

)
dτ + (

1 − ηi j (t)
)
r j (t)

(
1 + h j (t)

) ]

i=1,...,m
j=1,...,n

,

[
m∑

i=1

(
1 − ηi j (t)

) [
xi j (t) − (

1 + h j (t)
)
yi j (t)

] + Fj (t)

]

j=1,...,n

)
. (14)

Let us assume that the following conditions are satisfied:

ASSUMPTIONS (α):

α1 : Qi is symmetric and positive defined;
α2 : si (t, x) and li (t, y) are continuous in t w.r.t. the second variable;
α3 : ∃ δ1 ∈ L2([0,Δ]) and ∃c1 ∈ R

+ such that |si (t, x)| ≤ δ1(t) + c1;
α4 : ∃ δ2 ∈ L2([0,Δ]) and ∃c2 ∈ R

+ such that |li (t, y)| ≤ δ2(t) + c2;
α5 : the functions ηi j , h j , Fj ∈ L∞([0,Δ]) and ηi j ∈ [0, 1), ∀i and ∀ j.

Let us remark that these assumptions are quite general, essential and minimal for
justifying the integral formulation.

Our aim is to prove the following existence theorem:

Theorem 2.2 (Existence) If Assumptions (α) are satisfied, then variational inequality
(13) admits a solution.

Now, we shall state the following regularity theorem, which holds true in the special
case when si depend on x∗ and li depend on y∗, for all i = 1, . . . ,m, namely when
we choose:

K (w∗) =
{
w = (x(t), y(t), r(t)) ∈ E :

n∑

j=1

xi j (t) = si

(
t,
∫ Δ

0
x∗(s) ds

)
,

n∑

j=1

yi j (t) = li

(
t,
∫ Δ

0
y∗(s) ds

)
a.e. in [0,Δ], i = 1, . . . , n

}
.

Under the assumptions (α), the functions

si (t) = si

(
t,
∫ Δ

0
x∗(s) ds

)
and li (t) = li

(
t,
∫ Δ

0
y∗(s) ds

)
∀i = 1, . . . ,m,
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are continuous functions, and x∗(s) and y∗(s) are the first and the second component
of a solution w∗(s) ∈ L2([0,Δ],R2mn+n) to problem (11), respectively.s

Theorem 2.3 Let all assumptions (α) be satisfied. Let (x∗, y∗, r∗) be a solution to
problem (11). Assume that r(t), r(t) ∈ C0([0,Δ],Rn+). Then, problem (11) admits
a continuous solution w̃∗(s) such that x∗(t) = x̃∗(t), y∗(t) = ỹ∗(t), whereas r∗(t)
can be different than r̃∗(t).

3 Proof of Theorems 2.2 and 2.3

In order to prove Theorem 2.1, let us recall some definitions and a general existence
result (see [18,31]).

Let F : [0,Δ]×E → R
2mn+n be such that the following conditions F are satisfied:

CONDITIONS F F is measurable in t ∀w ∈ R
2mn+n, continuous inw a.e. in [0,Δ],

and there exists δ ∈ L2([0,Δ]) such that ‖F(t, w)‖ ≤ δ(t)+‖w‖
a.e. in [0,Δ], w ∈ R

2mn+n .

Moreover, let us recall the definitions of a strongly monotone and a Fan-hemicon-
tinuous mapping.

Definition 3.1 Let F : [0,Δ] × E → R
2mn+n . We say that F is strongly monotone

in x and y and monotone in r if there exists ν > 0:

〈〈F(t, w1(t)) − F(t, w2(t)), w1(t) − w2(t)〉〉 ≥ ν
[
‖x1 − x2‖2L2 + ‖y1 − y2‖2L2

]
,

∀ w1(t) = (x1(t), y1(t), r1(t)), w2(t) = (x2(t), y2(t), r2(t)) ∈ E .

Definition 3.2 Let F : [0,Δ]× E → R
2mn+n . We say that F is Fan-hemicontinuous

if, ∀ v ∈ E , the function

w → 〈〈F(t, w),w − v〉〉

is weakly lower semicontinuous on E .

Further, we make the following ASSUMPTIONS (α):

– the functions s, l are Carathéodory functions, which means they are measurable
in t and continuous with respect to the second variable;

– ∃δ1(t) ∈ L2([0,Δ]) and ∃c1 ∈ R : ‖s(t, x)‖ ≤ δ1(t) + c1,∀x ∈ R
mn;

– ∃δ2(t) ∈ L2([0,Δ]) and ∃c2 ∈ R : ‖l(t, x)‖ ≤ δ2(t) + c2,∀y ∈ R
mn .

Now let us consider the following variational inequality:

Find w∗ ∈ K (w∗) : 〈〈F(t, w∗), w − w∗〉〉 ≥ 0 ∀w = (x, y, r) ∈ K (w∗), (15)

where K (w∗) is given by (1).
Then, the following existence theorem holds true (see [18], Theorem 2.2):
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Theorem 3.1 Let F : [0,Δ] × E → R
2mn+n be a bounded, strongly monotone in

x and y, monotone in r , Fan-hemicontinuous mapping and satisfying conditions (F)

and (α). Then, variational inequality (15) admits a solution.

Let us show that our operator A satisfies all the assumptions of Theorem 3.1.
First let us prove that A(t, w) is strongly monotone with respect to x and y and

monotone with respect to r , namely that

〈〈A(t, w1) − A(t, w2), w1 − w2〉〉 ≥ ν

[∥∥
∥x1 − x2

∥∥
∥
2

L2
+
∥∥
∥y1 − y2

∥∥
∥
2

L2

]
.

We have:

〈〈A(t, w1) − A(t, w2), w1 − w2〉〉 ≥ ν

[∥
∥∥x1 − x2

∥
∥∥
2

L2
+
∥
∥∥y1 − y2

∥
∥∥
2

L2

]

+
∫ Δ

0

m∑

i=1

n∑

j=1

[∫ t

0
2
[
Qi

11

]T

j
·
(
x1i (τ ) − x2i (τ )

)
dτ ×

[
x1i j (t) − x2i j (t)

]]
dt

+
∫ Δ

0

m∑

i=1

n∑

j=1

[∫ t

0
2
[
Qi

21

]T

j
·
(
y1i (τ ) − y2i (τ )

)
dτ ×

[
x1i j (t) − x2i j (t)

]]
dt

+
∫ Δ

0

m∑

i=1

n∑

j=1

[∫ t

0
2
[
Qi

22

]T

j
·
(
y1i (τ ) − y2i (τ )

)
dτ ×

[
y1i j (t) − y2i j (t)

]]
dt

+
∫ Δ

0

m∑

i=1

n∑

j=1

[∫ t

0
2
[
Qi

12

]T

j
·
(
x1i (τ ) − x2i (τ )

)
dτ ×

[
y1i j (t) − y2i j (t)

]]
dt.

Setting, for i = 1, . . . ,m, j = 1, . . . , n:

vij (t) =
∫ t

0

(
x1i j (τ ) − x2i j (τ )

)
dτ, uij (t) =

∫ t

0

(
y1i j (τ ) − y2i j (τ )

)
dτ,

and denoting by
[
Qi

hk

]k
j the kth element of the j th column of Qi

hk , the memory terms
can be rewritten in the following way:

2
m∑

i=1

∫ Δ

0

[ n∑

j,k=1

[
Qi

11

]k

j
vik(t) · dv

i
j (t)

dt
+

n∑

j,k=1

[
Qi

21

]k

j
uik(t) · dv

i
j (t)

dt

+
n∑

j,k=1

[
Qi

22

]k

j
uik(t) · du

i
j (t)

dt
+

n∑

j,k=1

[
Qi

12

]k

j
vik(t) · du

i
j (t)

dt

]
dt

=
m∑

i=1

∫ Δ

0

[ n∑

j,k=1

[
Qi

11

]k

j

dvik(t) · vij (t)

dt
+

n∑

j,k=1

[
Qi

21

]k

j

duik(t) · vij (t)

dt
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+
[
Qi

22

]k

j

duik(t) · uij (t)
dt

+
[
Qi

12

]k

j

dvik(t) · uij (t)
dt

]
dt

=
m∑

i=1

n∑

j,k=1

{[
Qi

11

]k

j
vik(T ) · vij (T ) +

[
Qi

21

]k

j
uik(T ) · vij (T )

+
[
Qi

22

]k

j
uik(T ) · uij (T ) +

[
Qi

12

]k

j
vik(T ) · uij (T )

}

≥ μ

[(∫ Δ

0

(
x1i j (τ ) − x2i j (τ )

)
dτ

)2

+
(∫ Δ

0

(
y1i j (τ ) − y2i j (τ )

)
dτ

)2
]

≥ 0.

Therefore, we have:

〈〈A(t, w1) − A(t, w2), w1 − w2〉〉 ≥ ν

[∥∥∥x1 − x2
∥∥∥
2

L2
+
∥∥∥y1 − y2

∥∥∥
2

L2

]

+μ

[(∫ Δ

0

(
x1i j (τ ) − x2i j (τ )

)
dτ

)2

+
(∫ Δ

0

(
y1i j (τ ) − y2i j (τ )

)
dτ

)2
]

≥ ν

[∥∥∥x1 − x2
∥∥∥
2

L2
+
∥∥∥y1 − y2

∥∥∥
2

L2

]
,

namely we proved the strongly monotonicity with respect to x and y and the
monotonicity with respect to r .

Let us prove that A(t, w) is Fan-hemicontinuous, that is:

〈〈A(t, w),w − ξ 〉〉, where ξ is fixed, is weakly lower semicontinuous.

We need to prove that:

lim inf
n

〈〈A(t, wn), wn − ξ 〉〉 ≥ 〈〈A(t, w),w − ξ 〉〉, ∀{wn} : wn ⇀ w.

We have:

〈〈A(t, wn), wn − ξ 〉〉
=

m∑

i=1

n∑

j=1

∫ Δ

0

[(
2
[
Qi

11

]T

j
· xni (t) + 2

[
Qi

21

]T

j
· yni (t)

)

+
(∫ t

0

(
2
[
Qi

11

]T

j
· xni (τ ) + 2

[
Qi

21

]T

j
· yni (τ )

)
dτ

)]
×
[
xni j (t) − ξ1

]
dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[(
2
[
Qi

22

]T

j
· yni (t) + 2

[
Qi

12

]T

j
· xni (t)

)

+
(∫ t

0

(
2
[
Qi

22

]T

j
· yni (τ ) + 2

[
Qi

12

]T

j
· xni (τ )

)
dτ

)]
×
[
yni j (t) − ξ2

]
dt
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+
m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

)
rnj (t)ξ1

]
dt

−
m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

)
rnj (t)

(
1 + h j (t)

)
ξ2

]
dt

+
n∑

j=1

∫ Δ

0
Fj (t)

[
rnj (t) − ξ3

]
dt −

m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

)
xni j (t)ξ3

]
dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

) (
1 + h j (t)

)
yni j (t)ξ3

]
dt. (16)

For the weak continuity:

lim
n→∞

∫ Δ

0

(
1 − ηi j (t)

)
rnj (t)ξ1dt =

∫ Δ

0

(
1 − ηi j (t)

)
r j (t)ξ1dt,

lim
n→∞

∫ Δ

0
− (

1 − ηi j (t)
)
rnj (t)

(
1 + h j (t)

)
ξ2dt

=
∫ Δ

0
− (

1 − ηi j (t)
)
r j (t)

(
1 + h j (t)

)
ξ2dt,

lim
n→∞

∫ Δ

0
Fj (t)r

n
j (t) =

∫ Δ

0
Fj (t)r j (t)dt,

lim
n→∞

∫ Δ

0
− (

1 − ηi j (t)
)
xni j (t)ξ3 =

∫ Δ

0
− (

1 − ηi j (t)
)
xi j (t)ξ3dt,

lim
n→∞

∫ Δ

0

(
1 − ηi j (t)

) (
1 + h j (t)

)
yni j (t)ξ3

=
∫ Δ

0

(
1 − ηi j (t)

) (
1 + h j (t)

)
yi j (t)ξ3dt.

The other terms in (16) are continuous functions with respect to w in L2 and for the
assumption on Q are convex functions with respect w. In virtue of a theorem which
states that a convex and continuous function is also weakly lower semicontinuous, we
get:

lim inf
n

m∑

i=1

n∑

j=1

∫ Δ

0

[(
2
[
Qi
11

]T

j
· xni (t) + 2

[
Qi
21

]T

j
· yni (t)

)
×
[
xni j (t) − ξ1

] ]
dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[ ∫ t

0

(
2
[
Qi
11

]T

j
· xni (τ ) + 2

[
Qi
21

]T

j
· yni (τ )

)
dτ ×

[
xni j (t) − ξ1

] ]
dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[(
2
[
Qi
22

]T

j
· yni (t) + 2

[
Qi
12

]T

j
· xni (t)

)
×
[
yni j (t) − ξ2

] ]
dt
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+
m∑

i=1

n∑

j=1

∫ Δ

0

[ ∫ t

0

(
2
[
Qi
22

]T

j
· yni (τ ) + 2

[
Qi
12

]T

j
· xni (τ )

)
dτ ×

[
yni j (t) − ξ2

] ]
dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[
(
1 − ηi j (t)

)
rnj (t)ξ1

]
dt

−
m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

)
rnj (t)

(
1 + h j (t)

)
ξ2

]
dt

+
n∑

j=1

∫ Δ

0

[
Fj (t)

[
rnj (t) − ξ3

] ]
dt −

m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

)
xni j (t)ξ3

]
dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

) (
1 + h j (t)

)
yni j (t)ξ3

]
dt

≥
m∑

i=1

n∑

j=1

∫ Δ

0

[(
2
[
Qi
11

]T

j
· xi (t) + 2

[
Qi
21

]T

j
· yi (t)

)
× [

xi j (t) − ξ1
]
]
dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[ ∫ t

0

(
2
[
Qi
11

]T

j
· xi (τ ) + 2

[
Qi
21

]T

j
· yi (τ )

)
dτ × [

xi j (t) − ξ1
]
]
dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[(
2
[
Qi
22

]T

j
· yi (t) + 2

[
Qi
12

]T

j
· xi (t)

)
× [

yi j (t) − ξ2
] ]

dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[ ∫ t

0

(
2
[
Qi
22

]T

j
· yi (τ ) + 2

[
Qi
12

]T

j
· xi (τ )

)
dτ × [

yi j (t) − ξ2
] ]

dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

)
r j (t)ξ1

]
dt

−
m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

)
r j (t)

(
1 + h j (t)

)
ξ2

]
dt

+
n∑

j=1

∫ Δ

0

[
Fj (t)

[
r j (t) − ξ3

] ]
dt −

m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

)
xi j (t)ξ3

]
dt

+
m∑

i=1

n∑

j=1

∫ Δ

0

[ (
1 − ηi j (t)

) (
1 + h j (t)

)
yi j (t)ξ3

]
dt.

Then, the operator A, defined by (14), is Fan-hemicontinuous.
It is easy to show that the operator A is bounded, and hence, the existence of

solutions to the quasi-variational inequality (13) is ensured. �
Now let us prove Theorem 2.3. To this end, we recall that in Section 5 in [32] the

following generalized version of Theorem 1.1 in [33] has been proved.

Theorem 3.2 Let assumptions (α) be satisfied and let A ∈ C0([0,Δ],R2mn+n) be
strongly monotone w.r.t. x and y and monotone w.r.t. r. Let si , li ∈ C0([0,Δ],Rn+),
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let r(t), r(t) ∈ C0([0,Δ],Rn+). Then, variational inequality (11) admits a continuous
solution.

Now we prove that all the assumptions of Theorem 3.2 are satisfied. It is easy
to see that the operator A(t, x, y, r) with (x, y, r) ∈ R

2mn+n is continuous w.r.t. t.
Moreover, in Theorem 2.2 we proved that the operator A is strongly monotone w.r.t.
x and y and monotone w.r.t. r. Since r(t), r(t) are continuous and all the assump-
tions (α) are satisfied, then the existence of a solution w̃∗(s) = (x̃∗(t), ỹ∗(t), r̃∗(t)) ∈
C0([0,Δ],R2mn+n) to variational inequality (11) follows from Theorem 3.2. More-
over, from the same Section 5 in [32], being the operator A strictly monotone w.r.t. x
and y, it derives that the solution to problem (11) w.r.t. x and y is unique, whereas there
is no uniqueness w.r.t. r. Then, x̃∗(t) and ỹ∗(t) coincide, under the above assumptions,
with the first and the second component of any solution to variational inequality (11).

�

4 Numerical Examples

We consider an economywith two agents and two financial instruments andwe choose
as the feasible set for assets, liabilities and prices:

K (w∗) =
{
w = (x(t), y(t), r(t)) ∈ L2([0, 1],R10+ ) :

x11(t) + x12(t)=α

∫ 1

0
r∗
1 (s) ds+sβ, x21(t) + x22(t)=α

∫ 1

0
r∗
2 (s) ds + β,

y11(t) + y12(t) = γ, y21(t) + y22(t) = δ a.e. in [0, 1]
and 2t ≤ r1(t) ≤ 3t, t ≤ r2(t) ≤ 3

2
t a.e. in [0, 1]

}

where α, β, γ and δ are positive parameters to be appropriately fixed. The variance–
covariance matrices of the two agents are:

Q1 =

⎡

⎢⎢
⎣

1 0 −0.5 0
0 1 0 0

−0.5 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ and Q2 =

⎡

⎢⎢
⎣

1 0 0 0
0 1 −0.5 0
0 −0.5 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

By applying the direct method (see [10,34]) to variational inequality (11) and by

choosing τi j = 1

4
∀i, j and h j = 1 ∀ j, we get:

Γ1 = 4 x∗
11(t) + 4

∫ t

0
x∗
11(t) dτ − y∗

11(t) −
∫ t

0
y∗
11(t) dτ − 2 α

∫ 1

0
r∗
1 (s) ds

− 2 α

∫ t

0

∫ 1

0
r∗
1 (s) dτds − 2β − 2βt − 3

4
r∗
1 + 3

4
r∗
2 (t)

Γ2 = 4 x∗
22(t) + 4

∫ t

0
x∗
22(t) dτ + y∗

22(t) +
∫ t

0
y∗
22(t) dτ − 2 α

∫ 1

0
r∗
2 (s) ds
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− 2 α

∫ t

0

∫ 1

0
r∗
2 (s) dτds − 2β − 2βt − δ − δt + 3

4
r∗
1 − 3

4
r∗
2 (t)

Γ3 = 4 y∗
11(t) + 4

∫ t

0
y∗
11(t) dτ − x∗

11(t) −
∫ t

0
x∗
11(t) dτ − 2γ − 2γ t + 3

2
r∗
1 − 3

2
r∗
2

Γ4 = 4 y∗
22(t) + 4

∫ t

0
y∗
22(t) dτ + x∗

22(t) +
∫ t

0
x∗
22(t) dτ − 2δ − 2δt − 3

2
r∗
1 + 3

2
r∗
2

Γ5 = 3

4

[
x∗
11(t) − 2y∗

11(t)
] + 3

4

[
α

∫ 1

0
r∗
2 (s) ds − x∗

22 + β − 2(−y∗
22 + δ)

]
+ F1

Γ6 = 3

4

[
α

∫ 1

0
r∗
1 (s) ds − x∗

11 + β − 2(−y∗
11 + γ )

]
+ 3

4

[
x∗
22(t) − 2y∗

22(t)
] + F2.

The solution to the variational inequality is given by solving the system:

Γ1 = Γ2 = Γ3 = 0, Γ4 > 0, , Γ5 > 0, Γ6 > 0.

Since Γ4 > 0, Γ5 > 0 and Γ6 > 0, the direct method ensures that

y∗
22(t) = 0, r∗

1 (t) = r1(t) = 2t, r∗
2 (t) = r2(t) = t.

Moreover, since

∫ 1

0
r∗
1 (t) dt =

∫ 1

0
2t dt = 1 and

∫ 1

0
r∗
2 (t) dt =

∫ 1

0
t dt = 1

2
,

conditions:

Γ1 = Γ2 = Γ3 = 0, Γ4 > 0,

yield:

y∗
11(t) = 7

20
e−t + 2

15
(α + β + 4γ ) − 7

20
, y∗

22(t) = 0,

x∗
11(t) = − 1

10
e−t + 8

15

(
α + β + γ

4

)
+ 1

10
,

x∗
22(t) = 3

16
e−t + 1

4
(α + 2β + δ) − 3

16
.

Further, Γ5 > 0 and Γ6 > 0 mean:

F1 >
3

4

[
79

80
e−t − 31

60
α − 23

30
β + 9

4
δ + 14

15
γ − 79

80

]
,

F2 >
3

4

[
−79

80
e−t − 59

60
α − 37

30
β − 1

4
δ + 16

15
γ + 79

80

]
.
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Let us observe that α, β, δ, γ must satisfy the following conditions in [0, 1]:

0 ≤ x∗
11(t) ≤ β + α 0 ≤ y∗

11(t) ≤ γ

0 ≤ x∗
22(t) ≤ β + 1

2
α 0 ≤ y∗

22(t) ≤ δ.

If we choose α = 15, β = 14, δ = 1, γ = 11, these conditions are fulfilled. Replacing
these values in the equilibrium solution, we obtain a.e. in t ∈ [0, 1]:

x∗
11(t) = − 1

10
e−t + 511

30

x∗
22(t) = 3

16
e−t + 173

16

y∗
11(t) = 7

20
e−t + 563

60
y∗
22(t) = 0

r∗
1 (t) = 2t

r∗
2 (t) = t

and

x∗
12(t) = 1

10
e−t + 359

30

x∗
21(t) = − 3

16
e−t + 171

16

y∗
12(t) = − 7

20
e−t + 97

60
y∗
21(t) =1.

(17)

Finally, conditions Γ5 > 0 and Γ6 > 0 in [0, 1] yield:

F1 >
3

4

[
79

80
e−t − 1669

240

]
and F2 >

3

4

[
−79

80
e−t − 4691

240

]
.

From the formulas related to the Lagrange multipliers associated with the price (see,
for instance, [1,3,17]), namely:

m∑

i=1

(1 − τi j (t))
[
x∗
i j (t) − (1 + h j (t))y

∗
i j (t)

]
+ Fj (t) + ρ

(2)∗
j (t) = ρ

(1)∗
j (t), ∀ j

and

ρ
(1)∗
j (t)(r j (t) − r∗

j (t)) = 0, ρ
(2)∗
j (t)(r∗

j (t) − r j (t)) = 0, ∀ j,

we know that:

Γ5 + ρ
(2)∗
1 (t) = ρ

(1)∗
1 (t) and Γ6 + ρ

(2)∗
2 (t) = ρ

(1)∗
2 (t)

and

ρ
(1)∗
1 (t)(r1(t) − r∗

1 (t)) = 0 and ρ
(2)∗
1 (t)(r∗

1 (t) − r1(t)) = 0,

ρ
(1)∗
2 (t)(r2(t) − r∗

2 (t)) = 0 and ρ
(2)∗
2 (t)(r∗

2 (t) − r2(t)) = 0.
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Since r∗
1 (t) = r1(t), we obtain ρ

(1)∗
1 (t) > 0 and ρ

(2)∗
1 (t) = 0; hence:

Γ5 = ρ
(1)∗
1 (t) > 0.

Analogously, since r∗
2 (t) = r2(t), we obtain ρ

(1)∗
2 (t) > 0 and ρ

(2)∗
2 (t) = 0; hence:

Γ6 = ρ
(1)∗
2 (t) > 0.

But ρ(1)∗
1 (t) and ρ

(1)∗
2 (t) are the deficit variables and are positive. So the economy is

in a phase of regression.
Now we would like to make a comparison between the solution to the same

problem but with and without considering the memory term in the utility func-
tion. To this end, we have the same matrices Q1 and Q2, but ui (xi (t), yi (t)) =
− [xi (t) yi (t)] Qi [xi (t) yi (t)]T . Now, the feasible set for assets, liabilities and
prices is:

K (w∗) =
{
w = (x(t), y(t), r(t)) ∈ L2([0, 1],R10+ ) :

x11(t) + x12(t)=α

∫ 1

0
r∗
1 (s) ds+β, x21(t) + x22(t)=α

∫ 1

0
r∗
2 (s) ds + β,

y11(t) + y12(t) = γ, y21(t) + y22(t) = δ, a.e. in [0, 1]
and 2t ≤ r1(t) ≤ 3t and t ≤ r2(t) ≤ 3

2
t a.e. in [0, 1]

}
,

where α, β and δ are positive parameters to be appropriately fixed.
Solving the associated variational inequality with the same technique (see [18]) and

choosing τi j = 1

4
∀i, j and h j = 1 ∀ j, we find that the solution is given by:

r∗
1 (t) = r1(t) = 2t
r∗
2 (t) = r2(t) = t

y∗
11(t) = 1

15
(2α + 2β + 8γ ) − 7

20
t

y∗
22(t) = 0

x∗
11(t) = 1

15
(8α + 8β + 2γ ) + 1

10
t

x∗
22(t) = 1

4
(α + 2β + δ) − 3

16
t.

Further, Γ5 > 0 and Γ6 > 0 mean:

F1 >
3

4

[
−79

80
t − 31

60
α − 23

30
β + 9

4
δ + 14

15
γ

]
(18)

F2 >
3

4

[
79

80
t − 59

60
α − 37

30
β − 1

4
δ + 16

15
γ

]
, (19)
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provided that the following conditions are fulfilled:

0 ≤ x∗
11(t) ≤ β + α 0 ≤ y∗

11(t) ≤ γ (20)

0 ≤ x∗
22(t) ≤ β + 1

2
α 0 ≤ y∗

22(t) ≤ δ. (21)

Now we choose α = 15, β = 14, δ = 1, γ = 11 and it is easy to verify that
conditions (20) and (21) are fulfilled and, replacing these values in the equilibrium
solution, we obtain a.e. in [0, 1] :

x∗∗
11 (t) = 254

15
+ 1

10
t,

x∗∗
22 (t) = 11 − 3

16
t,

y∗∗
11 (t) = 146

15
− 7

20
t,

y∗∗
22 (t) = 0,

and

x∗∗
12 (t) = 181

15
− 1

10
t,

x∗∗
21 (t) = 21

2
+ 3

16
t,

y∗∗
12 (t) = 19

15
+ 7

20
t,

y∗∗
21 (t) = 1.

(22)

Further, replacing α = 15, β = 14, δ = 1, γ = 11 in (18) and (19), conditions Γ5 > 0
and Γ6 > 0 mean, in [0, 1]:

F1 >
3

4

[
−79

80
t − 179

30

]
and F2 >

3

4

[
79

80
t − 308

15

]
.

Then, we get:

Γ5 = ρ
(1)∗
1 (t) > 0 and Γ6 = ρ

(1)∗
2 (t) > 0.

But ρ(1)∗
1 (t) and ρ

(1)∗
2 (t) are the deficit variables and are positive. So the economy is

in a phase of regression.

Remark 4.1 Nowwe canmake the comparison between the solution to themodel with
memory terms and the solutions to the onewithout memory terms. Specifically, we can
observe that both the solutions in (17) and in (22) are the same when t = 0. Moreover,
when t > 0, then the solutions in (17) and in (22) are increasing. In addition, we have
calculated the differences:

d1(t) = x∗∗
11 (t) − x∗

11(t) = 1

10

[
e−t − (1 − t)

]
,

d2(t) = x∗∗
22 (t) − x∗

22(t) = 3

16
(1 − t − e−t ),

d3(t) = y∗∗
11 (t) − y∗

11(t) = 7

20
(1 − t − e−t ).

So, we derive that we can calculate the solutions in (22) as the first approximation of
the solutions in (17).
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5 Conclusions

In this paper, we have provided an evolutionary measure of the risk of Markowitz type
satisfying the assumptions which are necessary for ensuring the existence of a solution
to the financial equilibrium problem in the dynamic case. Such a function gives us
a continuous solution and future research could include the study of its Lipschitz
continuity under general assumptions.
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