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Abstract We deal with chance constrained problems with differentiable nonlinear
random functions and discrete distribution. We allow nonconvex functions both in
the constraints and in the objective. We reformulate the problem as a mixed-integer
nonlinear program and relax the integer variables into continuous ones. We approach
the relaxed problem as a mathematical problem with complementarity constraints and
regularize it by enlarging the set of feasible solutions. For all considered problems,
we derive necessary optimality conditions based on Fréchet objects corresponding to
strong stationarity. We discuss relations between stationary points and minima. We
propose two iterative algorithms for finding a stationary point of the original problem.
The first is based on the relaxed reformulation, while the second one employs its
regularized version. Under validity of a constraint qualification, we show that the
stationary points of the regularized problem converge to a stationary point of the
relaxed reformulation and under additional condition it is even a stationary point of
the original problem. We conclude the paper by a numerical example.
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1 Introduction

In this paper, we investigate chance constrained optimization problems (CCP). Such
problems were introduced in [1] and nowadays cover numerous applications: among
other portfolio selection [2,3], hydro reservoir management [4], logistics [5], energet-
ics [6] or insurance [7,8]. Since the feasible region is generally nonconvex even for
convex data and the evaluation of the chance constraints leads to a computation of
multivariate integrals, these problems are usually difficult to solve.

In this paragraph, we present an overview of several approaches for solving CCP.
A general approach called sample (empirical) approximation is based on substituting
the underlying continuous distribution by a finite sample and reformulating it as a
mixed-integer programming problem, see [9]. For linear constraints and finite discrete
distribution, algorithms based on cutting planes for mixed-integer reformulations are
available, cf. [10,11]. For joint chance constraints under discrete distribution, where
the random parts of the constraints are separated from the decision variables, we can
use p-level efficient points (pLEPs) to obtain a deterministic reformulation, see [12].
A bundle method for this special case was recently proposed by [13]. Optimality
conditions for these problems were derived by [14] under convexity assumptions.
Boolean reformulation framework was introduced by [15,16]. Additionally, a recent
extension [17] of thismethodwas proposed for nonlinear chance constraints.Nonlinear
programming algorithms were suggested for general chance constrained problems by
[18,19]. A wide class of approaches is based on approximating the indicator function
by a more tractable function. Approximation based on conditional value at risk has
been deeply investigated by [2,20]. A similar idea was used by [21] who employed the
so-called integrated chance constraints. Bernstein approximation has been introduced
by [22] for constraints affine in random coefficients. Recently, algorithmic approaches
based on representation using difference of convex functions appeared in the literature,
see [3,23]. A second-order cone programming reformulation was obtained by [24] for
problems with linear constraints under normally distributed random coefficient. For
these linear Gaussian problems, [25] provided an explicit gradient formula and derived
an efficient solution procedure.

Our approach relies on distributional assumptions where we consider finite dis-
crete distributions only. However, apart from differentiability we require no further
assumption on the data apart from standard constraint qualifications (which are nat-
urally satisfied in the linear case). Thus, we allow nonlinear, possibly nonconvex,
functions not only in the random constraints, but also in the deterministic constraints
and in the objective. We use the usual reformulation via additional binary decision
variables, which enable to identify whether the random constraint is fulfilled for par-
ticular scenario or not. Then we relax these binary variables into continuous ones
to obtain a relaxed nonlinear programming problem. We derive necessary optimality
conditions for both the original and the relaxed problem and then show the relations
between local minima and stationary points of both problems.

We prove that any local solution of the original problem can be extended to become
a local solution of the relaxed problem. On the other hand, if we obtain a solution of
the relaxed problem, still some verification regarding the relaxed binary variables is
necessary to decide whether the solution is or is not a local solution of the original
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problem. We make use of this observation and propose an iterative algorithm which
solves the relaxed problem. The algorithm either determines that the obtained point
is a solution of the original problem or provides another point which can be used as a
starting point for the solution process for the relaxed problem.

Since this approach has certain disadvantages, such as violated standard constraint
qualifications, we derive a second algorithm. To this aim, we approach the relaxed
problem from the viewpoint of mathematical programs with complementarity con-
straints (MPCC). Using standard techniques from this field, we regularize the relaxed
problem, i.e., we enlarge the feasible set in a proper way, derive necessary optimality
conditions and show that the stationary points of the regularized problem converge
to the stationary points of the relaxed problem. Coupling this with the previous para-
graph, we obtain stationarity for the original CCP. We would like to emphasize that
the obtained stationary is the strong S–stationarity; hence, we work only with Fréchet
objects and do not have to pass to weaker conditions based on limiting or Clarke
objects.

Based on the results of this paper, a solver CCP-SIR (Chance Constraint Problems:
Successive Iterative Regularization) was developed. It may be freely distributed and
is available online.1 We believe that its main strength lies in finding stationary points
of nonconvex medium-sized problems, where the sources of nonconvexity can be the
random and deterministic functions in the constraints as well as the objective function.

The paper is organized as follows. In Sect. 2, we derive the relaxed problem men-
tioned above and obtain necessary optimality conditions for both the original and
relaxed problem. In Sect. 3, we regularize the relaxed problem and show that station-
ary points of the regularized problem converge to a stationary point of the relaxed
problem. Finally, in Sect. 4 we verify the theoretical results on a nontrivial numerical
example.

2 Problem Reformulations and Necessary Optimality Conditions

The problem may be formulated as follows:

minimize
x

f (x)

subject to P(g(x, ξ) ≤ 0) ≥ 1 − ε,

h j (x) ≤ 0, j = 1, . . . , J.

(1)

Here x ∈ R
n is the decision variable, 0 ≤ ε < 1 is a prescribed probabilistic level,

f : R
n → R, g : R

n × R
d → R and h j : R

n → R are functions which are
continuously differentiable in variable x and finally ξ ∈ R

d is a random vector with
known probability distribution P .

In this paper, we assume that ξ has known discrete distribution and enumerate all
possible realizations by ξ1, . . . , ξS and the corresponding positive probabilities by
p1, . . . , pS . We may then reformulate problem (1) into

1 http://staff.utia.cas.cz/adam/research.html.
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minimize
x

f (x)

subject to
S∑

i=1
piχg(x,ξi )≤0 ≥ 1 − ε,

h j (x) ≤ 0, j = 1, . . . , J,

(2)

where χ stands for the characteristic function which equals to 1 if g(x, ξi ) ≤ 0 and 0
otherwise. Introducing artificial binary variable y ∈ {0, 1}S to deal with χ , we obtain
the following mixed-integer nonlinear problem

minimize
x,y

f (x)

subject to p�y ≥ 1 − ε,

yi ∈ {0, 1}, i = 1, . . . , S,

g(x, ξi )yi ≤ 0, i = 1, . . . , S,

h j (x) ≤ 0, j = 1, . . . , J.

(3)

To avoid the problematic constraint g(x, ξi )yi ≤ 0, usually this constraint is replaced
by g(x, ξi ) ≤ M(1 − yi ), where M is a sufficiently large constant. This leads to the
following problem

minimize
x,y

f (x)

subject to p�y ≥ 1 − ε,

yi ∈ {0, 1}, i = 1, . . . , S,

g(x, ξi ) ≤ M(1 − yi ), i = 1, . . . , S,

h j (x) ≤ 0, j = 1, . . . , J.

(4)

This reformulation was proposed by [26] and will be used in the numerical analysis
in Sect. 4 for mixed-integer programming solvers.

Since this problem is difficult to tackle by mixed-integer (nonlinear) programming
techniques in any of the previous forms, we relax binary constraint yi ∈ {0, 1} into
yi ∈ [0, 1] to obtain nonlinear programming problem

minimize
x,y

f (x)

subject to p�y ≥ 1 − ε,

0 ≤ yi ≤ 1, i = 1, . . . , S,

g(x, ξi )yi ≤ 0, i = 1, . . . , S,

h j (x) ≤ 0, j = 1, . . . , J.

(5)

In the subsequent text, we will denote problem (5) as the relaxed problem. Even
though problems (2) and (5) are not equivalent, see Example 2.1 below, there are close
similarities between them, see Lemmas 2.1 and 2.2 below.
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For notational simplicity, we define the following index sets

I00(x, y) := {i : g(x, ξi ) = 0, yi = 0}, I0(x) := {i : g(x, ξi ) = 0},
I0+(x, y) := {i : g(x, ξi ) = 0, 0 < yi < 1}, J0(x) := {

j : h j (x) = 0
}
,

I01(x, y) := {i : g(x, ξi ) = 0, yi = 1}. (6)

Further, we define sets which will be extensively used later in the manuscript

Î(x) :=
⎧
⎨

⎩
Ĩ ⊂ {1, . . . , S} :

∑

i∈ Ĩ
pi ≥ 1 − ε,

g(x, ξi ) < 0 �⇒ i ∈ Ĩ

g(x, ξi ) > 0 �⇒ i /∈ Ĩ

⎫
⎬

⎭
,

I(x) := minimal elements of Î(x) with respect to set inclusion, (7)

Y (x) :=
{
y ∈ {0, 1}S : ∃I ∈ I(x) s.t. yi = 1 if i ∈ I ; yi = 0 if i /∈ I

}
. (8)

The purpose of the definition of these sets is that the union of {x : g(x, ξi ) ≤ 0, i ∈ I }
with respect to I ∈ Î(x̄) or with respect to I ∈ I(x̄) has the same shape as the feasible
set of problem (2) on the neighborhood of x̄ .

2.1 Necessary Optimality Conditions for CCP and Its Relaxation

In this subsection, we derive optimality conditions for both the CCP (2) and the
nonlinear problem (5). To be able to do so, we impose the following assumption
which will be used throughout the whole paper.

Assumption 2.1 Let x̄ be a feasible point of problem (2). Assume that at least one of
the following two conditions is satisfied:

– Functions g(·, ξi ) and h j are affine linear.
– The following implication is satisfied for all I ∈ I(x̄)

∑

i∈I0(x̄)
λi∇x g(x̄, ξi ) +

∑

j∈J0(x̄)

μ j∇h j (x̄) = 0

λi = 0, i ∈ I0(x̄)\I
λi ≥ 0, i ∈ I0(x̄) ∩ I

μ j ≥ 0, j ∈ J0(x̄)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�⇒ λi = 0, i ∈ I0(x̄),

μ j = 0, j ∈ J0(x̄).

We will comment on this assumption more in Remark 2.1, where we show that this
assumption is rather standard. For reader’s convenience, we provide two basic defini-
tions here. For a set Z ⊂ R

n and a point x̄ ∈ Z , we define the tangent and (Fréchet)
normal cones to Z at x̄ , respectively, as

TZ (x̄) :=
{
d ∈ R

n : ∃dk → d ∃tk ↘ 0 : x̄ + tkdk ∈ Z
}
,

N̂Z (x̄) := {
x∗ ∈ R

n : 〈x∗, d〉 ≤ 0 for all d ∈ TZ (x̄)
}
.
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Theorem 2.1 Let Assumption 2.1 be satisfied. If x̄ is a local minimum of CCP (2),
then for every I ∈ I(x̄) there exist multipliers λi , i ∈ I0(x̄) and μ j , j ∈ J0(x̄) such
that

∇ f (x̄) +
∑

i∈I0(x̄)
λi∇x g(x̄, ξi ) +

∑

j∈J0(x̄)

μ j∇h j (x̄) = 0,

λi = 0, i ∈ I0(x̄)\I,
λi ≥ 0, i ∈ I0(x̄) ∩ I,

μ j ≥ 0, j ∈ J0(x̄). (9)

Proof Denote the feasible set of problem (2) by Z and consider a point x̄ ∈ Z . Then
Z coincides locally around x̄ with

⋃

I∈I(x̄)

ZI :=
⋃

I∈I(x̄)

{
x : g(x, ξi ) ≤ 0, i ∈ I0(x̄) ∩ I, h j (x) ≤ 0, j = 1, . . . , J

}
,

which means that

N̂Z (x̄) = (TZ (x̄))∗ =
⎛

⎝
⋃

I∈I(x̄)

TZI (x̄)

⎞

⎠

∗
=

⋂

I∈I(x̄)

N̂Z I (x̄).

By [27, Theorem 6.12], we obtain that 0 ∈ ∇ f (x̄) + N̂Z (x̄) is a necessary optimality
condition for CCP (2). To obtain the theorem statement, it suffices to use chain rule
[27, Theorem 6.14]. ��

In the next theorem, we derive necessary optimality conditions for the relaxed
problem (5).

Theorem 2.2 Assume that (x̄, ȳ) with ȳ ∈ Y (x̄) is a local minimum of problem (5)
and that Assumption 2.1 is satisfied at x̄ . Then there exist multipliers λi , i ∈ I0(x̄)
and μ j , j ∈ J0(x̄) such that

∇ f (x̄) +
∑

i∈I0(x̄)
λi∇x g(x̄, ξi ) +

∑

j∈J0(x̄)

μ j∇h j (x̄) = 0,

λi = 0, i ∈ I00(x̄, ȳ),

λi ≥ 0, i ∈ I01(x̄, ȳ) ∪ I0+(x̄, ȳ),

μ j ≥ 0, j ∈ J0(x̄). (10)

Proof Due to [27, Theorem 6.12], the necessary optimality conditions for problem
(5) read

0 ∈
(∇ f (x̄)

0

)

+ N̂Z (x̄, ȳ) =
(∇ f (x̄) + N1(x̄)

N2(ȳ)

)

,
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where Z is the feasible set of problem (2) and N1(x̄) and N2(ȳ) are computed in
Lemma 6.1 proposed in Appendix. Observing that 0 ∈ N2(ȳ), we obtain the desired
result. ��

Weconclude this subsection by a remark concerningAssumption 2.1 and its relation
to standard constraint qualifications.

Remark 2.1 It can be shown that standard constraint qualifications such as linear
independence constraint qualification (LICQ) or Mangasarian–Fromovitz constraint
qualification (MFCQ) do not hold for the feasible set of problem (5) at all points
where at least one probabilistic constraint is violated. Based on Lemma 6.1, it can be
shown that the Guignard constraint qualification (GCQ), see [28], is satisfied under
Assumption 2.1.

Now, we will show that the constraint qualification imposed in Assumption 2.1 is
reasonable. Consider the following set

Z̃ := {
x : g(x, ξi ) ≤ 0, i = 1, . . . , S, h j (x) ≤ 0, j = 1, . . . , J

}
.

ThenMFCQ for Z̃ at x̄ implies Assumption 2.1.Moreover, the second part of Assump-
tion 2.1 is closely related to CC-MFCQ, see [29,30] for stationarity concepts for a
similar problem.

2.2 Relations Between Solutions of CCP and Its Relaxation

In this subsection, we will investigate relations between global and local minima and
stationary points of problems (2) and (5). Recall that a point is stationary if it satisfies
the necessary optimality of Theorems 2.1 and 2.2, respectively.

Lemma 2.1 A point x̄ is a global minimum of problem (2) if and only if there exists
ȳ such that (x̄, ȳ) is a global minimum of problem (5). A point x̄ is a local minimum
of problem (2) if and only if for all ȳ ∈ Y (x̄) the point (x̄, ȳ) is a local minimum of
problem (5).

Proof Assume that x̄ is a global minimum of (2) and define ȳ componentwise as
ȳi := 1 when g(x̄, ξi ) ≤ 0 and ȳi := 0 otherwise. Then it is not difficult to verify that
(x̄, ȳ) is a global minimum of (5). On the other hand, assume that (x̄, ȳ) is a global
minimum of (5) and define ŷ which is equal to ȳ with the difference that all positive
components of ŷ are replaced by 1. Then (x̄, ŷ) is also a global minimum of (5) and
x̄ is a global minimum of (2).

Assume now that x̄ is a local minimum of (2) and for contradiction assume that
there exists ȳ ∈ Y (x̄) such that (x̄, ȳ) is not a local minimum of (5). Then there
exists a sequence (xk, yk) → (x̄, ȳ) such that (xk, yk) is a feasible point of (5) and
f (xk) < f (x̄). But this means that (xk, ȳ) is also feasible for (5) and thus x̄ is not a
local minimum of (2).

Finally, assume that (x̄, ȳ) is a local minimum of (5) for all ȳ ∈ Y (x̄) and for
contradiction assume that x̄ is not a local minimum of (2). Then there exists xk → x̄
such that xk is feasible for (2) and f (xk) < f (x̄). Similarly as in the first case define
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yk as yki := 1 if g(xk, ξi ) ≤ 0 and yki := 0 otherwise. Since yk is bounded, we can
select a constant subsequence, denoted by the same indices, such that yk = ŷ and thus
(xk, ŷ) and (x̄, ŷ) are feasible points of problem (5) for all k. Since f (xk) < f (x̄), this
means that (x̄, ŷ) is not a local minimum of (5). As g(·, ξi ) are continuous functions
by assumption, we have ŷ ∈ Y (x̄), which is a contradiction. ��
Lemma 2.2 Consider a feasible point x̄ of problem (2). Then x̄ satisfies the neces-
sary optimality conditions (9) if and only if (x̄, ȳ) satisfies the necessary optimality
conditions (10) for all ȳ ∈ Y (x̄).

Proof This lemma follows directly from Theorems 2.1 and 2.2 and the coincidence
with I(x̄) with all possible I01(x̄, ȳ) corresponding to ȳ ∈ Y (x̄). ��

We intend to solve problem (5) and based on its solution (x̄, ȳ) derive some infor-
mation about a solution of problem (2). Lemma 2.2 states that if (x̄, ȳ) is a stationary
point of problem (5), we cannot say whether x̄ is a stationary point of problem (2). To
be able to do so, we would have to go through all y ∈ Y (x̄) and verify that (x̄, y) is
also a stationary point of problem (5). However, if it happens that Y (x̄) is a singleton,
we have equivalence between local minima of both problems. We show this behavior
in the following example.

Example 2.1 Consider functions

f (x) := (x1 − 0.3)2 + (x2 − 2)2, g(x, ξ) := (x1 − ξ)2 + x22 − 1,

number of scenarios S = 2 with probabilities p1 = p2 = 1
2 , realizations ξ1 = 1

2 ,
ξ2 = − 1

2 and probability level ε = 1
2 . Since ε = 1

2 , at least one of the probabilistic
constraints has to be satisfied. The feasible solution of problem (2) is union of two
circles and is depicted in Fig. 1a. It is obvious that problem (2) admits one local
minimum x̄1 and one global minimum x̄2.

Problem (5) contains additional local minima. Consider point x̄ = (0,
√
3
2 ) and

ȳ = (1, 1). Since both components of ȳ are positive, when we consider a point (x, y)

(a) (b)

Fig. 1 Possible partitions of the set from Example 2.1. a Local minima of problem (2). b Local minimum
of problem (5)
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close to (x̄, ȳ), then both (and not only one) probabilistic constraints have to be satisfied
at x . This changes the feasible set from the union into the intersection of two circles
and thus (x̄, ȳ) is indeed a local minimum of problem (5). This situation is depicted
in Fig. 1b. However, since x̄ is not a local solution to (2), there has to exist some
ŷ ∈ Y (x̄) such that (x̄, ŷ) is not a local minimum of problem (5). This point can be
obtained by choosing either ŷ = (1, 0) or ŷ = (0, 1).

Based on Lemma 2.2, we propose Algorithm 1 to solve problem (2). First, we solve
problem (5) to obtain (x̄, ȳ), then we find all y ∈ Y (x̄) and for all of them we verify
whether they are stationary points of problem (5). If so, then (x̄, ȳ) is a stationary point
of problem (2) due to Lemma 2.2. In the opposite case, there exists some y ∈ Y (x̄)
such that (x̄, y) is not a stationary point of problem (5), and thus x̄ is not a stationary
point of problem (2). Thus, we choose this point as a starting one and continue with
a new iteration. Note that by changing (x̄, ȳ) to (x̄, y), the objective value stays the
same.

Algorithm 1 for solving problem (2)

Input: starting point (x0, y0)
1: terminate ← false
2: while not terminate do
3: obtain (x̄, ȳ) by solving problem (5) with starting point (x0, y0)
4: if exists y ∈ Y (x̄) such that (x̄, y) does not satisfy optimality conditions (10) then
5: (x0, y0) = (x̄, y)
6: else
7: terminate ← true
8: end if
9: end while
10: return x̄

3 Regularized Problem

Algorithm 1 may suffer from two drawbacks. The first one is the verification of nec-
essary optimality conditions (10) which may be time-consuming. The second one is
that MFCQ is generally not satisfied as noted in Remark 2.1. For these reasons, we
propose additional technique similar to regularizing MPCCs, see [31]. This technique
enlarges the feasible set and solves the resulting regularized problem while driving
the regularization parameter to infinity. Thus, we consider regularized problem

minimize
x,y

f (x)

subject to p�y ≥ 1 − ε,

0 ≤ yi ≤ 1, i = 1, . . . , S,

yi ≤ φt (g(x, ξi )), i = 1, . . . , S,

h j (x) ≤ 0, j = 1, . . . , J,

(11)

where φt : R → R are continuously differentiable decreasing functions which depend
on a parameter t > 0 and which satisfy the following properties:

123



428 J Optim Theory Appl (2016) 170:419–436

g(x, ξi)

yi

g(x, ξi)

yi

g(x, ξi)

yi

(a) (b) (c)

Fig. 2 Feasible sets of problems (3), (5) and (11). a g(xi )yi ≤ 0, yi ∈ {0, 1}, b g(xi )yi ≤ 0, yi ∈ [0, 1],
c yi ≤ φt (g(xi )), yi ∈ [0, 1]

φt (0) = 1, (12)

φt (z) > 0, for z ∈ R, (13)

φt (z
t ) → 0, whenever zt

t→∞→ z̄ > 0, (14)

φ′
t (z

t )

φ′
t (z̃t )

→ 0, whenever φt (z
t ) ↘ 0 and φt (z̃

t ) → z̄ > 0. (15)

As an example of such regularizing function, we may consider φt (z) = e−t z .

We show the differences in problems (3), (5) and (11) in Fig. 2. We can see the
main reason for regularizing the feasible set of problem (5). Consider the case of
g(x̄, ξi ) = 0 and ȳ > 0. While in Fig. 2a or b it is not possible to find a feasible point
(x, y) in the vicinity of (x̄, ȳ) such that g(x, ξi ) > 0, this is possible in Fig. 2c.

The necessary optimality conditions for problem (11) at a point (x̄ t , ȳt ) read as
follows: There exist multipliers αt ∈ R, β t ∈ R

S , γ t ∈ R
S and μt ∈ R

J such that the
optimality conditions

0 = ∇ f (x̄ t ) −
S∑

i=1

γ t
i φ

′
t (g(x̄

t , ξi ))∇x g(x̄
t , ξi ) +

∑

j∈J0(x̄)

μt
j∇h j (x̄

t ), (16)

0 = −αt pi + β t
i + γ t

i , i = 1, . . . , S (17)

and the complementarity conditions and multiplier signs

αt (1 − ε − p� ȳt ) = 0, (18)

β t
i

⎧
⎪⎨

⎪⎩

≥ 0, if ȳti = 1,

= 0, if 0 < ȳti < 1,

≤ 0, if ȳti = 0,

(19)

γ t
i

(
ȳti − φt (g(x̄

t , ξi ))
) = 0, (20)

αt ≥ 0, β t
i ∈ R, γ t

i ≥ 0, μt
j ≥ 0. (21)

are satisfied. Since in the rest of the paperwewill work onlywith stationary conditions,
we do not derive a constraint qualification under which they are satisfied.

In the next theorem, we show that stationary points of problems (11) converge to a
stationary point of problem (5). Since wewill need boundedness of certainmultipliers,
we need to assume the second part of Assumption 2.1. First, we state two auxiliary
lemmas. For notational simplicity, we write only t instead of the more correct tk and
denote all subsequences by the same indices.
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Lemma 3.1 Assume that (x̄ t , ȳt ) is a stationary point of problem (11). Then the
following assertions hold true:

1. g(x̄ t , ξi ) < 0 �⇒ γ t
i = 0;

2. αt = 0 �⇒ β t
i = γ t

i = 0 for all i ;
3. ȳti < min{1, φt (g(x̄ t , ξi ))} for some i �⇒ αt = 0.

Proof The statements follow directly from an analysis of system (16)–(21). ��

Lemma 3.2 If for all t we have p� ȳt = 1−ε and for some i we have φt (g(x̄ t , ξi )) =
ȳti ↘ 0, then there exists a subsequence in t such that γ t

i = 0 for all t or such that
there exists an index j such that

−γ t
i φ

′
t (g(x̄

t , ξi ))

−γ t
jφ

′
t (g(x̄ t , ξ j ))

→ 0. (22)

Proof Due to the assumptions, there exists index j , and possibly a subsequence in t ,
such that ȳtj is strictly increasing. This implies that 0 < ȳtj < 1 and β t

i = β t
j = 0 for

all t . If γ t
i = 0, then the proof is finished. In the opposite case, we have αt > 0 and

−γ t
i φ

′
t (g(x̄

t , ξi ))

−γ t
jφ

′
t (g(x̄ t , ξ j ))

= −αt piφ′
t (g(x̄

t , ξi ))

−αt p jφ
′
t (g(x̄ t , ξ j ))

= pi
p j

φ′
t (g(x̄

t , ξi ))

φ′
t (g(x̄ t , ξ j ))

→ 0,

where the first equality follows from (17) and the convergence follows from
φt (g(x̄ t , ξ j )) ≥ ȳtj , the fact that ȳ

t
j is a strictly increasing sequence and assumption

(15). ��

Theorem 3.1 Consider (x̄ t , ȳt ) to be stationary points of problem (11). Assume that
the second part of Assumption 2.1 is satisfied at x̄ and that (x̄ t , ȳt ) → (x̄, ȳ) as
t → ∞. Then (x̄, ȳ) is a stationary point of problem (5).

Proof We will show first that (x̄, ȳ) is a feasible solution to (5). Due to continuity,
it is sufficient to show that g(x̄, ξi )ȳi ≤ 0. Since this relation is obvious whenever
g(x̄, ξi ) ≤ 0, we consider g(x̄, ξi ) > 0. But then g(x̄ t , ξi ) > 0 for sufficiently large
t and thus 0 ≤ ȳti ≤ φt (g(x̄ t , ξi )). But since g(x̄ t , ξi ) → g(x̄, ξi ) > 0, formula (14)
implies that ȳi = 0, and thus (x̄, ȳ) is a feasible point of problem (5).

For notational simplicity, we assume in the rest of the proof that J0(x̄) = ∅. Define
now

λti := −γ t
i φ

′
t (g(x̄

t , ξi )) ≥ 0,

where the nonnegativity follows from the property that φt is decreasing. Then for a
subsequence in t , optimality condition (16) reads
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0 = ∇ f (x̄ t ) +
S∑

i=1

λti∇x g(x̄
t , ξi )

= ∇ f (x̄ t ) +
∑

{i :g(x̄,ξi )=0, ȳi>0}
λti∇x g(x̄

t , ξi ) +
∑

{i :g(x̄,ξi )≥0, ȳi=0}
λti∇x g(x̄

t , ξi ).

(23)

Here, we can omit indices with g(x̄, ξi ) < 0 due to Lemma 3.1.
We claim now that λti is uniformly bounded in i and t . If this is not the case, then

we have

λtmax := max
i=1,...,S

λti → ∞.

Then dividing equation (23) by λtmax yields

0 = 1

λtmax
∇ f (x̄ t ) +

∑

{i :g(x̄,ξi )=0, ȳi>0}

λti

λtmax
∇x g(x̄

t , ξi )

+
∑

{i :g(x̄,ξi )≥0, ȳi=0}

λti

λtmax
∇x g(x̄

t , ξi ).

When taking limit t → ∞, the last term vanishes due to Lemma 3.2. Since the first
term also converges to zero, we obtain

0 =
∑

{i :g(x̄,ξi )=0, ȳi>0}
lim
t→∞

λti

λtmax
∇x g(x̄

t , ξi ).

Since
λti

λtmax
∈ [0, 1] and at least one of them equals to 1 due to the definition of λtmax,

this contradicts Assumption 2.1 and thus λti is indeed bounded.
This means that we may pass to a converging subsequence, say λti → λi . Since

λti ≥ 0 for all t , the same property holds for λi . In the light of (23), to finish the proof
it suffices to show that λi = 0 for all i such that g(x̄, ξi ) ≥ 0 and ȳi = 0. Fix any such
i . If p� ȳt > 1 − ε or φt (g(x̄ t , ξi )) > ȳti , then from Lemma 3.1 we have λti = 0. In
the opposite case, we may use Lemma 3.2 to obtain that λti = 0 or there exists j such

that
λti
λtj

→ 0. But the second possibility implies λti → 0 due to the boundedness of

λtj . Thus (x̄, ȳ) is indeed a stationary point of problem (5). ��
We summarize the previous results in Algorithm 2. We have added several modifi-

cations to the core result presented in Theorem 3.1 mainly to increase the performance
of the algorithm. We start with regularization parameters 0 < t1 < · · · < tK and pos-
sibly with a starting point (x0, y0). Provided that f , all g(·, ξi ) and h j are convex,
we may start with φ1(z) = 1 − 1

M z, where M should at least approximately satisfy
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Algorithm 2 for solving problem (2)

Input: starting point (x0, y0), regularization parameters 0 < t1 < · · · < tK
1: if f , g(·, ξi ) and h j are convex then
2: find (x0, y0) by solving convex problem (4) with yi ∈ [0, 1]
3: end if
4: for k = 1, . . . , K do
5: find (xk , yk ) solving (16)–(17) with tk and starting point (xk−1, yk−1)

6: if (xk , yk ) is feasible for (5) or termination criterion is satisfied then
7: break
8: end if
9: end for
10: choose x̄ as the best solution from x1, . . . , xK

11: if exists y ∈ Y (x̄) such that (x̄, y) does not satisfy optimality conditions (10) then
12: (x0, y0) = (x̄, y)
13: employ Algorithm 1 with starting point (x0, y0) to obtain solution x̄
14: end if
15: return x̄

g(x̄, ξi ) ≤ M . By doing so, we obtain the “big M” formulation (4), where the binary
variables yi ∈ {0, 1} are relaxed in continuous ones yi ∈ [0, 1].

After potentially solving the convex problem, in step 5 we are looking for a point
which satisfies the necessary optimality conditions (16)–(17) with given tk . In step 6,
we may terminate the loop if (x̄ t , ȳt ) is feasible for problem (5) and thus increasing
t cannot provide additional benefits or if a stopping criterion is satisfied. After doing
so, we select the best solution and check in step 11 whether x̄ is a stationary point of
problem (2). If this is not the case, we propose to switch to Algorithm 1. Numerical
experience suggests that Algorithm 2 is able to find a stationary point of problem (2)
almost in all cases and thus this switching of algorithms did not happen almost at all.
We believe that this is linked with the behavior that by regularizing the problem, we
reduce the set of stationary points. We present this behavior in the following example.

Example 3.1 Consider the same data as in Example 2.1. From Fig. 1, it can be com-
puted that

x̄1 = 1√
4.64

(
0.8
2

)

−
(
0.5
0

)
.=

(−0.1286
0.9285

)

Since Assumption 2.1 is satisfied at x̄1, it is a stationary point of this problem. We will
show that there is a neighborhood of x̄1 such that for every t > 0, this point is not a
stationary point of problem (11). We consider φt (z) = e−t z .

Optimality conditions (16) for (x, y) take form

(
0
0

)

=
(
2x1 − 0.6
2x2 − 4

)

− γ1φ
′
t (g(x, ξ1))

(
2x1 − 1
2x2

)

− γ2φ
′
t (g(x, ξ2))

(
2x1 + 1
2x2

)

Since we are interested in a neighborhood of x̄1, we may consider only x with x2 > 0.
Then it may be computed that
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x̄1 x̄2

Fig. 3 Algorithm 2 is able to converge from a local optimum x̄1 of problem (2) to its global minimum x̄2.
The circles denote updates of t

γ1 = 2x1 − 0.8x2 + 1

x2te−tg(x,ξ1)
, γ2 = −2x1 + 0.2x2 − 1

x2te−tg(x,ξ2)
. (24)

Since∇ f (x) �= 0, Lemma3.1 combinedwith (16) impliesα > 0.Combining thiswith
(18) yields y1+ y2 = 1. Using again Lemma 3.1, we see that 0 < yi = φt (g(x, ξi )) <

1, which subsequently implies βi = 0 and (17) then implies that γ1 = γ2. Plugging
this back into (24), we see that

2x1 − 0.8x2 + 1

2x1 + 0.2x2 − 1
= −etg(x,ξ2)

etg(x,ξ1)
. (25)

But when we are close to x̄1, the left-hand side is close to 0 and the right-hand one is
close to infinity. This shows that there are indeed no stationary points of the regularized
problem in the vicinity of x̄1.

As we have already mentioned, this means that problem (11) is able to ignore
stationarity points of the original problem (2). This phenomenon is depicted in Fig. 3,
where we show the path taken by the regularized problem with starting point x̄1. The
circles depict optimal points for certain regularization parameters t . Thus, Algorithm
2 is able to find global minimum (2) even when starting from its local minimum.

4 Numerical Results

In this section, we compare the proposed algorithms. We have implemented both
Algorithm 1 based on relaxed problem (5) and Algorithm 2 for regularized problem
(11). For solving mixed-integer program (4), we have used CPLEX and BONMIN
solvers with GAMS 24.3.3. Otherwise, the codes were run in MATLAB 2015a and
are freely available on authors’ webpage.

It is well known that the choice of M in problem (4) can significantly influence
the quality of solutions and the computational time, see [32]. Too big M leads to
constraints which are not tight and thus difficult to handle for mixed-integer solvers.
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In all problems, we considered φt (z) = e−t z . Further, we have chosen t1 = 1 and
tk+1 = 2.5tk .

In the test problem, we consider the l1 norm maximization problem with nonlinear
random budget constraints which can be formulated as follows

maximize
x≥0

n∑

j=1

x j subject to P

⎛

⎝
n∑

j=1

ξ2j x
2
j ≤ b

⎞

⎠ ≥ 1 − ε. (26)

The problem has been already solved by [20,23,33] using CVaR and difference of
convex approximations. However, the codes were not made available by the authors;
thus, we do not attach any comparison with our techniques. We consider samples from
standard normal distribution with realizations ξ j i with j = 1, . . . , n and i = 1, . . . , S,
which leads to g(x, ξi ) = ∑n

j=1 ξ2j i x
2
j − b.

We considered the following data: S ∈ {100, 500}, b = 10, ε = 0.05 and n = 10.
For result robustness, we have run the above problem, with different random vector
realizations, multiple times, specifically 100 times for S = 100 and 10 times for
S = 500. We have employed eight different algorithm modifications, based on both
continuous and mixed-integer reformulation. For the continuous solvers, we have
solved relaxed problem (5) via Algorithm 1 and regularized problem (11) via Algo-
rithm 2 with and without convex start. For the mixed-integer reformulation, we have
solved problem (4) and usedCPLEXandBONMINwith bothM = 50 andM = 1000.
Since BONMIN had time issues for M = 1000, we imposed time limit T .

We summarize the obtained results in Table 1. The used algorithms were described
in the previous paragraph. Column success denotes the percentage for which the
obtained point is a stationary point of the original problem (2). Columns objective,
reliability and time then denote the average objective value, the reliability (percentage
of satisfied constraints g(x, ξi ) ≤ 0) and the elapsed time in seconds, respectively.

We see that the regularized problem performsmuch better than the relaxed problem.
If we run CPLEX or BONMIN with a good initial estimate for M , then these mixed-
integer algorithms perform comparable with our solvers. However, if we decrease the
precision of the initial estimate of M , then the objective value gets worse and the
computation time explodes. If we impose on BONMIN the time limit of one minute,

Table 1 Comparison of various algorithms for problem (26) with S = 100 scenarios

Success Objective (%) Reliab (%) Time (s)

Algorithm 2 (regularized) convex start 100 8.080 95.0 2.23

Algorithm 2 (regularized) nonconvex start 100 8.066 95.0 1.72

Algorithm 1 (relaxed) 100 7.671 95.0 1.50

CPLEX M = 50 99 8.113 94.6 8.93

BONMIN M = 50 100 8.113 95.0 30.57

CPLEX M = 1000 70 7.951 95.0 13.11

BONMIN M = 1000, T = 600 s 93 8.071 95.1 393.79

BOMNIM M = 1000, T = 60 s 49 7.953 95.7 60
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Table 2 Comparison of various algorithms for problem (26) with S = 500 scenarios

Success (%) Objective Reliab (%) Time (s)

Algorithm 2 (regularized) convex 100 7.627 95.0 515.12

Algorithm 2 (regularized) nonconvex 100 7.628 95.0 438.96

CPLEX M = 50 T = 3600 s 90 7.647 94.9 3600

BONMIN M = 50 T = 3600 s 0 7.535 95.5 3600

which is still about 30 times greater than the average time for the regularized problem,
the quality of the solution decreases even more.

Results for S = 500 are given in Table 2. In one of the problems, CPLEX was not
able to solve the problem and returned zeros as the optimal solution. We have omitted
this run from the results for all solvers. Note that all solvers were comparable with
the exception of elapsed time. While the average of regularized solver was below ten
minutes, neither of the mixed-integer solvers was able to converge under one hour in
any single case. This can be seen in the column reliability, where the mixed-integer
solvers were not able to identify the correct 95% precisely. Moreover, even though the
objective was rather good for BONMIN, it was not able to identify a local minimum
in any run.

5 Conclusions

We have developed new numerical methods for solving chance constrained problems.
These methods are based on necessary optimality conditions which have been derived
for the original CCP, and both relaxed and regularized problems. The first algorithm
is based on modification of the auxiliary variables in the relaxed problem. Using this
approach, we are able to move toward a stationary point of the original problem. The
second algorithm is based on the proved convergence of a sequence of stationary points
of the regularized problem to a stationary point of the relaxed problem. Numerical
experiments suggest a very good behavior of the proposed methods on medium-sized
nonconvex problems.

Acknowledgments The authors gratefully acknowledge the support from the Grant Agency of the Czech
Republic under Project 15-00735S.

Appendix

Together with the index sets defined in (6), we work with the following ones

I−+(x̄, ȳ) := {i : g(x̄, ξi )<0, 0< ȳi <1}, I−1(x̄, ȳ) := {i : g(x̄, ξi )<0, ȳi = 1},
I−0(x̄, ȳ) := {i : g(x̄, ξi ) < 0, ȳi = 0}, I+0(x̄, ȳ) := {i : g(x̄, ξi ) > 0, ȳi = 0}.

Lemma 6.1 Denote Z to be the feasible set of problem (5), fix any (x̄, ȳ) ∈ Z with ȳ ∈
Y (x̄). Let Assumption 2.1 be fulfilled at x̄ . Then we have N̂Z (x̄, ȳ) = N1(x̄)× N2(ȳ),
where
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N1(x̄) =
⎧
⎨

⎩

∑

i∈I0(x̄)
λi∇x g(x̄, ξi ) +

∑

j∈J0(x̄)

μ j∇h j (x̄) :
λi ≥ 0, i ∈ I01(x̄, ȳ) ∪ I0+(x̄, ȳ)

λi = 0, i ∈ I00(x̄, ȳ)
μ j ≥ 0, j ∈ J0(x̄)

⎫
⎬

⎭
,

N2(ȳ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μp + γ :

μ ≤ 0 if p�y = 1 − ε, μ = 0 if p�y > 1 − ε

γi ≤ 0, i ∈ I00(x̄, ȳ) ∪ I−0(x̄, ȳ)

γi = 0, i ∈ I−+(x̄, ȳ) ∪ I0+(x̄, ȳ)

γi ≥ 0, i ∈ I−1(x̄, ȳ) ∪ I01(x̄, ȳ)

γi ∈ R, i ∈ I+0(x̄, ȳ)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Proof For I ⊂ I00(x̄, ȳ) define sets

Zx
I := {

x : g(x, ξi ) ≤ 0, i ∈ I ∪ I01(x̄, ȳ) ∪ I0+(x̄, ȳ), h j (x) ≤ 0, j = 1, . . . , J
}

Z y
I :=

{

y : p�y ≥ 1 − ε, yi = 0, i ∈ I+0(x̄, ȳ) ∪ (I00(x̄, ȳ)\I ),
yi ∈ [0, 1], i ∈ I ∪ I−1(x̄, ȳ) ∪ I01(x̄, ȳ) ∪ I−+(x̄, ȳ) ∪ I0+(x̄, ȳ) ∪ I−0(x̄, ȳ)

}

and observe that union of ZI := Zx
I × Z y

I with respect to all I ⊂ I00(x̄, ȳ) locally
around (x̄, ȳ) coincides with Z , which implies

N̂Z (x̄, ȳ) =
⋂

I⊂I00(x̄,ȳ)

N̂Z I (x̄, ȳ) =
⋂

I⊂I00(x̄,ȳ)

N̂Zx
I
(x̄) ×

⋂

I⊂I00(x̄,ȳ)

N̂Z y
I
(ȳ).

This means that we have

N1(x̄) =
⋂

I⊂I00(x̄,ȳ)

N̂Zx
I
(x̄) = N̂Zx

∅ (x̄) and N2(ȳ) =
⋂

I⊂I00(x̄,ȳ)

N̂Z y
I
(ȳ) = N̂Z y

I00(x̄,ȳ)
(ȳ).

The lemma statement them follows from [34, Proposition 3.4] and [27, Theorem 6.14].
��
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14. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Society for Indus-
trial and Applied Mathematics, Philadelphia (2009)

15. Kogan, A., Lejeune, M.: Threshold boolean form for joint probabilistic constraints with random tech-
nology matrix. Math. Program. 147(1–2), 391–427 (2014)

16. Lejeune, M.A.: Pattern-based modeling and solution of probabilistically constrained optimization
problems. Oper. Res. 60(6), 1356–1372 (2012)

17. Lejeune, M.A., Margot, F.: Solving chance-constrained optimization problems with stochastic
quadratic inequalities. Tepper Working Paper E8 (2014)

18. Prékopa, A.: Probabilistic programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Program-
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