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1 Introduction

In this paper, black-box Lipschitz global optimization problems are considered in
their univariate statement. Problems of this kind attract a great attention of the global
optimization community. This happens because, first, there exists a huge number
of real-life applications where it is necessary to solve univariate global optimization
problems (see, e.g., [1–6]). This kind of problems is often encountered in scientific and
engineering applications (see, e.g., [7–13]) and, in particular, in statistical applications
(see, e.g., [14–19]) or in electrical engineering optimization problems (see, e.g., [20–
25]). On the other hand, it is important to study one-dimensional methods because they
can be successfully generalized in several ways. For instance, they can be extended to
the multi-dimensional case by numerous schemes (see, for example, one-point-based,
diagonal, simplicial, space-filling curves and other popular approaches in [26–31]).
Another possible generalization consists in developing methods for solving problems,
where the first derivative of the objective function satisfies also the Lipschitz condition
with an unknown constant (see, e.g., [32–37]).

In the seventies of the twentieth century, two algorithms for solving the above-
mentioned problems have been proposed in [38,39]. The first method was introduced
by Piyavskij (see also [40]) by using geometric ideas (based on theLipschitz condition)
and an a priori given overestimate of the Lipschitz constant for the objective function.
The method [38] constructs a piecewise linear auxiliary function, being a minorant
for the objective function, which is adaptively improved during the search. The latter
algorithm [39,41] was introduced by Strongin, who developed a statistical model
that allowed him to calculate probabilities of locating global minimizers within each
of the subintervals of the search interval taken into consideration. Moreover, this
model provided a dynamically computed estimate of the Lipschitz constant during the
process of optimization. Both the methods became sources of multiple generalizations
and improvements (see, e.g., [28–30,42,43]) giving rise to classes of geometric and
information global optimization methods.

Very often in global optimization (see, e.g., [44–46]), local techniques are used to
accelerate the global search, and frequently global and local searches are realized by
differentmethods having completely alien structures. Such a combination introduces at
least two inconveniences. First, evaluations of the objective function (called hereinafter
trials), executed by a local search procedure, are not used typically in the subsequent
phases of the global search.Results of only someof these trials (for instance, the current
best found value) can be used, and the other ones are not taken into consideration.
Second, there arises the necessity to introduce both a rule that stops the global phase
and starts the local one, and a rule that stops the local phase and decides whether it is
necessary to restart the global search. Clearly, a premature stop of a global phase of
the search can lead to the loss of the global solution, while a late stop of the global
phase can slow down the search.

In this paper, both frameworks, geometric and information, are taken into consid-
eration and a number of derivative-free techniques that were proposed to accelerate
the global search are studied and compared. Several new ideas that can be used to
speed up the search both in the framework of geometric and information algorithms
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are introduced. All the acceleration techniques have the advantage to get over both the
difficulties mentioned above, namely:

– The accelerated global optimizationmethods automatically realize a local behavior
in the promising subregions without the necessity to stop the global optimization
procedure;

– All the trials executed during the local phases are used also in the course of the
global ones.

It should be emphasized that the resulting geometric and information global opti-
mization methods have a similar structure, and a smart mixture of new and traditional
computational steps leads to 22 different global optimization algorithms. All of them
are studied and compared on three sets of tests: the widely used set of 20 test functions
taken from [47] and listed in “Appendix 1”; 100 randomly generated functions from
[48]; and four functions arising in practical problems (see “Appendix 2”).

2 Acceleration Techniques

The considered global optimization problem can be formulated as follows:

f ∗ := f (x∗) = min f (x), x ∈ [a, b], (1)

where the function f (x) satisfies the Lipschitz condition over the interval [a, b]:

| f (x1) − f (x2)| ≤ L|x1 − x2|, x1, x2 ∈ [a, b], (2)

with the Lipschitz constant L , 0 < L < ∞. It is supposed that the objective function
f (x) can be multiextremal, non-differentiable, black-box, with an unknown Lipschitz
constant L , and evaluation of f (x) even at one point is a time-consuming operation.

As mentioned in Introduction, the geometric and information frameworks are taken
into consideration in this paper. The original geometric and informationmethods, apart
from the origins of their models, have the following important difference. Piyavskij’s
method requires for its correct work an overestimate of the value L that usually is
hard to get in practice. In contrast, the information method of Strongin adaptively
estimates L during the search. As it was shown in [49,50] for both the methods, these
two strategies for obtaining the Lipschitz information can be substituted by the so-
called local tuning approach. In fact, the original methods of Piyavskij and Strongin
use estimates of the global constant L during their work (the term “global” means that
the same estimate is used over the whole interval [a, b]). However, the global estimate
can provide a poor information about the behavior of the objective function f (x) over
every small subinterval [xi−1, xi ] ⊂ [a, b]. In fact, when the local Lipschitz constant
related to the interval [xi−1, xi ] is significantly smaller than the global constant L ,
then the methods using only this global constant or its estimate can work slowly over
such an interval (see, e.g., [9,23,50,51]).

In Fig. 1, an example of the auxiliary function for a Lipschitz function f (x) over
[a, b] constructed by using estimations of local Lipschitz constants over subintervals
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Fig. 1 An auxiliary function (solid thin line) and a minorant function (dashed line) for a Lipschitz function
f (x) over [a, b], constructed by using estimates of local Lipschitz constants and by using the global
Lipschitz constant, respectively (trial values are circled)

of [a, b] is shown by a solid thin line; a minorant function for f (x) over [a, b] con-
structed by using an overestimate of the global Lipschitz constant is represented by a
dashed line. Note that the former piecewise function estimates the behavior of f (x)

over [a, b] more accurately than the latter one, especially over subintervals where the
corresponding local Lipschitz constants are smaller than the global one.

The local tuning technique proposed in [49,50] adaptively estimates local Lipschitz
constants at different subintervals of the search region during the course of the opti-
mization process. Estimates li of local Lipschitz constants Li are computed for each
interval [xi−1, xi ], i = 2, . . . , k, as follows:

li = r · max{λi , γi , ξ}, (3)

where

λi = max{Hi−1, Hi , Hi+1}, i = 2, . . . , k, (4)

Hi = |zi − zi−1|
xi − xi−1

, i = 2, . . . , k, (5)

Hk = max{Hi : i = 2, . . . , k}. (6)

Here, zi = f (xi ), i = 1, . . . , k, i.e., values of the objective function calculated at the
previous iterations at the trial points xi , i = 1, . . . , k, (when i = 2 and i = k only
H2, H3 and Hk−1, Hk , should be considered, respectively). The value γi is calculated
as follows:
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γi = Hk (xi − xi−1)

Xmax , (7)

with Hk from (6) and

Xmax = max{xi − xi−1 : i = 2, . . . , k}. (8)

Let us give an explanation of these formulae. The parameter ξ > 0 from (3) is a
small number, that is required for a correct work of the local tuning at initial steps
of optimization, where it can happen that max{λi , γi } = 0; r > 1 is the reliability
parameter. The two components, λi and γi , are the main players in (3). They take into
account, respectively, the local and the global information obtained during the previous
iterations. When the interval [xi−1, xi ] is large, the local information represented by
λi can be not reliable and the global part γi has a decisive influence on li thanks
to (3) and (7). In this case γi → Hk ; namely, it tends to the estimate of the global
Lipschitz constant L . In contrast, when [xi−1, xi ] is small, then the local information
becomes relevant, the estimate γi is small for small intervals (see 7), and the local
component λi assumes the key role. Thus, the local tuning technique automatically
balances the global and the local information available at the current iteration. It has
been proved for a number of global optimization algorithms that the usage of the local
tuning can accelerate the search significantly (see [9,10,23,33,50,52–54]). This local
tuning strategy will be called “Maximum” Local Tuning hereinafter.

Recently, a new local tuning strategy called hereinafter “Additive” Local Tuning
has been proposed in [11,55,56] for certain information algorithms. It proposes to use
the following additive convolution instead of (3):

li = r · max

{
1

2
(λi + γi ), ξ

}
, (9)

where r, ξ, λi and γi have the same meaning as in (3). The first numerical examples
executed in [11,55] have shown a very promising performance of the “Additive” Local
Tuning. These results induced us to execute in the present paper a broad experimental
testing and a theoretical analysis of the “Additive” Local Tuning. In particular, geo-
metric methods using this technique are proposed here (remind that the authors of
[11,55] have introduced it in the framework of information methods only). During our
study, some features suggesting a careful usage of this technique have been discovered,
especially in cases where it is applied to geometric global optimization methods.

In order to start our analysis of the “Additive” Local Tuning, let us remind (see,
e.g., [8,9,23,30,38,39]) that in both the geometric and the information univariate
algorithms, an interval [xt−1, xt ] is chosen in a certain way at the (k + 1)th iteration
of the optimization process and a new trial point, xk+1, where the (k +1)th evaluation
of f (x) is executed, is computed as follows:

xk+1 = xt + xt−1

2
− zt − zt−1

2lt
. (10)
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For a correct work of this kind of algorithms, it is necessary that xk+1 is such that
xk+1 ∈]xt−1, xt [. It is easy to see that the necessary condition for this inclusion is
lt > Ht , where Ht is calculated following (5). Notice that lt is obtained by using (9),
where the sum of two addends plays the leading role. Since the estimate γi is calculated
as shown in (7), it can be very small for small intervals, creating so the possibility of
occurrence of the situation lt ≤ Ht and, consequently, xk+1 /∈]xt−1, xt [. Obviously,
by increasing the value of the parameter r , this situation can be easily avoided and
the method should be restarted. In fact, in information algorithms where r ≥ 2 is
usually used, this risk is less pronounced, while in geometric methods where r > 1
is applied it becomes more probable. On the other hand, it is well known in Lipschitz
global optimization (see, e.g., [8,9,23,30]) that increasing the parameter r can slow
down the search. In order to understand better the functioning of the “Additive” Local
Tuning, it is broadly tested in Sect. 4 together with other competitors.

The analysis provided above shows that the usage of the “Additive” Local Tuning
canbecome tricky in somecases. In order to avoid the necessity to check the satisfaction
of the condition xk+1 ∈]xt−1, xt [ at each iteration,we propose a new strategy called the
“Maximum-Additive” Local Tuning where, on the one hand, this condition is satisfied
automatically and, on the other hand, advantages of both the local tuning techniques
described above are incorporated in the unique strategy. This local tuning strategy
calculates the estimate li of the local Lipschitz constants as follows:

li = r · max

{
Hi ,

1

2
(λi + γi ), ξ

}
, (11)

where r, ξ, Hi , λi and γi have the usual meaning. It can be seen from (11) that this
strategy bothmaintains the additive character of the convolution and satisfies condition
li > Hi . The latter condition provides that in case the interval [xi−1, xi ] is chosen for
subdivision (i.e., t := i is assigned), the new trial point xk+1 will belong to ]xt−1, xt [.
Notice that in (11) the equal usageof the local andglobal estimate is applied.Obviously,
a more general scheme similar to (9) and (11) can be used, where 1

2 is substituted by
different weights for the estimates λi and γi , for example, as follows:

li = r · max

{
Hi ,

λi

r
+ r − 1

r
γi , ξ

}

[r, Hi , λi , γi and ξ are as in (11)].
Let us now present another acceleration idea that will be introduced formally in

next Section. It consists in the following observation, related to global optimization
problems with a fixed budget of possible evaluations of the objective function f (x),
i.e., when only, for instance, 100 or 1,000,000 evaluations of f (x) are allowed. In these
problems, it is necessary to obtain the best possible value of f (x) as soon as possible.
Suppose that f ∗

k is the best value (the record value) obtained after k iterations. If a
new value f (xk+1) < f ∗

k has been obtained, then it can make sense to try to improve
this value locally, instead of continuing the usual global search phase. As was already
mentioned, traditional methods stop the global procedure and start a local descent:
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Trials executed during this local phase are not then used by the global search since the
local method has usually a completely different nature.

Here, we propose two local improvement techniques, the “optimistic” and the
“pessimistic” one that perform the local improvement within the global optimiza-
tion scheme. The optimistic method alternates the local steps with the global ones,
and if during the local descent a new promising local minimizer is not found, then the
global method stops when a local stopping rule is satisfied. The pessimistic strategy
does the same until the satisfaction of the required accuracy on the local phase and
then switches to the global phase where the trials performed during the local phase
are also taken into consideration.

3 Numerical Methods and Their Convergence Study

All the methods described in this Section have a similar structure and belong to the
class of “Divide the Best” global optimization algorithms introduced in [57] (see also
[9]; for methods using the “Additive” Local Tuning this holds if the parameter r is
such that li(k) > r Hi(k) for all i and k). The algorithms differ in the following:

– Methods are either geometric or information;
– Methods differ in the way the Lipschitz information is used: an a priori estimate,
a global estimate and a local tuning;

– In cases where a local tuning is applied, methods use 3 different strategies: Maxi-
mum, Additive and Maximum-Additive;

– In cases where a local improvement is applied, methods use either the optimistic
or the pessimistic strategy.

Let us describe the general scheme (GS) of the methods used in this work. A
concrete algorithmwill be obtained by specifying one of the possible implementations
of Steps 2–4 in this GS.

Step 0 Initialization. Execute first two trials at the points a and b, i.e., x1 :=
a, z1 := f (a) and x2 := b, z2 := f (b). Set the iteration counter k := 2.
Let f lag be the local improvement switch to alternate global search and local
improvement procedures; set its initial value f lag := 0. Let imin be an index
(being constantly updated during the search) of the current record point, i.e., zimin =
f (ximin) ≤ f (xi ), i = 1, . . . , k (if the current minimal value is attained at several
trial points, then the smallest index is accepted as imin).
Suppose that k ≥ 2 iterations of the algorithm have already been executed. The
iteration k + 1 consists of the following steps.

Step 1 Reordering. Reorder the points x1, . . . , xk (and the corresponding function
values z1, . . . , zk) of previous trials by subscripts so that

a = x1 < · · · < xk = b, zi = f (xi ), i = 1, . . . , k.

Step 2 Estimates of the Lipschitz constant. Calculate the current estimates li of
the Lipschitz constant for each subinterval [xi−1, xi ], i = 2, . . . , k, in one of the
following ways.
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Step 2.1 A priori given estimate. Take an a priori given estimate L̂ of the
Lipschitz constant for the whole interval [a, b], i.e., set li := L̂ .

Step 2.2 Global estimate. Set li := r · max{Hk, ξ}, where r and ξ are two
parameters with r > 1 and ξ sufficiently small, Hk is from (6).

Step 2.3 “Maximum” Local Tuning. Set li following (3).

Step 2.4 “Additive” Local Tuning. Set li following (9).

Step 2.5 “Maximum-Additive” Local Tuning. Set li following (11).

Step 3Calculation of characteristics. Compute for each subinterval [xi−1, xi ], i =
2, . . . , k, its characteristic Ri (see, e.g., [5,11]) by using one of the following rules.

Step 3.1 Geometric methods.

Ri = zi + zi−1

2
− li

xi − xi−1

2
.

Step 3.2 Information methods.

Ri = 2(zi + zi−1) − li (xi − xi−1) − (zi − zi−1)
2

li (xi − xi−1)
.

Step 4 Subinterval selection. Determine subinterval [xt−1, xt ], t = t (k), for per-
forming next trial by using one of the following rules.

Step 4.1 Global phase. Select the subinterval [xt−1, xt ] corresponding to the
minimal characteristic, i.e., such that t = argmini=2,...,k Ri .

Steps 4.2–4.3 Local improvement.

if flag = 1, then (perform local improvement)

if zk = zimin , then t = argmin{Ri : i ∈ {imin + 1, imin}};

else alternate the choice of subinterval between [ximin , ximin+1] and [ximin−1, ximin ]

starting from the right subinterval [ ximin , ximin+1].

end if

else t = argmini=2,...,k Ri (do not perform local improvement at the current iteration).

end if

The subsequent part of this Step differs for two local improvement techniques.

Step 4.2 Pessimistic local improvement.
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if flag = 1 and

xt − xt−1 ≤ δ, (12)

where δ > 0 is the local search accuracy,

then t = argmini=2,...,k Ri (local improvement is not performed since the

local search accuracy has been achieved).

end if

Set flag := NOT (flag) (switch the local/global flag).
Step 4.3 Optimistic local improvement.

Set flag := NOT(flag) (switch the local/global flag: the accuracy of local

search is not separately checked in this strategy).

Step 5 Global stopping criterion. If

xt − xt−1 ≤ ε, (13)

where ε > 0 is a given accuracy of the global search, then Stop and take as an
estimate of the global minimum f ∗ the value f ∗

k = mini=1,...,k{zi } obtained at a
point x∗

k = argmini=1,...,k{zi }.
Otherwise, go to Step 6.

Step 6 New trial. Execute next trial at the point xk+1 from (10): zk+1 := f (xk+1).
Increase the iteration counter k := k + 1, and go to Step 1.

All the Lipschitz global optimization methods considered in the paper are summa-
rized in Table 1, from which concrete implementations of Steps 2–4 in the GS can be
individuated. As shown experimentally in Sect. 4, the methods using an a priori given
estimate of the Lipschitz constant or its global estimate lose, as a rule, in comparison
with methods using local tuning techniques, in terms of the trials performed to approx-
imate the global solutions to problems. Therefore, local improvement accelerations
(Steps 4.2–4.3 of the GS) were implemented for methods using local tuning strategies
only. In what follows, the methods from Table 1 are furthermore specified (for the
methods known in the literature, the respective references are provided).

1. Geom-AL Piyavskij’s method with the a priori given Lipschitz constant (see [38,
40] and [9,51] for generalizations and discussions): GS with Step 2.1, Step 3.1
and Step 4.1.

2. Geom-GL Geometric method with the global estimate of the Lipschitz constant
(see [9]): GS with Step 2.2, Step 3.1 and Step 4.1.
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Table 1 Description of the methods considered in the paper, the signs “+” show a combination of imple-
mentations of Steps 2–4 in the GS for each method

Method Step2 Step3 Step4

2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1 4.2 4.3

Geom-AL + + +

Geom-GL + + +

Geom-LTM + + +

Geom-LTA + + +

Geom-LTMA + + +

Geom-LTIMP + + +

Geom-LTIAP + + +

Geom-LTIMAP + + +

Geom-LTIMO + + +

Geom-LTIAO + + +

Geom-LTIMAO + + +

Inf-AL + + +

Inf-GL + + +

Inf-LTM + + +

Inf-LTA + + +

Inf-LTMA + + +

Inf-LTIMP + + +

Inf-LTIAP + + +

Inf-LTIMAP + + +

Inf-LTIMO + + +

Inf-LTIAO + + +

Inf-LTIMAO + + +

3. Geom-LTM Geometric method with the “Maximum” Local Tuning (see [9,23,
50]): GS with Step 2.3, Step 3.1 and Step 4.1.

4. Geom-LTA Geometric method with the “Additive” Local Tuning: GS with Step
2.4, Step 3.1 and Step 4.1.

5. Geom-LTMA Geometric method with the “Maximum-Additive” Local Tuning:
GS with Step 2.5, Step 3.1 and Step 4.1.

6. Geom-LTIMP Geometric method with the “Maximum” Local Tuning and the
pessimistic strategy of the local improvement (see [9,37]): GS with Step 2.3, Step
3.1 and Step 4.2.

7. Geom-LTIAP Geometric method with the “Additive” Local Tuning and the pes-
simistic strategy of the local improvement: GSwith Step 2.4, Step 3.1 and Step 4.2.

8. Geom-LTIMAPGeometric method with the “Maximum-Additive” Local Tuning
and the pessimistic strategy of the local improvement: GS with Step 2.5, Step 3.1
and Step 4.2.

9. Geom-LTIMO Geometric method with the “Maximum” Local Tuning and the
optimistic strategy of the local improvement: GS with Step 2.3, Step 3.1 and Step
4.3.
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10. Geom-LTIAO Geometric method with the “Additive” Local Tuning and the opti-
mistic strategy of the local improvement: GS with Step 2.4, Step 3.1 and Step
4.3.

11. Geom-LTIMAOGeometric methodwith the “Maximum-Additive” Local Tuning
and the optimistic strategy of the local improvement: GS with Step 2.5, Step 3.1
and Step 4.3.

12. Inf-AL Information method with the a priori given Lipschitz constant (see [9]):
GS with Step 2.1, Step 3.2 and Step 4.1.

13. Inf-GL Strongin’s information-statistical method with the global estimate of the
Lipschitz constant (see [23,39,41]): GS with Step 2.2, Step 3.2 and Step 4.1.

14. Inf-LTM Information method with the “Maximum” Local Tuning (see [23,30,
49]): GS with Step 2.3, Step 3.2 and Step 4.1.

15. Inf-LTA Information method with the “Additive” Local Tuning (see [11,55]): GS
with Step 2.4, Step 3.2 and Step 4.1.

16. Inf-LTMA Information method with the “Maximum-Additive” Local Tuning: GS
with Step 2.5, Step 3.2 and Step 4.1.

17. Inf-LTIMP Information method with the “Maximum” Local Tuning and the pes-
simistic strategy of the local improvement [30,58]: GS with Step 2.3, Step 3.2 and
Step 4.2.

18. Inf-LTIAP Information method with the “Additive” Local Tuning and the pes-
simistic strategy of the local improvement: GS with Step 2.4, Step 3.2 and Step
4.2.

19. Inf-LTIMAP Information method with the “Maximum-Additive” Local Tuning
and the pessimistic strategy of the local improvement: GS with Step 2.5, Step 3.2
and Step 4.2.

20. Inf-LTIMO Information method with the “Maximum” Local Tuning and the opti-
mistic strategy of the local improvement: GS with Step 2.3, Step 3.2 and Step 4.3.

21. Inf-LTIAO Information method with the “Additive” Local Tuning and the opti-
mistic strategy of the local improvement: GS with Step 2.4, Step 3.2 and Step
4.3.

22. Inf-LTIMAO Information method with the “Maximum-Additive” Local Tuning
and the optimistic strategy of the local improvement: GS with Step 2.5, Step 3.2
and Step 4.3.

Let us spend a few words regarding convergence of the methods belonging to the
GS. To do this, we study an infinite trial sequence {xk} generated by an algorithm
belonging to the general scheme GS for solving the problem (1), (2) with δ = 0 from
(12) and ε = 0 from (13).

Theorem 3.1 Assume that the objective function f (x) satisfies the Lipschitz condition
(2) with a finite constant L > 0, and let x ′ be any limit point of {xk} generated by
an algorithm belonging to the GS that does not use the “Additive” Local Tuning and
works with one of the estimates (3), (6), (11). Then, the following assertions hold:

1. If x ′ ∈]a, b[, then convergence to x ′ is bilateral, i.e., there exist two infinite sub-
sequences of {xk} converging to x ′: one from the left, the other from the right;

2. f (xk) ≥ f (x ′), for all trial points xk, k ≥ 1;

123



J Optim Theory Appl (2016) 171:186–208 197

3. If there exists another limit point x ′′ 
= x ′, then f (x ′′) = f (x ′);
4. If the function f (x) has a finite number of local minima in [a, b], then the point

x ′ is locally optimal;
5. (Sufficient conditions for convergence to a global minimizer). Let x∗ be a global

minimizer of f (x). If there exists an iteration number k∗ such that for all k > k∗,
then the inequality

l j (k) > L j (k) (14)

holds, where L j (k) is the Lipschitz constant for the interval [x j (k)−1, x j (k)] con-
taining x∗, and l j (k) is its estimate. Then, the set of limit points of the sequence
{xk} coincides with the set of global minimizers of the function f (x).

Proof Since all themethodsmentioned in the Theorem belong to the “Divide the Best”
class of global optimization algorithms introduced in [57], the proofs of assertions 1–5
can be easily obtained as particular cases of the respective proofs in [9,57]. ��
Corollary 3.1 Assertions 1–5 hold for methods belonging to the GS and using the
“Additive” Local Tuning if the condition li(k) > r Hi(k) is fulfilled for all i and k.

Proof Fulfillment of the condition li(k) > r Hi(k) ensures that: (i) Each new trial
point xk+1 belongs to the interval (xt−1, xt ) chosen for partitioning; (ii) the distances
xk+1−xt−1 and xt −xk+1 are finite. The fulfillment of these two conditions implies that
the methods belong to the class of “Divide the Best” global optimization algorithms,
and therefore, proofs of assertions 1–5 can be easily obtained as particular cases of
the respective proofs in [9,57]. ��

Note that in practice, since both ε and δ assume finite positive values, methods
using the optimistic local improvement can miss the global optimum and stop in the
δ-neighborhood of a local minimizer (see Step 4 of the GS).

Next Theorem ensures existence of the values of the reliability parameter r sat-
isfying condition (14), providing so the fact that all global minimizers of f (x) will
be determined by the proposed methods without using the a priori known Lipschitz
constant.

Theorem 3.2 For any function f (x) satisfying the Lipschitz condition (2)with L < ∞
and for methods belonging to the GS and using one of the estimates (3), (6), (9), (11)
there exists a value r∗ such that, for all r > r∗, condition (14) holds.

Proof It follows from, (3), (6), (9), (11), and the finiteness of ξ > 0 that approxi-
mations of the Lipschitz constant li in the methods belonging to the GS are always
positive. Since L in (2) is finite and any positive value of the parameter r can be chosen
in (3), (6), (9), (11), it follows that there exists an r∗ such that condition (14) will be
satisfied for all global minimizers for r > r∗. ��

4 Numerical Experiments

Seven series of numerical experiments were executed on the following three sets of
test functions to compare 22 global optimization methods described in Sect. 3:
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Table 2 Number of trials performed by the considered geometric methods without the local improvement
on 20 tests from “Appendix 1”

# Geom-AL Geom-GL Geom-LTM Geom-LTA Geom-LTMA

1 595 446 50 44 35

2 457 373 49 52 39

3 577 522 176 202 84

4 1177 1235 57 73 47

5 383 444 57 65 43

6 301 299 70 73 50

7 575 402 53 51 41

8 485 481 164 183 82

9 469 358 55 57 41

10 571 481 55 58 42

11 1099 1192 100 109 78

12 993 1029 93 96 68

13 2833 2174 93 88 68

14 379 303 56 60 39

15 2513 1651 89 118 72

16 2855 2442 102 120 83

17 2109 1437 125 171 122

18 849 749 55 58 41

19 499 377 49 47 39

20 1017 166 53 58 40

Avg 1036.80 828.05 80.05 89.15 57.70

1. The widely used set of 20 test functions from [47] reported in “Appendix 1”;
2. 100 randomly generated Pintér’s functions from [48];
3. Four functions originated from practical problems (see “Appendix 2”): First two

problems are from [9, p. 113] and the other two functions from [17] (see also [18]).

Geometric and information methods with and without the local improvement tech-
niques (optimistic and pessimistic) were tested in these experimental series. In all the
experiments, the accuracy of the global search was chosen as ε = 10−5(b −a), where
[a, b] is the search interval. The accuracy of the local search was set as δ = ε in the
algorithms with the local improvement. Results of numerical experiments are reported
in Tables 2, 3, 4, 5, 6, 7, 8 and 9, where the number of function trials executed until
the satisfaction of the stopping rule is presented for each considered method (the best
results for the methods within the same class are shown in bold).

The first series of numerical experiments was carried out with geometric and
information algorithms without the local improvement on 20 test functions given
in “Appendix 1.” Parameters of the geometric methods Geom-AL, Geom-GL,
Geom-LTM, Geom-LTA and Geom-LTMA were chosen as follows. For the method
Geom-AL, the estimates of the Lipschitz constants were computed as the maximum
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Table 3 Number of trials performed by the considered informationmethodswithout the local improvement
on 20 tests from “Appendix 1”

# Inf-AL Inf-GL Inf-LTM Inf-LTA Inf-LTMA

1 422 501 46 35 32

2 323 373 47 38 36

3 390 504 173 72 56

4 833 1076 51 56 47

5 269 334 59 47 37

6 208 239 65 46 45

7 403 318 49 38 37

8 157 477 163 113 63

9 329 339 54 48 42

10 406 435 51 42 38

11 773 1153 95 78 75

12 706 918 88 71 64

13 2012 1351 54 54 51

14 264 349 55 44 38

15 1778 1893 81 82 71

16 2023 1592 71 67 64

17 1489 1484 128 121 105

18 601 684 52 43 43

19 352 336 44 34 33

20 681 171 55 39 39

Avg 720.95 726.35 74.05 58.40 50.80

between the values calculated as relative differences on 10−7-grid and the values
given in [47]. For the methods Geom-GL, Geom-LTM and Geom-LTMA, the relia-
bility parameter r = 1.1 was used as recommended in [9]. The technical parameter
ξ = 10−8 was used for all the methods with the local tuning (Geom-LTM, Geom-LTA
and Geom-LTMA). For the method Geom-LTA, the parameter r was increased with
the step equal to 0.1, starting from r = 1.1 until all 20 test problems were solved (i.e.,
for all the problems the algorithm stopped in the ε-neighborhood of a global mini-
mizer). This situation happened for r = 1.8: The corresponding results are shown in
the column Geom-LTA of Table 2.

As can be seen from Table 2, the performance of the method Geom-LTMA was
better with respect to the other geometric algorithms tested. The experiments also
showed that the additive convolution (Geom-LTA) did not guarantee the proximity of
the found solution to the global minimum with the common value r = 1.1. With an
increased value of the reliability parameter r , the average number of trials performed
by this method on 20 tests was also slightly worse than that of the method with the
maximumconvolution (Geom-LTM), but better than the averages of themethods using
global estimates of the Lipschitz constants (Geom-AL and Geom-GL).
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Table 4 Results of numerical experiments with the considered geometric and informationmethods without
the local improvement on 100 Pintér’s test functions from [48]

Method Average SD Method Average SD

Geom-AL 1080.24 91.17 Inf-AL 750.03 66.23

Geom-GL 502.17 148.25 Inf-GL 423.19 109.26

Geom-LTM 58.96 9.92 Inf-LTM 52.13 5.61

Geom-LTA 70.48 17.15 Inf-LTA 36.47 6.58

Geom-LTMA 42.34 6.63 Inf-LTMA 38.10 5.96

Results of numerical experiments with information methods without the local
improvement techniques (methods Inf-AL, Inf-GL, Inf-LTM, Inf-LTA and Inf-LTMA)
on the same 20 tests from “Appendix 1” are shown in Table 3. Parameters of the infor-
mation methods were chosen as follows. The estimates of the Lipschitz constants
for the method Inf-AL were the same as for the method Geom-AL. The reliability
parameter r = 2 was used in the methods Inf-GL, Inf-LTM and Inf-LTMA, as recom-
mended in [9,23,39]. For all the information methods with the local tuning techniques
(Inf-LTM, Inf-LTA and Inf-LTMA), the value ξ = 10−8 was used. For the method
Inf-LTA, the parameter r was increased (starting from r = 2) up to the value r = 2.3
when all 20 test problems were solved.

As can be seen from Table 3, the performance of the method Inf-LTMA was better
(as also verified for its geometric counterpart) with respect to the other information
algorithms tested. The experiments also showed that the average number of trials
performed by the Inf-LTA method with r = 2.3 on 20 tests was better than that of the
method with the maximum convolution (Inf-LTM).

The second series of experiments (see Table 4) was executed on the class of 100
Pintér’s test functions from [48]with all geometric and information algorithmswithout
the local improvement (i.e., all the methods used in the first series of experiments).
Parameters of the methods Geom-AL, Geom-GL, Geom-LTM, Geom-LTMA, and
Inf-AL, Inf-GL, Inf-LTM and Inf-LTMA were the same as in the first experimental
series (r = 1.1 for all the geometric methods and r = 2 for the information methods).
The reliability parameter for the method Geom-LTA was increased from r = 1.1 to
r = 1.8 (when all 100 problems were solved). All the information methods were able
to solve all 100 test problems with r = 2 (see Table 4). The average performance of
the Geom-LTMA and the Inf-LTA methods was the best among the other considered
geometric and information algorithms, respectively.

The third series of the experiments (see Table 5) was carried out on four applied
test problems from [9] and [17] (see “Appendix 2”). All the methods without the
local improvement used in the previous two series of experiments (Geom-AL, Geom-
GL, Geom-LTM, Geom-LTA, Geom-LTMA and Inf-AL, Inf-GL, Inf-LTM, Inf-LTA,
Inf-LTMA) were tested, and all the parameters for these methods were the same
as above, except the reliability parameters of the methods Geom-LTA and Inf-LTA.
Particularly, the applied problem 4 was not solved by the Geom-LTA method with
r = 1.1. With the increased value r = 1.8, the obtained results (reported in Table 5)
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Table 5 Number of trials
performed by the considered
geometric and information
methods without the local
improvement on four test
functions from “Appendix 2”

Method Test problem Average

1 2 3 4

Geom-AL 37 395 261 332 256.25

Geom-GL 39 388 216 307 237.50

Geom-LTM 37 54 59 232 95.50

Geom-LTA 74 58 68 204 101.00

Geom-LTMA 33 39 48 137 64.25

Inf-AL 12 278 180 187 164.25

Inf-GL 35 333 215 229 203.00

Inf-LTM 25 53 56 212 86.50

Inf-LTA 19 35 40 165 64.75

Inf-LTMA 24 35 40 122 55.25

of this geometric method were worse than the results of the other geometric methods
with the local tuning (Geom-LTM and Geom-LTMA). The method Inf-LTA solved
all the four applied problems also with a higher value r = 2.3 and was outrun by
the Inf-LTMA method (the latter one produced the best average result among all the
competitors; see Table 5).

In the following several series of experiments, the local improvement techniques
were compared on the same three sets of test functions. In the fourth series (seeTable 6),
sixmethods (geometric and information)with the optimistic local improvement (meth-
ods Geom-LTIMO, Geom-LTIAO, Geom-LTIMAO and Inf-LTIMO, Inf-LTIAO and
Inf-LTIMAO) were compared on the class of 20 test functions from [47] (see “Appen-
dix 1”). The reliability parameter r = 1.1 was used for the methods Geom-LTIMO
and Geom-LTIMAO, and r = 2 was used for the method Inf-LTIMO. For the
method Geom-LTIAO, r was increased to 1.6, and for the methods Inf-LTIMAO
and Inf-LTIAO, r was increased to 2.3. As can be seen from Table 6, the best
average result among all the algorithms was shown by the method Geom-LTIMAO
(while the Inf-LTIMAO was the best in average among the considered information
methods).

In the fifth series of experiments, six methods (geometric and information) using
the pessimistic local improvement were compared on the same 20 test functions. The
obtained results are presented in Table 7. The usual values r = 1.1 and r = 2 were
used for the geometric (Geom-LTIMP and Geom-LTIMAP) and the information (Inf-
LTIMPand Inf-LTIMAP)methods, respectively.Thevalues of the reliability parameter
ensuring the solution to all the test problems in the case of methods Geom-LTIAP and
Inf-LTIAP were set as r = 1.8 and r = 2.3, respectively. As can be seen from Table 7,
the “Maximum” and the “Maximum-Additive” local tuning techniques were more
stable and generally allowed us to find the global solution for all test problems without
increasing r . Moreover, the methods Geom-LTIMAP and Inf-LTIMAP showed the
best performance with respect to the other techniques in the same geometric and
information classes, respectively.
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Table 6 Number of trials performed by the considered geometric and information methods with the opti-
mistic local improvement on 20 tests from “Appendix 1”

# Geom-LTIMO Geom-LTIAO Geom-LTIMAO Inf-LTIMO Inf-LTIAO Inf-LTIMAO

1 45 41 35 47 35 37

2 47 49 35 45 37 41

3 49 45 39 55 45 51

4 47 53 43 49 53 53

5 55 49 47 51 47 47

6 51 49 45 47 43 47

7 45 45 39 49 37 39

8 37 41 35 41 45 47

9 49 51 41 51 51 40

10 47 49 41 51 43 43

11 49 53 45 55 59 55

12 43 53 35 53 67 45

13 51 53 57 41 51 55

14 45 45 43 49 43 45

15 45 57 47 45 55 53

16 49 55 53 47 49 53

17 93 53 95 59 55 53

18 45 47 37 49 41 44

19 45 43 35 46 33 35

20 43 45 37 49 35 39

Avg 49.00 48.80 44.20 48.95 46.20 46.10

In the sixth series of experiments, the local improvement techniqueswere compared
on the class of 100 Pintér’s functions. The obtained results are presented in Table 8.
The values of the reliability parameter r for all the methods were increased, starting
from r = 1.1 for the geometric methods and r = 2 for the information methods,
until all 100 problems from the class were solved. It can be seen from Table 8 that
the best average number of trials for both the optimistic and pessimistic strategies
was almost the same (36.90 and 37.21 in the case of information methods and 45.76
and 48.24 in the case of geometric methods, for the optimistic and for the pessimistic
strategies, respectively). However, the pessimistic strategy seemed to be more stable
since its reliability parameter (needed to solve all the problems) generally remained
smaller than that of the optimistic strategy. In average, the Geom-LTMA and the Inf-
LTA methods were the best among the other considered geometric and information
algorithms, respectively.

Finally, the last, seventh, series of the experiments (see Table 9) was executed on
the class of four applied test problems from “Appendix 2,” where in the third column
the values of the reliability parameter used to solve all the problems are also indicated.
Again, as in the previous experiments, the pessimistic local improvement strategy
seemed to be more stable in the case of this test set, since the optimistic strategy
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Table 7 Number of trials performed by the considered geometric and information methods with the pes-
simistic local improvement on 20 tests from “Appendix 1”

# Geom-LTIMP Geom-LTIAP Geom-LTIMAP Inf-LTIMP Inf-LTIAP Inf-LTIMAP

1 49 46 36 47 38 35

2 49 50 38 47 37 35

3 165 212 111 177 56 57

4 56 73 47 51 56 46

5 63 66 48 57 47 38

6 70 71 51 64 46 45

7 54 53 41 51 39 38

8 157 182 81 163 116 99

9 53 57 43 52 52 43

10 56 59 42 52 43 39

11 100 114 77 95 78 72

12 93 97 69 87 73 64

13 97 86 68 55 52 50

14 58 197 43 60 46 42

15 79 120 76 79 82 70

16 97 115 81 71 66 60

17 140 189 139 127 129 100

18 55 60 42 51 42 42

19 52 50 36 46 33 32

20 54 56 40 51 37 40

Avg 79.85 97.65 60.45 74.15 58.40 52.35

Table 8 Results of numerical experiments with the considered geometric and information methods with
the local improvement techniques on 100 Pintér’s test functions from [48]

Optimistic strategy Pessimistic strategy

Method r Average SD Method r Average SD

Geom-LTIMO 1.3 49.52 4.28 Geom-LTIMP 1.1 66.44 21.63

Geom-LTIAO 1.9 48.32 5.02 Geom-LTIAP 1.8 93.92 197.61

Geom-LTIMAO 1.4 45.76 5.83 Geom-LTIMAP 1.1 48.24 14.12

Inf-LTIMO 2.0 48.31 4.29 Inf-LTIMP 2.0 53.06 7.54

Inf-LTIAO 2.1 36.90 5.91 Inf-LTIAP 2.0 37.21 7.25

Inf-LTIMAO 2.0 38.24 6.36 Inf-LTIMAP 2.0 39.06 6.84

required a significant increase of the parameter r to determine global minimizers of
these applied problems (although the best average value obtained by the optimistic
Geom-LTIAO method was smaller that that of the best pessimistic Geom-LTIMAP
method, see the last column in Table 9).
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Table 9 Number of trials
performed by the considered
geometric and information
methods with the local
improvement techniques on four
test functions from
“Appendix 2”

Method r Test problem Average

1 2 3 4

Optimistic LI

Geom-LTIMO 6.5 59 55 63 79 64.00

Geom-LTIAO 1.8 55 49 49 41 48.50

Geom-LTIMAO 6.9 63 59 71 75 67.00

Inf-LTIMO 6.5 49 55 67 77 62.00

Inf-LTIAO 9.4 47 55 71 71 61.00

Inf-LTIMAO 8.0 55 55 71 73 63.50

Pessimistic LI

Geom-LTIMP 1.1 39 64 71 228 100.50

Geom-LTIAP 1.8 243 102 63 1254 415.50

Geom-LTIMAP 1.1 31 46 51 106 58.50

Inf-LTIMP 2.0 25 52 58 185 80.00

Inf-LTIAP 2.3 18 36 49 174 69.25

Inf-LTIMAP 2.0 24 35 43 134 59.00

5 Conclusions

Univariate derivative-free global optimization has been considered in the paper, and
several numerical methods belonging to the geometric and information classes of
algorithms have been proposed and analyzed. New acceleration techniques to speed
up the global search have been introduced. They can be used in both the geometric
and information frameworks. All of the consideredmethods automatically switch from
the global optimization to the local one and back, avoiding so the necessity to stop
the global phase manually. An original mixture of new and traditional computational
steps has allowed the authors to construct 22 different global optimization algorithms
having, however, a similar structure. As shown, 9 instances of this mixture can lead to
known global optimization methods, and the remaining 13 methods described in the
paper are new. All of them have been studied theoretically and numerically compared
on 124 theoretical and applied benchmark tests. It has been shown that the introduced
acceleration techniques allowed the global optimizationmethods to significantly speed
up the search with respect to some known algorithms.
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Appendix 1

See Table 10.

Table 10 Twenty test functions from [47] used in numerical experiments

# Function f (x) [a, b] L Global minimizers

1 1
6 x6 − 52

25 x5 + 39
80 x4 + 71

10 x3 − 79
20 x2 − x + 1

10 [−1.5, 11] 13,870 x∗ = 10

2 sin x + sin 10x
3 [2.7, 7.5] 4.3 x∗ = 5.146

3 −∑5
k=1 k sin[(k + 1)x + k] [−10, 10] 68.5

x∗
1 = −0.491,

x∗
2 = −6.775,
x∗
3 = 5.792

4 −(16x2 − 24x + 5) e−x [1.9, 3.9] 3.0 x∗ = 2.868

5 (3x − 1.4) sin 18x [0, 1.2] 36.0 x∗ = 0.966

6 −(x + sin x) e−x2 [−10, 10] 2.5 x∗ = 0.680

7 sin x + sin 10x
3 + ln x − 0.84x + 3 [2.7, 7.5] 6.0 x∗ = 5.200

8 −∑5
k=1 k cos[(k + 1)x + k] [−10, 10] 69.5

x∗
1 = −0.800,

x∗
2 = −7.084,
x∗
3 = 5.483

9 sin x + sin 2x
3 [3.1, 20.4] 1.7 x∗ = 17.040

10 −x sin x [0, 10] 11.0 x∗ = 7.979

11 2 cos x + cos 2x [−1.57, 6.28] 3.6
x∗
1 = 4.189,

x∗
2 = 2.094

12 sin3 x + cos3 x [0, 6.28] 2.2
x∗
1 = 4.712,

x∗
2 = 3.142

13 −x2/3 + (x2 − 1)1/3 [0.001, 0.99] 8.5 x∗ = 0.707

14 −e−x sin 2πx [0, 4] 6.5 x∗ = 0.225

15 x2−5x+6
x2+1

[−5, 5] 6.5 x∗ = 2.414

16 2(x − 3)2 + e0.5x2 [−3, 3] 294.1 x∗ = 1.591

17 x6 − 15x4 + 27x2 + 250 [−4, 4] 2520.0
x∗
1 = −3,
x∗
2 = 3

18

{
(x − 2)2, x ≤ 3
2 ln(x − 2) + 1, x > 3

[0, 6] 4.0 x∗ = 2

19 −x + sin 3x − 1 [0, 6.5] 4.1 x∗ = 5.873

20 (sin x − x) e−x2 [−10, 10] 1.3 x∗ = 1.195
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Appendix 2

See Table 11.

Table 11 Four one-dimensional test functions taken from practical applications

# Function f (x) [a, b] L Global minimizers References

1 | sin3(x) + cos3(x)| + 0.1 [0, 2π ] 2.2 x∗
1 = 2.356, x∗

2 = 5.498 [9]

2 x | sin(x)| + 6 [−10, 10] 9.7 x∗ = −7.979 [9]

3
∑10

i=1

(
y(1)

i − sin(2πxi)
)2 [0, 1] 432.0 x∗ = 0.4 [17]

4
∑100

i=1

(
y(2)

i − sin(2πxi)
)2 [0, 1] 28,690.8 x∗ = 0.4 [17]
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