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Abstract A cluster is a group of identical molecules or atoms loosely bound by
inter-atomic forces. The optimal geometry minimises the potential energy—usually
modelled as the Lennard–Jones potential—of the cluster. The minimisation of the
Lennard–Jones potential is a very difficult global optimisation problemwith extremely
many local minima. In addition to cluster problems, the Lennard–Jones potential rep-
resents an important component in many of the potential energy models used, for
example, in protein folding, protein–peptide docking, and complex molecular confor-
mation problems. In this paper, we study different modifications of the Lennard–Jones
potential in order to improve the success rate of finding the global minimum of the
original potential. The main interest of the paper is in nonsmooth penalised form of
the Lennard–Jones potential. The preliminary numerical experiments confirm that the
success rate of finding the global minimum is clearly improved when using the new
formulae.

Keywords Lennard–Jones potential · Clustering problem · Molecular conformation ·
Nonsmooth optimisation · Global optimisation

Mathematics Subject Classification 90C26 · 90C56 · 90C06 · 90C90

Communicated by Christodoulos Floudas.

B Napsu Karmitsa
napsu@karmitsa.fi

1 Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-016-0955-5&domain=pdf


J Optim Theory Appl (2016) 171:316–335 317

1 Introduction

A cluster is a group of identical molecules or atoms loosely bound by inter-atomic
forces. The optimal geometry minimises the potential energy of the cluster. The sim-
plestmodel (yet extremely difficult to solve) uses theLennard–Jonespairwise potential
energy function. Variations in this problem include carbon and argon clusters as well
as water molecule clusters (see, e.g. [1–3]). In addition, the Lennard–Jones potential
represents an important component in many of the potential energy models used, for
instance, in complex molecular conformation, protein–peptide docking, and protein
folding problems [4–6].

The objective function of the Lennard–Jones potential is smooth (continuously
differentiable) and easy to implement. However, it has extremely complicated land-
scape with huge number of local minima. A smooth penalised modification for the
Lennard–Jones pairwise potential function was introduced in [7] that allows a local
search method to escape from the enormous number of local minima of the Lennard–
Jones energy landscape. This modification was reported to result convergence to the
global minimumwith much greater success than when starting local optimisation with
random points.

The idea of penalised potential was further modified in [8] resulting a nonsmooth
penalised Lennard–Jones potential. According to very limited number of test cases
used in [8], this formulation together with discrete gradient method [9] used for min-
imisation yields yet another improvement in the success rate of finding the global
minimum.

In this paper, we study the different parameter values for the nonsmooth penalised
Lennard–Jones potential introduced in [8] and also some new modifications of this
nonsmooth formulation. Our main goal was to confirm the results obtained in [8]
and to further improve the success rate of finding the global minimum of the original
Lennard–Jones potential.

As a solver for the minimisation problem, we use the limited memory discrete
gradient bundle method (LDGB, [10]), that is, a derivative-free method for nonsmooth
moderate large problems. The LDGB is a hybrid of the discrete gradient method [9]
and the limited memory bundle method [11,12]. The choice of the solver is reasoned
by three facts: First, we need a solver that is capable of solving (locally) nonsmooth
nonconvex problems. Second, the computation of subgradients (generalised gradients
[13]) is not an easy task, since the problem is subdifferentially irregular (see, e.g. [14])
and, thus, the calculus exists only in the form of inclusions. Therefore, the choice of
derivative-free method is justified. Finally, the number of variables in the clustering
problem is 3N. This means that our solution algorithm needs to be able to solve
moderate large problems. In addition, it has been shown that the discrete gradient
method—although not a global optimisation method—has an aptitude to jump over
a small local minima (see, e.g. [9,15]). We hope to find the similar feature from its
derivative, the LDGB.

The paper is organised as follows. In Sect. 2, we recall the Lennard–Jones potential
and the penalised modifications introduced in [7] and [8]. In Sect. 3, we introduce the
formulae used in our experiment. Then, in Sect. 4, we briefly describe the basic ideas
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of LDGB , and in Sect. 5, we give the results of our numerical experiments. Finally,
in Sect. 6, we conclude the paper and give some ideas of future research.

2 Lennard–Jones Pairwise Potential

The optimal geometry of the cluster minimises the potential energy E expressed as a
function of Cartesian coordinates

E(x, y, z) :=
N∑

i=1

N∑

j=i+1

v(ri j ), (1)

where N is the number of atoms (molecules) in the cluster and ri j is the distance
between the centres of a pair of atoms (molecules). That is,

ri j :=
√

(xi − x j )2 + (yi − y j )2 + (zi − z j )2. (2)

The simplest model (yet extremely difficult to solve) uses the Lennard–Jones pairwise
potential energy function

v(ri j ) := 1

r12i j

− 2

r6i j

. (3)

The objective function of the Lennard–Jones potential (1) and (3) is smooth assum-
ing that ri j > 0 and easy to implement. However, it has extremely complicated
landscape with huge number of local minima. In [7], a smooth penalised modification
for the Lennard–Jones pairwise potential function (3) was introduced. The formula of
this penalised Lennard–Jones potential is

v̄(r) = 1

r2p
− 2

r p
+ μr + β

(
max

{
0, r2 − D2

})2
, (4)

where p > 0, μ, β ≥ 0 are real constants, and D > 0 is an underestimate of the
diameter of the cluster. The local minimum of the modified objective function (1) and
(4) was then used as a starting point for a local optimisation of the Lennard–Jones
potential function (1) and (3). As said in the introduction, this procedure was reported
to result convergence to the global minimum with much greater success than when
starting local optimisation with random points [7].

The idea of penalised potential (4)was furthermodified in [8] resulting a nonsmooth
penalised Lennard–Jones potential

v̄(r) = 1

r12
− 1

r6
+ μr + β

(
max

{
0, r2 − D2

})
. (5)

This formulation, together with discrete gradient method [9] used for minimisation,
has been reported to yield yet another improvement in the success rate of finding the
global minimum [8].
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3 Nonsmooth Polyatomic Clustering Problem

In this paper, we try to escape from the local minima of the Lennard–Jones energy
landscape using a nonsmooth penalised Lennard–Jones potential of the form

v̄(r) = 1

r2p
− 2

r p
+ μr + β

(
max

{
0, r2 − D2

})
, (6)

where p > 0, μ, β ≥ 0 are real constants, and D > 0 is an underestimate of the
diameter of the cluster. Note that, by choosing p = 6 and μ, β = 0, the penalised
Lennard–Jones potential v̄ coincides with the Lennard–Jones pairwise potential (3).

The first penalty term μr in (6) gives a penalty to distances between the atoms [see
[16] for the detailed analysis of the first penalty term in (6)]. The penalty increases
linearly as a function of distance.Nevertheless, there is no good reason (but the smooth-
ness of the model) to penalise the distances smaller than 1. Moreover, using this linear
penalty slightly dislocates the minimum of the pairwise potential (see, Figs. 1a, 2b,
3a, b). Thus, we now introduce the formula where, instead of linear penalty μr , the
first penalty is given with piecewise linear formula. That is,

v̄(r) = 1

r2p
− 2

r p
+ μ(max{0, r − 1.1}) + β

(
max

{
0, r2 − D2

})
. (7)

In (7), we do not punish for atomic distances smaller than 1.1.
In both of the formulae (6) and (7), parameter p affects the rigidity of the model. By

choosing p < 6, the atoms (molecules) can be moved more freely, and by decreasing
p, the infinite barrier at r = 0.0, which prevents atoms from getting too close to
each other, is also decreased. As already said, the first penalty term μr in (6) and
μ(max{0, r − 1.1}) in (7) gives a penalty to distances between the atoms. On its turn,
the second penalty term adds a penalty to the diameter of the cluster. It has no influence
on pairs of atoms close to each other, but it adds strong penalty to the atoms far away
from each other. As in [7], the local minima of the modified objective functions (1)
and (6) or (1) and (7) will be used as a starting point for a local optimisation of the
Lennard–Jones potential function (1) and (3).

In Fig. 1, the formulae (6) and (7) with parameters μ = 0.3, β = 0, D = 0
and p = 6 or p = 4 are displayed and compared with the Lennard–Jones pairwise
potential (3). In Fig. 2, the corresponding cases with diagonal penalisation—that is,
μ = 0.3, β = 1.0, D = 2.0—are also displayed. Finally, in Fig. 3, we compare the
smooth formulation (4) with the nonsmooth one (7). Here, we have used two sets of
parameters: in Fig. 3a, we have set p = 6, μ = 0.3, β = 1.0, and D = 2.0, and in
Fig. 3b, we have set p = 4, μ = 1.0, β = 1.0, and D = 2.0.

We do not give heremore detailed analysis of the effect of these penalised formulae.
For a reader more interested, we recommend to see [7,16,17].
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Fig. 1 Comparison between Lennard–Jones and modified potentials. a Linear penalty, b Piecewise linear
penalty
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Fig. 2 Comparison between Lennard–Jones and modified potentials (cont.) a Penalty (6), b Penalty (7)

1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

L−J potential
smooth
nonsmooth

(a)
1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3
L−J potential
smooth
nonsmooth

(b)

Fig. 3 Comparison between smooth and nonsmooth potentials. a [p = 6], b [p = 4]

123



J Optim Theory Appl (2016) 171:316–335 321

x g δ, ,
Initialization:

ε,

Desired accuracy,
Outer iteration termination:

δ ε ? <

STOP

Compute w
Inner iteration termination:

w
,

< ?δ

tL > 0 ?
Line search:

Serious step initalization:
Compute v
Compute d using L−BFGS update

in direction g g += d / dSet x+= x
Initialization to outer iteration:

Update δ
and

y+

y+ g += d / d
v~

v~

Set x+= x

RtSet x+= x + d
g += d / d

Serious step:

and

No

Yes

No

No

Yes

Yes

Null step:
Set = x + tR d
Compute v+at in direction
Aggregation: compute new
Compute d using L−SR1 update and

<

Fig. 4 Program LDGB

4 Limited Memory Discrete Gradient Bundle Method

In this section, we briefly describe the basic ideas of derivative-free LDGB that
is used as a solver for the minimisation problem discussed in the previous chapter.
As said in the introduction, we need a solver that is capable of solving large-scale
nonsmooth nonconvex problems. Moreover, the computation of subgradients is not
straightforward since the problem is subdifferentially irregular and, thus, we need a
derivative-free solver. The only assumptions made here are that the objective function
is locally Lipschitz continuous, and at every point x ∈ IRn, we can evaluate the value
of the objective function f (x).

A simple flow chart of the method is given in Fig. 4.
The LDGB exploits the ideas of the variable metric bundle method [18] namely

the utilisation of null steps, simple aggregation, and the subgradient locality mea-
sures. Nevertheless, the discrete gradients are used instead of subgradients, and the
search direction is calculated using the limited memory approach. Both outer and
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inner iterations are used in the LDGB (see Fig. 4): The inner iteration of the LDGB
is essentially same as the limited memory bundle method [11,12], but now we use the
discrete gradients instead of subgradient of the objective function. The outer iteration
is used in order to avoid too tight approximations to the subgradients at the beginning
of computation (thus, we have a derivative-free method). That is, we start with “large”
δ and make it smaller when we are closer to the optimum. For a reader more interested
in nonsmooth optimisation and details of the method, we recommend to see [10,14]
and Appendix.

5 Numerical Experiments

We now give the results of our numerical experiments. To solve the problems, we
have used the solver LDGB discussed in the previous chapter. The Fortran 95 source
code of the solver is available for downloading at http://napsu.karmitsa.fi/ldgb/. The
experiments were performed on an Intel � CoreTM 2 CPU 1.80GHz. To compile the
code, we used gfortran, the GNU Fortran compiler.

In order to test the performance of modified formulae (6) and (7), we made a series
of numerical experiments by running LDGB 1000 times with N = 2, . . . , 401. We
started local optimisation of the modified objective functions (1) and (6) or (1) and (7)
with random points with xi ∈ [− 1

2

√
3N , 1

2

√
3N ], i = 1, . . . , 3N ). That is, no special

point generation procedure similar to [7] was used, nor have we taken any precaution
to prevent atom overlap during the starting point generation. The local minima of the
modified potentials were then used as starting points for a local optimisation of the
original Lennard–Jones potential function (1) and (3). In what follows, we report the
percentage of the trials which led to the putative global minimum as given in [19]2.

Note that the original Lennard–Jones potential function (1) and (3)) (and, thus,
the second phase of the modified problem) is a smooth problem, and the gradients are
readily computable. Thus, some efficient gradient-basedmethod could have been used.
Nevertheless, ourmain interestwas in comparing the different formulae, not in solution
algorithms, and thus, we have used LDGB to solve also the original Lennard–Jones
potential function (1) and (3) as well as the second phase of the modified problem.

5.1 Linear and Piecewise Linear Penalty

Let us first study only the linear and piecewise linear penalty term (i.e. we set β = 0
in Eqs. (6) and (7)) with different values of parameters p and μ. The results of these
experiments are given in Tables 1 (p = 6) and 2 (p ≤ 4), where “N” denotes the
number of atoms, “L–J” denotes the success rate obtained with the original Lennard–
Jones formulation (1) and (3), “Locatelli” stands for the results of Locatelli and Schoen
[7] (we recall some of these results for comparison purposes), “linear” stands for the

1 We also tried a cluster N = 75 that is considered to be a difficult cluster to solve (see, e.g. [7]), but with
our randomly selected starting points, no trial led to the putative global minimum.
2 The minimum obtained with N = 13 was smaller than that given in [19].
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Table 1 Success rate with linear penalty and p = 6

N L-J Locatelli linear linear linear PW linear PW linear PW linear
p = 6 p = 6 p = 6 p = 6 p = 6 p = 6 p = 6
µ = 0.3 µ = 0.3 µ = 1.0 µ = 5.0 µ = 0.3 µ = 1.0 µ = 5

2 88.7 99.9 99.9 100.0 99.9 99.8 99.9
3 78.4 93.5 96.9 99.3 95.2 97.9 99.5
4 67.4 91.2 94.7 98.4 91.7 94.4 99.7
5 63.9 98.6 99.0 99.9 98.7 98.9 99.9
6 1.3 11.6 23.2 99.2 10.1 40.5 99.4
7 11.1 23.0 28.2 35.8 25.6 27.7 41.6
8 19.8 50.7 45.9 25.5 48.8 43.7 14.2
9 6.6 21.0 25.8 30.5 20.9 25.8 26.3
10 1.7 9.0 8.4 18.4 38.0 8.5 25.3 54.7
11 1.2 14.8 14.4 31.6 58.9 14.2 39.4 78.9
12 1.2 24.4 26.3 55.4 87.2 29.5 61.4 96.3
13 1.2 21.0 21.4 55.9 91.1 23.6 65.3 98.9
14 2.6 39.3 45.3 73.1 95.7 43.6 78.5 97.0
15 1.7 17.4 19.7 14.2 9.1 21.6 16.0 19.8
16 0.9 10.5 11.1 16.2 3.5 14.5 18.5 8.3
17 0.2 4.0 4.7 4.1 2.1 4.2 3.9 0.7
18 – 2.5 2.8 12.1 22.8 3.5 14.7 24.3
19 0.2 6.1 5.9 14.9 21.8 7.8 14.8 28.3
20 0.2 8.3 8.9 18.9 27.7 9.9 21.6 32.9
21 – 3.1 2.8 7.7 14.7 4.6 10.8 15.5
22 – 6.4 5.6 16.7 29.1 8.8 17.4 27.5
23 0.1 3.4 3.3 10.6 18.5 2.4 11.5 21.3
24 – 5.3 5.5 13.6 28.6 6.7 18.4 28.5
25 0.1 8.3 7.2 18.9 33.8 8.7 22.3 33.2
26 – 2.4 2.0 11.8 29.4 2.4 13.8 44.8
27 – 0.5 0.2 0.2 0.1 0.4 0.5 –
28 – 1.0 0.7 1.0 – 0.8 0.8 1.1
29 – 1.1 1.0 4.4 – 1.2 4.3 5.9
30 – 0.1 0.1 – – 0.1 – –
31 – 0.2 – 0.1 – 0.2 0.5 0.3
32 – 0.4 0.5 0.1 – 0.3 0.2 –
33 – 0.5 0.7 1.0 – 0.8 1.0 –
34 – 0.1 – – – – – –
35 – 0.2 0.3 0.2 – 0.1 – –
36 – 0.2 – 0.6 – 0.1 0.2 –
37 – 0.1 – – – 0.1 – –
38 – 0.2 0.1 1.6 – 0.4 2.5 –
39 – 0.2 0.1 – – 0.1 0.1 –
40 – 0.1 0.4 0.6 – 0.4 0.2 –

linear penalty (i.e. Eq. (6) with β = 0) and “PW linear” stands for the piecewise linear
penalty (Eq. 7 with β = 0).

First, it is worth noting that all the penalised formulations were superior when
compared to the original Lennard–Jones formulation. For example, with N = 13, the
putative global minimum was found only 12 times when only the original Lennard–
Jones formulation was used while with piecewise linear penalty with p = 6 and
μ = 5, it was found 989 times. In addition, with original Lennard–Jones formulation,
no putative global minimum was found with N > 25. Nevertheless, there was an
exception: with N = 8, the piecewise linear penalty with p = 6 and μ = 5 was worse
than the original Lennard–Jones formulation (see Table 1).

In each table, the best values at all LDGB’s results are bolded. In addition, in Table
1, we have used red pen to show which one is the better (or equal): the smooth or the
nonsmooth formulation with the same parameters. That is, the same values of p andμ

are compared. It is now easy to see that the piecewise linear penalty usually gave better
or equal results (in 75% of cases). This may follow from the fact that the minimiser
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Table 2 Success rate with piecewise linear penalty and p = 4

N Locatelli PW linear PW linear PW linear PW linear PW linear PW linear
p = 4 p = 4 p = 4 p = 4 p = 4 p = 4 p = 3

µ = 0.3 µ = 0.3 µ = 2.0 µ = 5.0 µ = 10.0/N µ = 1.0/N µ = 10.0/N

2 99.9 99.9 100.0 100.0 99.9 100.0
3 97.1 99.9 100.0 99.7 96.5 100.0
4 95.8 99.4 99.1 99.3 93.5 99.5
5 99.8 99.9 96.3 99.9 99.9 97.3
6 99.2 99.9 99.5 99.6 98.8 99.5
7 24.3 45.9 60.1 44.9 22.6 55.4
8 33.1 4.3 1.8 3.4 36.9 2.4
9 22.4 24.4 2.4 24.2 18.9 11.1
10 26.1 30.2 55.9 57.6 55.5 20.7 60.9
11 43.2 49.1 91.3 84.9 76.9 31.7 95.7
12 75.1 76.7 98.9 17.0 93.9 57.8 99.6
13 82.0 82.7 99.2 98.6 94.6 57.4 99.4
14 87.0 91.6 99.7 – 95.6 77.0 99.1
15 8.5 21.9 9.5 – 7.2 18.2 9.1
16 22.0 23.2 5.5 – 15.5 27.5 9.5
17 7.1 3.9 3.7 – 3.8 7.2 3.3
18 19.8 19.1 31.7 – 24.9 9.9 5.4
19 32.8 32.8 23.5 – 37.7 22.3 5.9
20 43.9 45.3 12.6 – 50.1 23.9 6.3
21 11.9 14.7 11.6 – 18.4 6.9 25.5
22 25.4 26.8 – – 30.4 14.3 0.3
23 23.2 23.2 – – 28.8 11.7 3.6
24 28.1 30.4 – – 33.1 15.8 12.4
25 32.0 33.5 – – 34.0 14.8 –
26 19.4 20.5 – – 24.7 3.8 –
27 1.5 0.6 – – 1.0 2.3 –
28 3.7 3.8 – – 3.9 3.0 –
29 11.7 10.6 – – 14.0 5.2 –
30 0.5 0.7 – – 0.4 0.5 –
31 0.5 0.4 – – 1.2 1.0 –
32 0.7 2.1 – – 0.8 1.4 –
33 1.6 2.0 – – 1.7 1.2 –
34 0.1 0.4 – – – 0.1 –
35 0.2 0.1 – – 0.4 0.2 –
36 0.4 0.2 – – 0.1 0.2 –
37 0.1 – – – – 0.2
38 1.2 1.1 – – 1.2 0.7 –
39 0.1 – – – 0.1 0.6 –
40 0.2 0.2 – – 0.4 0.3 –

of the piecewise linearly penalised formula (7) and that of the original formula (3) are
the same while with the linearly penalised formula (6), there exists a small disruption
(see Fig. 1). Nevertheless, the magnitudes of the results are about the same.

In Table 1, we have emphasised with blue pen those values where Locatelli’s results
are better when compared to the run with LDGBwith the same formula and parameters
(i.e. “linear” with p = 6 andμ = 0.3). It can be seen that Locatelli’s results are usually
little bit better especially with larger N . This difference is probably due to specialised
starting point generation procedure used in [7] rather than inferiority of our solution
algorithm. In fact, since the results are of the same magnitude, it may be that LDGB
does give some advantage—almost as strong as specialised starting point generation—
when solving these kinds of problems.

When comparing different values of μ in Tables 1 and 2, it seems that large μ is
well suited for small N , but when N increases smaller value of μ is better. Indeed,
when N < 22, the best success rates with p = 6 were usually obtained with piecewise
linear penalty and μ = 5. However, no successful runs were made when N > 31.
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With p = 4 andμ = 5, no successful runs weremadewhen N > 13. This trend can be
seen both with the linear and with the piecewise linear penalty. Therefore, with p = 4,
we also tested the values of μ that depends on the value of N . That is, μ = 10/N
and μ = 1/N . In Table 2, we see that this strategy gives us somewhat better results.
Although the best success rate with small N is still usually obtained with eitherμ = 2
or μ = 5, the overall performance is best with μ = 10/N . Nevertheless, it is worth
noting that μ = 1/N is the only choice of the parameter that gave the putative global
optimum at least once with every N during our test drives.

In Table 2, we have compared Locatelli’s results to piecewise linear formulation
with the same parameters (blue pen). As before, Locatelli’s results are slightly better
from those of LDGB when N increases. However, the trend is not as clear as in Table
1. In addition, we compared Locatelli’s results to our “best” parameters with p = 4,
that is, μ = 10/N . In Table 2, we have emphasised with red pen those results that are
better than or equal to Locatelli’s results. That happens in 77% of the cases. It is also
worth noting that the improvements here are often clear.

When comparing the different values of parameter p, we see that p = 4 usually
gives better results than p = 6 when only the linear or the piecewise linear penalty is
used: the best values obtained with p = 4 were better than the best values obtained
with p = 6 in 82% of cases. In addition to values p = 6 and p = 4, we made one trial
set with piecewise linear penalty and p = 3 (see Table 2). Although p = 3 worked
well for small N , the putative global minimum was not found within 1000 trials with
N > 24. In Table 2, we have used blue pen to point out those results with p = 3 that
were better or equal to the corresponding results with p = 4.

5.2 Formulations with Diameter Penalisations

Now, we start to study formulations with diameter penalisations. The results with
different formulae and parameter values are given in Tables 3, 4, 5. Here, as before,
“Locatelli” stands for the results of Locatelli and Schoen [7]. In addition, “Beliakov”
stands for the results of Beliakov et al. [8], “smooth” for the smooth penalty (4) ran
with LDGB, “lin+max” for formula (6) and “PWlin+max” for formula (7). In Tables
3 and 4, we study the case with p = 6, and in Table 5, we have results for p = 4.
We have used the value β = 1.0 in all our trials. The best values at all LDGB’s results
with different values of p are bolded.

None of the formulae and parameter combinations tested gave us the putative global
optimum with every N within our 1000 test trials. With p = 6, the overall best results
were obtained with formula (7) with parameters μ = 2.0 and D = 3.0 (see Tables
3 and 4). However, this combination failed to find the putative global optimum (at
least once) with six different Ns. In that sense, the best results were obtained with the
same formula but with μ = 10.0/N and D = 5.0, in which case we failed only with
three different values of N . In addition, with p = 4, the overall best performance was
obtained with formula (7). Here, the best parameters were μ = 10.0/N and D = 3.0,
and the number of failures in finding the putative global optimum was five (see Table
5). The same formula with parameters μ = 0.3 and D = 3.0 succeeded in finding the
putative global optimum in all but two different values of N .
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Table 3 Success rate with diameter penalisation and p = 6

N Beliakov Locatelli smooth smooth lin+max lin+max PWlin+max PWlin+max
p = 6 p = 6 p = 6 p = 6 p = 6 p = 6 p = 6 p = 6

µ = 0.2 µ = 0.3 µ = 0.3 µ = 0.3 µ = 0.3 µ = 0.3 µ = 0.3
D = 3.0 D = 1.5 D = 3.0 D = 1.5 D = 3.0 D = 1.5 D = 3.0

2 100.0 99.9 100.0 100.0 100.0 100.0
2.899.993 100.0 97.2 99.8 97.0
5.590.994 99.4 94.6 99.1 94.8

3.496.998.795 99.6 97.4 99.7
7.218.566 98.2 11.7 98.0 11.8

7 54.2 28.7 49.0 31.2 44.8 31.0
8.456.028 26.0 52.3 22.2 53.7
8.925.119 17.6 29.5 14.4 28.8

10 12.2 53.2 19.2 36.4 20.2 33.4 21.4
11 25.9 14.9 73.3 24.5 60.6 29.3 64.6 31.1
12 78.9 22.5 87.2 37.5 83.1 42.9 84.6 45.9
13 20.0 21.9 94.6 35.2 89.1 39.1 89.0 37.9
14 39.8 97.4 56.0 95.9 61.2 96.1 63.2
15 6.7 22.3 0.4 24.4 2.1 27.9 1.8 22.0
16 19.4 13.4 0.2 15.7 2.2 12.7 1.4 13.2
17 5.4 5.4 6.4 5.9 4.4 5.2 2.8 4.1
18 3.3 – 6.0 23.0 6.9 20.7 7.2
19 4.8 0.3 8.1 9.1 7.6 9.0 9.6
20 8.0 1.0 11.6 12.1 10.5 12.7 13.6
21 4.5 1.9 5.0 13.0 7.1 12.5 6.8
22 8.2 – 11.4 18.4 10.2 19.9 10.2
23 10.2 4.3 – 6.9 12.4 4.9 13.6 5.7
24 9.7 – 10.1 22.6 12.7 25.7 9.9
25 16.0 – 17.9 29.3 16.3 28.5 18.1
26 5.6 – 7.2 30.5 7.7 30.6 8.9
27 0.1 – – – 0.2 – –
28 0.6 – 0.6 – 0.5 0.1 0.9
29 0.8 – 1.3 1.2 0.5 0.8 1.1
30 – – – – – – –
31 0.1 – 0.4 0.3 0.2 0.3 –
32 – – – 0.1 0.1 – 0.2
33 – – 0.1 1.5 0.2 1.6 0.2
34 – – – – – – –
35 0.1 – – – – – –
36 – – 0.2 – – – –
37 – – – – – 0.1 –
38 41.7 8.9 – 8.0 – 6.7 – 6.7
39 – – – – – – –
40 – – – – – – –

As before, we compare Locatelli’s results to the similar smooth formulation with
p = 6, μ = 0.3 and D = 3, and to formula (7) with p = 4, μ = 0.3, and D = 3
both ran with LDGB (blue pen in Tables 3 and 5). Now, with p = 6, Locatelli’s results
were better with only three different values of N and with p = 4, they were better
only in seven cases. This result—especially, when taking into account the specialised
starting point generation procedure used in [7]—means that with these more complex
formulae, the usage of the solver LDGB clearly gives us a small advantage.

Next, we compare the smooth penalty (4) to the nonsmooth ones (6) and (7). In
Table 3, we have again used red pen for those results of nonsmooth formulae which
give better or equal results to the smooth formula with the same parameters. Here,
we can conclude that both the nonsmooth formulae give some improvement. This
mostly confirms the results obtained in [8]. However, we could not reproduce the
huge improvement in a success rate of finding the difficult cluster with N = 38 when
using LDGB (see, Table 3).
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Table 4 Number of successes with diameter penalisation and p = 6 (cont.)

N PWlin+max PWlin+max PWlin+max PWlin+max PWlin+max PWlin+max
p = 6 p = 6 p = 6 p = 6 p = 6 p = 6
µ = 1.0 µ = 2 µ = 10.0/N µ = 10.0/N µ = 1.0/N µ = 1.0/N
D = 3.0 D = 3.0 D = 3.0 D = 5.0 D = 3.0 D = 5.0

2 100.0 100.0 100.0 100.0 100.0 100.0
3 98.3 99.2 99.6 99.4 97.4 95.1
4 96.9 98.0 97.9 98.1 93.9 92.7
5 99.7 99.8 99.8 99.6 99.6 99.7
6 41.2 99.1 97.9 98.6 10.4 6.4
7 30.8 32.7 31.3 31.6 28.5 24.5
8 46.1 35.2 43.3 39.8 56.9 51.7
9 31.1 28.2 27.1 27.0 28.2 23.6
10 30.5 38.7 31.8 24.3 18.2 11.6
11 45.7 57.7 43.1 39.3 22.4 13.8
12 71.2 85.0 69.7 61.1 28.2 15.4
13 67.7 87.0 61.7 55.8 25.1 14.9
14 80.4 94.2 75.1 70.2 45.8 31.4
15 15.9 22.1 15.2 17.3 26.3 18.2
16 16.8 16.1 20.2 17.6 15.3 10.5
17 3.1 3.0 4.6 3.7 5.4 5.0
18 14.6 18.9 11.5 9.2 2.5 1.7
19 13.1 19.9 11.2 11.3 3.1 2.2
20 20.3 29.3 16.1 15.3 5.8 4.1
21 11.7 16.1 9.0 6.7 3.2 1.6
22 19.2 23.9 14.9 13.1 6.4 2.1
23 10.9 15.1 6.4 5.1 2.9 2.2
24 20.4 32.0 12.0 11.1 8.2 2.7
25 27.0 33.1 20.8 13.3 11.5 3.3
26 15.4 24.3 8.1 4.7 4.2 0.4
27 – – – 0.3 0.3 0.4
28 0.2 0.7 0.6 1.2 – 0.9
29 2.4 4.0 0.6 1.3 0.4 0.2
30 0.2 – – – 0.1 0.2
31 0.7 0.3 – 0.5 0.2 0.1
32 – 0.1 – 0.3 0.1 0.3
33 1.1 2.1 0.3 0.2 0.1 –
34 – 0.1 – – – 0.1
35 – – – – 0.1 –
36 – – – 0.3 – 0.1
37 – – – 0.1 – –
38 4.7 4.7 6.8 0.4 8.1 –
39 0.1 0.1 0.4 0.3 – 0.4
40 0.1 – – 0.1 – –

When comparing formulae (6) and (7), there was not a big difference between the
success rate of the formulae with the same parameters. Nevertheless, as before (7) was
slightly better (see Table 3).

The formulae with diameter penalisations usually gave better results than that with
only the linear or the piecewise linear penalisation when the same parameter com-
binations were compared (see Tables 1, 2, 3, 4, 5). The clear exception for this rule
is the smooth formulation with D = 1.5, where no successful runs were made with
N ≥ 22. The differences in the success rate are sometimes enormous. Two interesting
examples occur with N = 6 and N = 38. With these cases, the optimal structure
of the cluster is face-centred cubic (FCC) which is claimed to be one of the most
difficult structures to find especially with large N (see, e.g. [7,19]). In both of these
cases, the formulae with diameter penalisations made large differences: with N = 6,
p = 6, and μ = 0.3, the formulations without diameter penalisation gave only about
10% success, while with nonsmooth diameter penalisations, the success rates were
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Table 5 Number of successes with p = 4 and diameter penalisation

N Locatelli lin+max PWlin+max PWlin+max PWlin+max PWlin+max PWlin+max
p = 4 p = 4 p = 4 p = 4 p = 4 p = 4 p = 4
µ = 0.2 µ = 0.3 µ = 0.3 µ = 0.3 µ = 0.3 µ = 10.0/N µ = 1.0/N
D = 3.0 D = 3.0 D = 1.5 D = 3.0 D = 5.0 D = 3.0 D = 3.0

2 100.0 100.0 100.0 100.0 100.0 100.0
3 98.2 100.0 98.0 98.4 99.7 98.1
4 96.4 99.8 97.0 97.1 99.3 96.6
5 99.9 99.7 100.0 99.8 99.8 99.8
6 98.7 98.8 99.3 99.3 99.8 98.7
7 28.0 52.6 26.4 25.7 41.0 30.9
8 35.4 3.0 32.6 32.6 3.7 40.7
9 29.2 1.6 29.8 25.9 23.6 26.3
10 26.7 37.6 36.8 39.9 32.7 55.6 29.7
11 41.4 49.5 76.0 57.2 50.5 79.3 44.8
12 71.7 81.3 83.6 82.0 77.3 94.1 67.9
13 78.6 80.2 90.1 84.5 82.3 94.7 71.8
14 85.7 89.2 97.8 91.6 91.7 97.2 81.0
15 10.8 14.8 6.7 22.7 24.3 5.4 14.5
16 22.1 22.5 5.0 24.3 26.0 16.2 28.7
17 8.0 4.9 5.0 4.0 5.4 2.4 5.0
18 18.5 17.2 21.2 19.6 20.9 29.0 13.6
19 25.8 27.8 – 31.8 31.9 36.2 24.9
20 36.4 39.8 – 44.3 42.2 46.8 29.8
21 13.0 15.7 – 16.1 15.5 16.6 12.7
22 23.9 25.2 – 25.9 24.8 28.0 21.1
23 20.2 22.7 – 24.7 19.7 25.2 15.8
24 27.5 30.2 – 32.6 29.3 38.1 24.0
25 34.6 33.2 – 36.9 34.7 36.8 29.1
26 21.9 23.7 – 26.0 24.3 28.7 14.1
27 0.5 0.6 – 0.4 0.5 0.3 0.4
28 2.4 1.6 – 2.0 2.7 1.7 2.0
29 10.0 12.0 – 12.3 11.6 12.6 5.1
30 0.4 – – 0.3 0.3 0.2 0.2
31 – 1.2 – 1.1 0.7 0.8 0.8
32 – 0.4 – 0.8 0.7 0.8 0.3
33 0.1 1.0 – 0.4 1.1 1.4 0.5
34 – – – 0.1 – – –
35 – – – – – – –
36 0.1 0.3 – 0.1 – – 0.1
37 – 0.1 – 0.1 – – –
38 4.4 2.8 – 1.5 1.0 1.4 2.1
39 – 0.2 – 0.1 0.1 – 0.2
40 0.1 – – – 0.2 0.1 0.1

around 98%; with N = 38, p = 6, and μ = 0.3, the corresponding values were
less than 0.5 and 6.7%. Nevertheless, there are some results where the differences are
the other way around: that is the case, for example, with N = 15, p = 6, μ = 0.3,
and D = 1.5. Moreover, when comparing the best values obtained with and without
diameter penalisation, the choice between better formulae is not so clear. Indeed, the
similar improvement as above for N = 6 and p = 6 can be done with only (piecewise)
linear penalty by setting μ = 5 (see Table 1). For N = 38, this kind of effect was not
observed.

Parameter D is supposed to be an underestimate of the diameter of the cluster and,
naturally, its optimal value depends on the number of atoms in the cluster but also on
the optimal structure of the cluster. For example, the nonicosahedral optimal cluster
structures with N = 75 are spherical and compact, with smaller diagonal than the
clusters with just a few atoms less or more. With smooth formulation, the smaller D
usually gave good results with small N (say N < 20), but the number of successes
decreased dramatically when N increased. For example, with p = 6, the success rate
with D = 3 was always better than that with D = 1.5 when N ≥ 18 and, as already
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said, with N ≥ 22 no successful runs were made with D = 1.5. However, when
N ≤ 17, the formula with D = 1.5 gave slightly better success rate than that with
D = 3.0 (see Table 3). With nonsmooth formulations and p = 6, this trend was not
so obvious. This is probably due to the fact that the nonsmooth penalty term does not
increase as fast as the smooth one. However, with p = 4 and D = 1.5, no successful
runs were made when N > 18, although with smaller N the results with different
values of D were comparable. The value D = 3 usually gave a little bit better success
rate than D = 5 with our test set with maximum of 40 atoms. Nevertheless, the last
ten rows in Table 4 (i.e. results up from N = 30) may indicate that this result might
be different if larger clusters were optimised (see Tables 4, 5, we have used red pen to
emphasise the best result with different D).

5.3 Performance of the LDGB

Finally, we say a fewwords about the performance of the optimisation algorithm: apart
from some exceptional cases, the average numbers of function evaluations needed
to find a putative global minimum were clearly smaller with any of the formulae
with p = 4 than those with p = 6. When comparing the different formulae, the
differences were not as clear. Nevertheless, the minimisation of the smooth formula
(4) usually used less evaluations than the minimisation of the nonsmooth formulae (6)
or (7), although the number of average evaluations was of the same magnitude. When
comparing formulae (6) with (7) with p = 4, μ = 0.3, D = 3, formula (7) usually
rose above (6). Nevertheless, again the differences were not large ones. In addition,
when comparing the formulaewith linear or piecewise linear penaltieswith parameters
p = 6 and μ = 1.0, the piecewise linear penalty usually used slightly less evaluations
than the linear one. However, with μ = 0.3, they used on average the same amount
of evaluations. The most interesting and unexpected result obtained, when comparing
the evaluations needed with the piecewise linear penalty and formula (7) with p = 4,
μ = 0.3, D = 3 or D = 5: in all cases, the average numbers of function evaluations
needed to find a putative global minimum were smaller with the more complicated
formula (7) than when only the piecewise linear penalty was used. A possible reason
for this is that the diameter penalty forces the atoms that are far from the centre of the
cluster to move close enough more quickly.

As already said, we also compared the results obtained with LDGB to those given
in [7]. In spite of the fact that in [7], the special starting point generation procedure was
used, the results were of the same magnitude when only the linear penalty was used,
and the result with LDGB was usually better than those given in [7] when both the
linear penalty and the diameter penalisation (4) were used. Thus, we can conclude that
LDGB seems to share—at least in small scale—the aptitude of its successor discrete
gradient method [9] to jump over a small local minimum.

6 Conclusions

In this paper, we have studied different modifications of the Lennard–Jones potential
in order to improve the success rate of finding the global minimum of the original
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potential. The main interest of the paper was in nonsmooth penalised form of the
Lennard–Jones potential. Our goal was to confirm the earlier very promising results
with nonsmooth formulation and to improve the success rate of finding the global
minimum of the original problem when using a local search optimisation method. The
preliminary numerical experiments confirm that with all the penalised formulae, the
success rateswere greatly improved.The results obtainedwith nonsmooth formulae (6)
or (7) were usually a little bit better than those with the smooth penalty (4). In addition,
when both the linear penalty and the diameter penalisation in (4) were used, the result
obtained in our experimentswas usually better than those given in [7], in spite of the fact
that in [7], the special starting point generation procedure was used. This is probably
caused by our solution algorithm LDGB that seems to share—at least in small scale—
the aptitude of its successor discrete gradient method [9] to jump over a small local
minimum.

When comparing the different nonsmooth formulae, the one with the piecewise
linear penalty term (i.e. formula 7) seems to be a little bit better one. Nevertheless, the
differences were not significant.

In this paper, our main interest was in comparing the different formulae, not
in solution algorithm itself. Thus, we have used here a crude multi-start method.
Nevertheless, the multi-start method is obviously not the most reliable nor the
most efficient way to solve global optimisation problems. Therefore, it is not suit-
able for solving large clusters. In the future, the aim is in developing efficient
and reliable solvers specially target to solve (also larger instances of) the modi-
fied Lennard–Jones potentials introduced in this paper. This includes combination
of some more sophisticated global optimisation method and LDGB. In addition to tra-
ditional global optimisation methods like simulated annealing or genetic algorithms,
an interesting idea would be to use an incremental approach (see, e.g. [20]) with
modified potentials to solve this kind of clustering problems. In addition, solving
the second phase of the problem [i.e. the original Lennard–Jones potential func-
tion (1) and (3)] is a smooth problem, and the gradients are readily computable.
Thus, solving this part of the problem with some efficient gradient-based method
would probably make a big difference to the efficiency of this approach. Quite nat-
ural choice to gradient-based method would be the limited memory bundle method
[11,12].

Acknowledgments The work was financially supported by the University of Turku (Finland) and the
Academy of Finland (Project No. 289500).

Appendix

Limited Memory Discrete Gradient Bundle Method. We now describe the basic ideas
of derivative-free LDGB that is used as a solver for the minimisation problem dis-
cussed in the paper. As said in the introduction, we need a solver that is capable of
solving large-scale nonsmooth nonconvex problems. Moreover, the computation of
subgradients is not straightforward since the problem is subdifferentially irregular
and, thus, we need a derivative-free solver. The only assumptions made are that the

123



J Optim Theory Appl (2016) 171:316–335 331

objective function is locally Lipschitz continuous, and at every point x ∈ IRn, we can
evaluate the value of the objective function f (x). A flow chart of the method is given
in Fig. 4.

Discrete Gradient. We start by defining the discrete gradient. Let us denote by

S1 = {g ∈ IRn : ‖g‖ = 1}

the sphere of the unit ball and by

P =
{

z : z : IR+ → IR+, δ > 0, δ−1z(δ) → 0, δ → 0
}

the set of univariate positive infinitesimal functions. In addition, let

G = {e ∈ IRn : e = (e1, . . . , en), |ej| = 1, j = 1, . . . , n}

be a set of all vertices of the unit hypercube in IRn.
Now, take any g ∈ S1, e ∈ G, z ∈ P , α ∈ (0, 1], and compute i =

argmax {|g j |, j = 1, . . . , n}. For e ∈ G, define the sequence of n vectors e j (α) :=
(αe1, α2e2, . . . , α j e j , 0, . . . , 0), j = 1, . . . , n and for x ∈ IRn and δ > 0 consider
the points

x0 = x + δg, x j = x0 + z(δ)e j (α), j = 1, . . . , n.

Definition 7.1 The discrete gradient of the function f : IRn → IR at the point x ∈ IRn

is the vector�i (x, g, e, z, δ, α) := (�i
1, . . . , �

i
n) ∈ IRn with the following coordinates:

�i
j := [z(δ)α j e j )]−1 [

f (x j ) − f (x j−1)
]
, j = 1, . . . , n, j �= i,

�i
i := (δgi )

−1

⎡

⎣ f (x + δg) − f (x) − δ

n∑

j=1, j �=i

�i
j g j

⎤

⎦ .

The closed convex set of discrete gradients

V0(x, δ) : = cl conv{v ∈ IRn : ∃ g ∈ S1, e ∈ G, z ∈ P, α > 0

such that v = �i (x, g, e, z, δ, α)}

is an approximation to the subdifferential ∂ f (x) for sufficiently small δ > 0 [9,14].

Outer and Inner Iterations. Both outer and inner iterations are used in the LDGB: The
inner iteration of the LDGB is essentially same as the limited memory bundle method
[11,12], but now we use the discrete gradients instead of subgradient of the objective
function. The outer iteration is used in order to avoid too tight approximations to the
subgradients at the beginning of computation (thus, we have a derivative-freemethod).
That is, we start with “large” δ andmake it smaller when we are closer to the optimum.
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Search Direction. As already said, we use the discrete gradients instead of subgradient
in our calculations, and the search direction dk is calculated using the limited memory
approach. That is,

dk = −Dk ṽk,

where ṽk is (an aggregate) discrete gradient, and Dk is the limited memory variable
metric update that, in the smooth case, represents the approximation of the inverse of
the Hessian matrix. Note that the matrix Dk is not formed explicitly, but the search
direction dk is calculated using the limited memory approach (to be described later).

Line Search. In order to determine a new step into the search direction dk , the LDGB
uses the so-called line search procedure (see [12,18]): a new iteration point xk+1 and
a new auxiliary point yk+1 are produced such that

xk+1 = xk + tk
Ldk and

yk+1 = xk + tk
Rdk, for k ≥ 1

with y1 = x1, where tk
R ∈ (0, tmax ] and tk

L ∈ [0, tk
R] are step sizes, and tmax > 1 is the

upper bound for the step size. A necessary condition for a serious step is to have

tk
R = tk

L > 0 and f (yk+1) ≤ f (xk) − εk
L tk

Rwk, (8)

where εk
L ∈ (0, 1/2) is a line search parameter, and wk > 0 represents the desirable

amount of descent of f at xk . If the condition (8) is satisfied, we set xk+1 = yk+1 and
a serious step is taken.

On the other hand, a null step is taken if

tk
R > tk

L = 0 and − βk+1 + dT
k vk+1 ≥ −εk

Rwk,

where εk
R ∈ (εk

L , 1/2) is a line search parameter and vk+1 ∈ V0(yk+1, δk). Moreover,
βk+1 is the subgradient locality measure [21,22] similar to standard bundle methods,
that is,

βk+1 := max
{
|( f (xk) − f (yk+1) + (yk+1 − xk)

T vk+1)|, γ ‖yk+1 − xk‖2
}

.

Here, γ ≥ 0 is a distance measure parameter supplied by the user. Parameter γ can
be set to zero when f is convex. In the case of a null step, we set xk+1 = xk , but
information about the objective function is increased because we store the auxiliary
point yk+1 and the corresponding auxiliary discrete gradient vk+1 ∈ V0(yk+1, δk).

Under some semismoothness assumptions, the line search procedure used with the
LDGB is guaranteed to find the step sizes tk

L and tk
R such that exactly one of the two

possibilities—a serious step or a null step—occurs [18].
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Aggregation. The LDGB uses the original discrete gradient vk after the serious step
and the aggregate subgradient ṽk after the null step for direction finding (i.e. we
set ṽk = vk if the previous step was a serious step). The aggregation procedure is
carried out by determining multipliers λk

i satisfying λk
i ≥ 0 for all i ∈ {1, 2, 3}, and∑3

i=1 λk
i = 1 that minimise a simple quadratic function

ϕ(λ1, λ2, λ3) = [λ1vm + λ2vk+1 + λ3ṽk ]T Dk[λ1vm + λ2vk+1 + λ3ṽk ]
+ 2(λ2βk+1 + λ3β̃k).

Here, vm ∈ V0(xk, δk) is the current discrete gradient (m denotes the index of the
iteration after the latest serious step, i.e. xk = xm), vk+1 ∈ V0(yk+1, δk) is the auxiliary
discrete gradient, and ṽk is the current aggregate discrete gradient from the previous
iteration (ṽ1 = v1). In addition, βk+1 is the current subgradient locality measure, and
β̃k is the current aggregate subgradient locality measure (β̃1 = 0). The optimal values
λk

i , i ∈ {1, 2, 3} can be calculated by using simple formulae (see [18]).
The resulting aggregate discrete gradient ṽk+1 and aggregate subgradient locality

measure β̃k+1 are computed by the formulae

ṽk+1 = λk
1vm + λk

2vk+1 + λk
3ṽk and β̃k+1 = λk

2βk+1 + λk
3β̃k .

Due to this simple aggregation procedure, only one trial point yk+1 and the corre-
sponding discrete gradient vk+1 ∈ V0(yk+1, δk) need to be stored.

The aggregation procedure gives us a possibility to retain the global convergence
without solving the quite complicated quadratic direction finding problem (see, e.g.
[14]) appearing in standard bundle methods. Note that the aggregate values are com-
puted only if the last stepwas a null step.Otherwise,we set ṽk+1 = vk+1 and β̃k+1 = 0.

Matrix Updating. In the LDGB , both the limited memory BFGS (L-BFGS) and
the limited memory SR1 (L-SR1) update formulae [23] are used in calculations of the
search direction and the aggregate values. The idea of limitedmemorymatrix updating
is that instead of storing large n × n matrices Dk , one stores a certain (usually small)
number of vectors sk = yk+1 − xk and uk = vk+1 − vm obtained at the previous
iterations of the algorithm, and uses these vectors to implicitly define the variable
metric matrices. Note that, due to the usage of null steps, we may have xk+1 = xk ,
and thus, we use here the auxiliary point yk+1 instead of xk+1.

Let us denote by m̂c the user-specified maximum number of stored correction
vectors (3 ≤ m̂c) and by m̂k = min { k−1, m̂c } the current number of stored correction
vectors. Then, the n × m̂k dimensional correction matrices Sk and Uk are defined by

Sk := [
sk−m̂k . . . sk−1

]
and

Uk := [
uk−m̂k . . . uk−1

]
.

The inverse L-BFGS update is defined by the formula

Dk := ϑk I + [
Sk ϑkUk

] [
(R−1

k )T (Ck + ϑkU T
k Uk)R−1

k −(R−1
k )T

−R−1
k 0

] [
ST

k
ϑkU T

k

]
,
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where Rk is an upper triangular matrix of order m̂k given by the form

(Rk)i j =
{

(sk−m̂k−1+i )
T (uk−m̂k−1+ j ), if i ≤ j

0, otherwise,

Ck is a diagonal matrix of order m̂k such that

Ck = diag
[
sT

k−m̂k
uk−m̂k , . . . , sT

k−1uk−1

]
,

and ϑk is a positive scaling parameter.
In addition, the inverse L-SR1 update is defined by

Dk := ϑk I − (ϑkUk − Sk)(ϑkU T
k Uk − Rk − RT

k + Ck)
−1(ϑkUk − Sk)

T .

In the case of a null step, the LDGB uses the L-SR1 update formula, since this
formula allows to preserve the boundedness and some other properties of generated
matriceswhich guarantee the global convergence of themethod.Otherwise, since these
properties are not required after a serious step, the more efficient L-BFGS update is
employed. In theLDGB, the individual updates that would violate positive definiteness
are skipped (for more details, see [10–12,24]).

Stopping Criterion. For smooth functions, a necessary condition for a local minimum
is that the gradient has to be zero, and by continuity, it becomes small when we are
close to an optimal point. This is no longer true when we replace the gradient by
an arbitrary subgradient or a discrete gradient. Due to the aggregation procedure, we
have quite a useful approximation to the gradient at our disposal, namely the aggregate
discrete gradient ṽk . However, as a stopping criterion, the direct test ‖ṽk‖ < δk , for
some δk > 0, is too uncertain, if the current piecewise linear approximation of the
objective function is too rough. Therefore, we use the term ṽT

k Dk ṽk = −ṽT
k dk and the

aggregate subgradient locality measure β̃k to improve the accuracy of ‖ṽk‖. Hence,
the stopping parameter wk at iteration k is defined by

wk := −ṽT
k dk + 2β̃k .

The inner iteration stops ifwk ≤ δk and the outer iteration—and, thus, the algorithm—
stops if δk ≤ ε for some user-specified ε > 0. The parameter wk is also used during
the line search procedure to represent the desirable amount of descent.

Global Convergence. If the LDGB algorithm terminates after a finite number of
iterations, say at iteration k, then the point xk is a stationary point of f . Otherwise, the
accumulation point x̄ generated by LDGB algorithm is a stationary point of f [10].
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