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1 Introduction

The convergence rate is determined for the orthogonal collocationmethod developed in
[1,2] where the collocation points are the Gauss quadrature abscissas, or equivalently,
the roots of a Legendre polynomial. Other sets of collocation points that have been
studied in the literature include the Lobatto quadrature points [3,4], the Chebyshev
quadrature points [5,6], the Radau quadrature points [7–10], and extrema of Jacobi
polynomials [11]. We show that if the continuous problem has a smooth solution and
the Hamiltonian satisfies a strong convexity assumption, then the discrete problem
has a local minimizer that converges exponentially fast at the collocation points to
a solution of the continuous control problem. In other work [12,13], Kang considers
control systems in feedback linearizable normal form and shows that when the Lobatto
discretized control problem is augmented with bounds on the states and control and on
certain Legendre polynomial expansion coefficients, then the objectives in the discrete
problem converge to the optimal objective of the continuous problem at an exponential
rate. Kang’s analysis does not involve coercivity assumptions, but instead employs
bounds in the discrete problem. Also, in [14] a consistency result is established for a
scheme based on Lobatto collocation.

These collocation schemes based on the roots of orthogonal polynomials or their
derivatives all employ approximations to the state based on global polynomials. Pre-
viously, convergence rates have been obtained when the approximating space consists
of piecewise polynomials as in [15–21]. In this earlier work, convergence is achieved
by letting the mesh spacing tend to zero, while keeping fixed the degree of the approx-
imating polynomials on each mesh interval. In contrast, for schemes based on global
polynomials, convergence is achieved by letting the degree of the approximating
polynomials and the number of collocation points tend to infinity. This leads to an
exponential convergence rate for problems with a smooth solution.

2 Preliminaries

A convergence rate is established for an orthogonal collocation method applied to an
unconstrained control problem of the form

minimize C(x(1))
subject to ẋ(t) = f(x(t),u(t)), t ∈ [−1, 1],

x(−1) = x0, (x,u) ∈ C1(Rn) × C0(Rm),

⎫
⎬

⎭
(1)

where the state x(t) ∈ R
n , ẋ := d

dt
x, the control u(t) ∈ R

m , f : R
n × R

m →
R
n , C : R

n → R, and x0 is the initial condition, which we assume is given; Ck
denotes the space of k times continuously differentiable functions. Although there is
no integral (Lagrange) cost term appearing in (1), it could be included in the objective
by augmenting the state with an (n + 1)st component xn+1 with initial condition
xn+1(−1) = 0 and with dynamics equal to the integrand of the Lagrange term. It is
assumed that f and C are at least continuous. Let PN denote the space of polynomials
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of degree at most N defined on the interval [−1,+1], and let Pn
N denote the n-fold

Cartesian product PN × · · · × PN . We analyze a discrete approximation to (1) of the
form

minimize C(x(1))
subject to ẋ(τi ) = f(x(τi ),ui ), 1 ≤ i ≤ N ,

x(−1) = x0, x ∈ Pn
N .

(2)

The collocation points τi , 1 ≤ i ≤ N , are where the equation should be satisfied, and
ui is the control approximation at time τi . The dimension of PN is N + 1, while there
are N + 1 equations in (2) corresponding to the collocated dynamics at N points and
the initial condition. In this paper, we collocate at the Gauss quadrature points, which
are symmetric about t = 0 and satisfy

−1 < τ1 < τ2 < · · · < τN < +1.

In addition, the analysis utilizes two noncollocated points τ0 = −1 and τN+1 = +1.
To state our convergence results in a precise way, we need to introduce a function

space setting. Let Ck(Rn) denote the space of k times continuously differentiable
functions x : [−1,+1] → R

n . For the space of continuous functions, we use the
sup-norm ‖ · ‖∞ given by

‖x‖∞ = sup{|x(t)| : t ∈ [−1,+1]}, (3)

where | · | is the Euclidean norm. For y ∈ R
n , let Bρ(y) denote the ball with center y

and radius ρ:

Bρ(y) = {x ∈ R
n : |x − y| ≤ ρ}.

The following regularity assumption is assumed to hold throughout the paper.
Smoothness. The problem (1) has a local minimizer (x∗,u∗) in C1(Rn)×C0(Rm),

and the first two derivatives of f and C are continuous on the closure of an open set
� and on Bρ(x∗(1)) respectively, where � ⊂ R

m+n has the property that for some
ρ > 0,

Bρ(x∗(t),u∗(t)) ⊂ � for all t ∈ [−1,+1].

Let λ∗ denote the solution of the linear costate equation

λ̇
∗
(t) = −∇x H(x∗(t),u∗(t),λ∗(t)), λ∗(1) = ∇C(x∗(1)), (4)

where H is the Hamiltonian defined by H(x,u,λ) = λTf(x,u). Here ∇C denotes
the gradient of C . By the first-order optimality conditions (Pontryagin’s minimum
principle), we have

∇u H(x∗(t),u∗(t),λ∗(t)) = 0 (5)

for all t ∈ [−1,+1].
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Since the discrete collocation problem (2) is finite dimensional, the first-order opti-
mality conditions (Karush–Kuhn–Tucker conditions) imply that when a constraint
qualification holds [22], the gradient of the Lagrangian vanishes. By the analysis in
[2], the gradient of the Lagrangian vanishes if and only if there exists λ ∈ Pn

N such
that

λ̇(τi ) = −∇x H (x(τi ),ui ,λ(τi )) , 1 ≤ i ≤ N , (6)

λ(1) = ∇C(x(1)), (7)

0 = ∇u H (x(τi ),ui ,λ(τi )) , 1 ≤ i ≤ N . (8)

The assumptions that play a key role in the convergence analysis are the following:

(A1) Thematrix∇2C(x∗(1)) is positive semidefinite and for someα > 0, the smallest
eigenvalue of the Hessian matrix

∇2
(x,u)H(x∗(t),u∗(t),λ∗(t))

is greater than α, uniformly for t ∈ [−1,+1].
(A2) The Jacobian of the dynamics satisfies

‖∇x f(x∗(t),u∗(t))‖∞ ≤ β < 1/2 and ‖∇x f(x∗(t),u∗(t))T‖∞ ≤ β

for all t ∈ [−1,+1] where ‖ · ‖∞ is the matrix sup-norm (largest absolute row
sum), and the Jacobian ∇x f is an n by n matrix whose i th row is (∇x fi )T.

The coercivity assumption (A1) ensures that the solution of the discrete problem is a
stationary point. The condition (A2) arises in the theoretical convergence analysis since
the solution of the problem (1) is approximated by polynomials defined on the entire
time interval [−1,+1]. In contrast, when the solution is approximated by piecewise
polynomials as in [15–21], this condition is not needed. Tomotivate why this condition
arises, suppose that the systemdynamics f has the form f(x,u) = Ax+g(u)whereA is
an n by nmatrix. Since the dynamics are linear in the state, it follows that for any given
u with g(u) absolutely integrable, we can invert the continuous dynamics to obtain
the state x as a function of the control u. The dynamics in the discrete approximation
(2) are also a linear function of the discrete state evaluated at the collocation points;
however, the invertibility of the matrix in the discrete dynamics is not obvious. If the
systemmatrix satisfies ‖A‖∞ < 1/2, then wewill show that thematrix for the discrete
dynamics is invertible with its norm uniformly bounded as a function of N , the degree
of the polynomials. Consequently, it is possible to solve for the state as a function of
the control in the discrete problem (2). When ‖A‖∞ > 1/2, the matrix for the discrete
dynamics could be singular for some choice of N . In general, (A2) could be replaced
by any condition that ensures the solvability of the linearized dynamics for the state
in terms of the control, and the stability of this solution under perturbations in the
dynamics.

When the dynamics of the control problem are nonlinear, the convergence analysis
leads us to study the linearized dynamics around (x∗,u∗), and (A2) implies that the
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linearized dynamics in the discrete problem (2) are invertible with respect to the state.
In contrast, if the global polynomials are replaced by piecewise polynomials on a
uniform mesh of width h, then (A2) is replaced by

‖∇x f(x∗(t),u∗(t))‖∞ < 1/h and ‖∇x f(x∗(t),u∗(t))T‖∞ < 1/h,

which is satisfied when h is sufficiently small. In other words, when h is sufficiently
small, it is possible to solve for the discrete states in terms of the discrete controls,
independent of the degree of the polynomials on each mesh interval. These schemes
where both the mesh width h and the degree of the polynomials p on each mesh
interval are free parameters have been referred to as hp-collocation methods [9,10].

In addition to the two assumptions, the analysis employs two properties of theGauss
collocation scheme. Let ω j , 1 ≤ j ≤ N , denote the Gauss quadrature weights, and
for 1 ≤ i ≤ N and 0 ≤ j ≤ N , define

Di j = L̇ j (τi ), where L j (τ ) :=
N∏

k=0
k 
= j

τ − τk

τ j − τk
. (9)

D is a differentiation matrix in the sense that (Dp)i = ṗ(τi ), 1 ≤ i ≤ N , where
p ∈ PN is the polynomial that satisfies p(τ j ) = p j for 0 ≤ j ≤ N . The submatrix
D1:N consisting of the tailing N columns of D has the following properties:

(P1) D1:N is invertible and ‖D−1
1:N‖∞ ≤ 2.

(P2) If W is the diagonal matrix containing the Gauss quadrature weights ω on
the diagonal, then the rows of the matrix [W1/2D1:N ]−1 have Euclidean norm
bounded by

√
2.

The fact that D1:N is invertible is established in [2, Prop.1]. The bounds on the norms
in (P1) and (P2), however, are more subtle. We refer to (P1) and (P2) as properties
rather than assumptions since the matrices are readily evaluated, and we can check
numerically that (P1) and (P2) are always satisfied. In fact, numerically we find that
‖D−1

1:N‖∞ = 1+ τN where the last Gauss quadrature abscissa τN approaches +1 as N
tends to ∞. On the other hand, we do not yet have a general proof for the properties
(P1) and (P2). A prize for obtaining a proof is explained on William Hager’s Web site
(Google William Hager 10,000 yen). In contrast to these properties, conditions (A1)
and (A2) are assumptions that are only satisfied by certain control problems.

If xN ∈ Pn
N is a solution of (2) associated with the discrete controls ui , 1 ≤ i ≤ N ,

and if λN ∈ Pn
N satisfies (6)–(8), then we define

XN = [ xN (−1), xN (τ1), . . . , xN (τN ), xN (+1) ],
X∗ = [ x∗(−1), x∗(τ1), . . . , x∗(τN ), x∗(+1) ],
UN = [ u1, . . . , uN ],
U∗ = [ u∗(τ1), . . . , u∗(τN ) ],
�N = [ λN (−1), λN (τ1), . . . , λN (τN ), λN (+1) ],
�∗ = [ λ∗(−1), λ∗(τ1), . . . , λ∗(τN ), λ∗(+1) ].

123



806 J Optim Theory Appl (2016) 169:801–824

The following convergence result relative to the vector ∞-norm (largest absolute
element) is established:

Theorem 2.1 If (x∗,u∗) is a local minimizer for the continuous problem (1) with
(x∗,λ∗) ∈ Cη for some η ≥ 4 and both (A1)–(A2) and (P1)–(P2) hold, then for N
sufficiently large, the discrete problem (2) has a stationary point (XN ,UN ) and an
associated discrete costate �N , and there exists a constant c independent of N and η

such that

max
{
‖XN − X∗‖∞, ‖UN − U∗‖∞, ‖�N − �∗‖∞

}

≤
( c

N

)p−3 (
‖x∗(p)‖∞ + ‖λ∗(p)‖∞

)
, p = min{η, N + 1}. (10)

Moreover, if ∇2C(x∗(1)) is positive definite, then (XN ,UN ) is a local minimizer of
(2). Here the superscript (p) denotes the (p)th derivative.

Although the discrete problem only possesses discrete controls at the collocation
points −1 < τi < +1, 1 ≤ i ≤ N , an estimate for the discrete control at t = −1 and
t = +1 could be obtained from the minimum principle (5) since we have estimates for
the discrete state and costate at the end points. Alternatively, polynomial interpolation
could be used to obtain estimates for the control at the end points of the interval.

The paper is organized as follows. In Sect. 3, the discrete optimization problem
(2) is reformulated as a nonlinear system of equations obtained from the first-order
optimality conditions, and a general approach to convergence analysis is presented.
Section 4 obtains an estimate for how closely the solution to the continuous problem
satisfies the first-order optimality conditions for the discrete problem. Section 5 proves
that the linearization of the discrete control problemaround a solution of the continuous
problem is invertible. Section6 establishes an L2 stability property for the linearization,
while Sect. 7 strengthens the norm to L∞. This stability property is the basis for the
proof of Theorem 2.1. Numerical examples illustrating the exponential convergence
result are given in Sect. 8.

Notation. The meaning of the norm ‖ · ‖∞ is based on context. If x ∈ C0(Rn), then
‖x‖∞ denotes the maximum of |x(t)| over t ∈ [−1,+1], where | · | is the Euclidean
norm. If A ∈ R

m×n , then ‖A‖∞ is the largest absolute row sum (the matrix norm
induced by the vector sup-norm). For a vector v ∈ R

m , ‖v‖∞ is the maximum of
|vi | over 1 ≤ i ≤ m. We let |A| denote the matrix norm induced by the Euclidean
vector norm. The dimension of the identity matrix I is often clear from context; when
necessary, the dimension of I is specified by a subscript. For example, In is the n by
n identity matrix. ∇C denotes the gradient, a column vector, while ∇2C denotes the
Hessianmatrix. Throughout the paper, c denotes a generic constant which has different
values in different equations. The value of this constant is always independent of N . 1
denotes a vector whose entries are all equal to one, while 0 is a vector whose entries are
all equal to zero, and their dimension should be clear from context. Finally, X̄ ∈ R

nN

is the vector obtained by vertically stacking Xi ∈ R
n , 1 ≤ i ≤ N .
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3 Abstract Setting

As shown in [2], the discrete problem (2) can be reformulated as the nonlinear pro-
gramming problem

minimize C(XN+1)

subject to
∑N

j=0 Di jX j = f(Xi ,Ui ), 1 ≤ i ≤ N , X0 = x0,
XN+1 = X0 + ∑N

j=1 ω j f(X j ,U j ).

(11)

As indicated before Theorem 2.1, Xi corresponds to xN (τi ). Also, Garg et al. [2]
show that the equations obtained by setting the gradient of the Lagrangian to zero are
equivalent to the system of equations

N+1∑

j=1

D†
i j� j = −∇x H (Xi ,Ui ,�i ) , 1 ≤ i ≤ N , (12)

�N+1 = ∇C(XN+1), (13)

0 = ∇u H (Xi ,Ui ,�i ) , 1 ≤ i ≤ N , (14)

where

D†
i j = −

(
ω j

ωi

)

Dji , 1 ≤ i ≤ N , 1 ≤ j ≤ N , (15)

D†
i,N+1 = −

N∑

j=1

D†
i j , 1 ≤ i ≤ N . (16)

Here �i corresponds to λN (τi ). The relationship between the discrete costate �i ,
the KKT multipliers λi , 1 ≤ i ≤ N , associated with the discrete dynamics, and the
multiplier λN+1 associated with the equation for XN+1 is

ωi�i = λi + ωiλN+1 when 1 ≤ i ≤ N , and �N+1 = λN+1. (17)

The first-order optimality conditions for the nonlinear program (11) consist of the
Eqs. (12)–(14) and the constraints in (11). This system can bewritten as T (X,U,�) =
0 where

(T1, T2, . . . , T5)(X,U,�) ∈ R
nN × R

n × R
nN × R

n × R
mN .

The five components of T are defined as follows:

T1i (X,U,�) =
⎛

⎝
N∑

j=0

Di jX j

⎞

⎠ − f(Xi ,Ui ), 1 ≤ i ≤ N ,

T2(X,U,�) = XN+1 − X0 −
N∑

j=1

ω j f(X j ,U j ),
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T3i (X,U,�) =
⎛

⎝
N+1∑

j=1

D†
i j� j

⎞

⎠ + ∇x H(Xi ,Ui ,�i ), 1 ≤ i ≤ N ,

T4(X,U,�) = �N+1 − ∇xC(XN+1),

T5i (X,U,�) = ∇u H(Xi ,Ui ,�i ), 1 ≤ i ≤ N .

Note that in formulating T , we treat X0 as a constant whose value is the given
starting condition x0. Alternatively, we could treatX0 as an unknown and then expand
T to have a sixth component X0 − x0. With this expansion of T , we need to introduce
an additional multiplier�0 for the constraintX0−x0; it turns out that�0 approximates
λ∗(−1). To achieve a slight simplification in the analysis, we employ a five-component
T and treat X0 as a constant, not an unknown.

The proof of Theorem 2.1 reduces to a study of solutions to T (X,U,�) = 0
in a neighborhood of (X∗,U∗,�∗). Our analysis is based on Dontchev et al. [17,
Proposition3.1], which we simplify below to take into account the structure of our
T . Other results like this are contained in Theorem 3.1 of [16], in Proposition 5.1 of
Hager [19], and in Theorem 2.1 of Hager [23].

Proposition 3.1 Let X be a Banach space and Y be a linear normed space with the
norms in both spaces denoted ‖ · ‖. Let T : X 
−→ Y with T continuously Fréchet
differentiable in Br (θ

∗) for some θ∗ ∈ X and r > 0. Suppose that

‖∇T (θ) − ∇T (θ∗)‖ ≤ ε for all θ ∈ Br (θ
∗)

where∇T (θ∗) is invertible, and defineμ := ‖∇T (θ∗)−1‖. If εμ < 1 and
∥
∥T

(
θ∗)∥∥ ≤

(1 − με)r/μ, then there exists a unique θ ∈ Br (θ
∗) such that T (θ) = 0. Moreover,

we have the estimate
‖θ − θ∗‖ ≤ μ

1 − με

∥
∥T

(
θ∗)∥∥ ≤ r. (18)

We apply Proposition 3.1 with θ∗ = (X∗,U∗,�∗) and θ = (XN ,UN ,�N ). The
key steps in the analysis are the estimation of the residual

∥
∥T

(
θ∗)∥∥, the proof that

∇T (θ∗) is invertible, and the derivation of a bound for‖∇T (θ∗)−1‖ that is independent
of N . In our context, we use the ∞-norm for both X and Y . In particular,

‖θ‖ = ‖(X,U,�)‖∞ = max{‖X‖∞, ‖U‖∞, ‖�‖∞}. (19)

For this norm, the left side of (10) and the left side of (18) are the same. The norm on
Y enters into the estimation of both the residual ‖T (θ∗)‖ in (18) and the parameter
μ := ‖∇T (θ∗)−1‖. In our context, we think of an element of Y as a vector with
components yi , 1 ≤ i ≤ 3N + 2, where yi ∈ R

n for 1 ≤ i ≤ 2N + 2 and yi ∈ R
m

for i > 2N + 2. For example, T1(X,U,�) ∈ R
nN corresponds to the components

yi ∈ R
n , 1 ≤ i ≤ N .

4 Analysis of the Residual

We now establish a bound for the residual.
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Lemma 4.1 If (x∗,λ∗) ∈ Cη and p = min{η, N + 1} ≥ 4, then there exits a constant
c independent of N and η such that

‖T (X∗,U∗,�∗)‖∞ ≤
( c

N

)p−3 (
‖x∗(p)‖∞ + ‖λ∗(p)‖∞

)
. (20)

Proof By the definition ofT ,T4(X∗,U∗,�∗) = 0 since x∗ andλ∗ satisfy the boundary
condition in (4). Likewise, T5(X∗,U∗,�∗) = 0 since (5) holds for all t ∈ [−1,+1];
in particular, (5) holds at the collocation points.

Now let us consider T1. By Garg et al. [2, Eq. (7)],

N∑

j=0

Di jX∗
j = ẋI (τi ), 1 ≤ i ≤ N ,

where xI ∈ Pn
N is the (interpolating) polynomial that passes through x∗(τi ) for 0 ≤

i ≤ N . Since x∗ satisfies the dynamics of (1), it follows that f(X∗
i ,U

∗
i ) = ẋ∗(τi ).

Hence, we have
T1i (X∗,U∗,�∗) = ẋI (τi ) − ẋ∗(τi ). (21)

By Hager et al. [24, Prop. 2.1], we have

‖ẋI − ẋ∗‖∞ ≤
(
1 + 2N 2

)
inf

q∈Pn
N

‖ẋ − q̇‖∞ + N 2(1 + LN ) inf
q∈Pn

N

‖x − q‖∞ , (22)

where LN is the Lebesgue constant of the point set τi , 0 ≤ i ≤ N . In [24, Thm. 4.1],
we show that LN = O(

√
N ). It follows from Elschner [25, Prop. 3.1] that for some

constant c, independent of N , we have

inf
q∈Pn

N

‖x − q‖∞ ≤
(

c

N + 1

)η

‖x∗(η)‖∞ (23)

and

inf
q∈Pn

N

‖ẋ − q̇‖∞ ≤
( c

N

)η−1 ‖x∗(η)‖∞ (24)

whenever N + 1 ≥ η. In the case that N + 1 < η, the smoothness requirement η can
be relaxed to N + 1 to obtain similar bounds. Since the first bound (23) is dominated
by (24), it follows that the first term in (22) dominates the second term, and we have

‖ẋI − ẋ∗‖∞ ≤
( c

N

)p−3 ‖x∗(p)‖∞ (25)

where p = min{η, N + 1}. The bound (25) is valid in both cases N + 1 ≥ η and
N + 1 < η. By (21) and (25), T1(X∗,U∗,�∗) complies with the bound (20).
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Next, let us consider

T2(X∗,U∗,�∗) = x∗(1) − x∗(−1) −
N∑

j=1

ω j f(x∗(τ j ),u∗(τ j )). (26)

By the fundamental theorem of calculus and the fact that N -point Gauss quadrature
is exact for polynomials of degree up to 2N − 1, we have

0 = xI (1) − xI (−1) −
∫ 1

−1
ẋI (t)dt = xI (1) − x∗(−1) −

N∑

j=1

ω j ẋI (τ j ) (27)

since xI (−1) = x∗(−1). Subtract (27) from (26) to obtain

T2(X∗,U∗,�∗) = x∗(1) − xI (1) +
N∑

j=1

ω j

(
ẋI (τ j ) − ẋ∗(τ j )

)
. (28)

Since ω j > 0 and their sum is 2,

∣
∣
∣
∣
∣
∣

I∑

j=1

ω j

(
ẋI (τ j ) − ẋ∗(τ j )

)
∣
∣
∣
∣
∣
∣
≤ 2‖ẋI − ẋ∗‖∞. (29)

Likewise,

|x∗(1) − xI (1)| =
∣
∣
∣
∣

∫ +1

−1

(
ẋ∗(t) − ẋI (t)

)
dt

∣
∣
∣
∣ ≤ 2‖ẋ∗ − ẋI ‖∞. (30)

We combine (28)–(30) and (25) to see that T2(X∗,U∗,�∗) complies with the bound
(20).

Finally, let us consider T3. By Garg et al. [2, Thm. 1],

N+1∑

j=1

D†
i j�

∗
j = λ̇

I
(τi ), 1 ≤ i ≤ N ,

where λI ∈ Pn
N is the (interpolating) polynomial that passes through �∗

j = λ(τ j ) for

1 ≤ j ≤ N + 1. Since λ∗ satisfies (4), it follows that λ̇
∗
(τi ) = −∇x H(X∗

i ,U
∗
i ,�

∗
i ).

Hence, we have

T3i (X∗,U∗,�∗) = λ̇
I
(τi ) − λ̇

∗
(τi ).

In exactly the same way that T1 in (21) was handled, we conclude that T3(X∗,U∗,�∗)
complies with the bound (20). This completes the proof. ��
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5 Invertibility

In this section, we show that the derivative ∇T (θ∗) is invertible. This is equivalent to
showing that for each y ∈ Y , there is a unique θ ∈ X such that ∇T (θ∗)[θ] = y. In
our application, θ∗ = (X∗,U∗,�∗) and θ = (X,U,�). To simplify the notation, we
let ∇T ∗[X,U,�] denote the derivative of T evaluated at (X∗,U∗,�∗) operating on
(X,U,�). This derivative involves the following six matrices:

Ai = ∇x f(x∗(τi ),u∗(τi )), Bi = ∇uf(x∗(τi ),u∗(τi )),
Qi = ∇xx H

(
x∗(τi ),u∗(τi ),λ∗(τi )

)
, Si = ∇ux H

(
x∗(τi ),u∗(τi ),λ∗(τi )

)
,

Ri = ∇uu H
(
x∗(τi ),u∗(τi ),λ∗(τi )

)
, T = ∇2C(x∗(1)).

With this notation, the five components of ∇T ∗[X,U,�] are as follows:

∇T ∗
1i [X,U,�] =

⎛

⎝
N∑

j=1

Di jX j

⎞

⎠ − AiXi − BiUi , 1 ≤ i ≤ N ,

∇T ∗
2 [X,U,�] = XN+1 −

N∑

j=1

ω j (A jX j + B jU j ),

∇T ∗
3i [X,U,�] =

⎛

⎝
N+1∑

j=1

D†
i j� j

⎞

⎠ + AT
i �i + QiXi + SiUi , 1 ≤ i ≤ N ,

∇T ∗
4 [X,U,�] = �N+1 − TXN+1,

∇T ∗
5i [X,U,�] = STi Xi + RiUi + BT

i �i , 1 ≤ i ≤ N .

Notice thatX0 does not appear in∇T ∗ sinceX0 is treated as a constant whose gradient
vanishes.

The analysis of invertibility starts with the first component of ∇T ∗.

Lemma 5.1 If (P1) and (A2) hold, then for each q ∈ R
n and p ∈ R

nN with pi ∈ R
n,

1 ≤ i ≤ N, the linear system

⎛

⎝
N∑

j=1

Di jX j

⎞

⎠ − AiXi = pi 1 ≤ i ≤ N , (31)

XN+1 −
N∑

j=1

ω jA jX j = q, (32)

has a unique solution X j ∈ R
n, 1 ≤ j ≤ N + 1. This solution has the bound

‖X j‖∞ ≤ 2‖p‖∞/(1 − 2β), 1 ≤ j ≤ N , (33)

‖XN+1‖∞ ≤ ‖q‖∞ + 4β‖p‖∞/(1 − 2β). (34)
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Proof Let X̄ be the vector obtained by vertically stacking X1 through XN , let A
be the block diagonal matrix with i-th diagonal block Ai , 1 ≤ i ≤ N , and define
D̄ = D1:N ⊗ In where ⊗ is the Kronecker product. With this notation, the linear
system (31) can be expressed (D̄−A)X̄ = p. By (P1)D1:N is invertible which implies
that D̄ is invertible with D̄−1 = D−1

1:N ⊗ In . Moreover, ‖D̄−1‖∞ = ‖D−1
1:N‖∞ ≤ 2

by (P1). By (A2) ‖A‖∞ ≤ β and ‖D̄−1A‖∞ ≤ ‖D̄−1‖∞‖A‖∞ ≤ 2β. By Horn and
Johnson [26, p. 351], I− D̄−1A is invertible since β < 1/2 and

∥
∥(I − D̄−1A)−1

∥
∥∞ ≤

1/(1 − 2β). Consequently, D̄ − A = D̄(I − D̄−1A) is invertible, and

‖(D̄ − A)−1‖∞ ≤ ‖(I − D̄−1A)−1‖∞‖D̄−1‖∞ ≤ 2/(1 − 2β).

Thus there exists a unique X̄ such that (D̄ − A)X̄ = p, and (33) holds. By (32), we
have

‖XN+1‖∞ ≤ ‖q‖∞ +
N∑

j=1

ω j‖A j‖∞‖X j‖∞.

Hence, (34) follows from (33) and the fact that the ω j are positive and sum to 2 and
‖A j‖∞ ≤ β by (A2). ��

Next, we establish the invertibility of ∇T ∗.

Proposition 5.1 If (A1), (A2), and (P1) hold, then ∇T ∗ is invertible.

Proof We formulate a strongly convex quadratic programming problem whose first-
order optimality conditions reduce to∇T ∗[X,U,�] = y. Due to the strong convexity
of the objective function, the quadratic programming has a solution and there exists
� such that ∇T ∗[X,U,�] = y. Since T ∗ is square and ∇T ∗[X,U,�] = y has a
solution for each choice of y, it follows that ∇T ∗ is invertible.

The quadratic program is

minimize 1
2Q(X,U) + L(X,U)

subject to
∑N

j=1 Di jX j = AiXi + BiUi + y1i , 1 ≤ i ≤ N ,

XN+1 = y2 + ∑N
j=1 ω j

(
A jX j + B jU j

)
,

⎫
⎪⎬

⎪⎭
(35)

where the quadratic and linear terms in the objective are

Q(X,U) = XT
N+1TXN+1 + Q0(X̄,U) (36)

Q0(X̄,U) =
N∑

i=1

ωi

(
XT
i QiXi + 2XT

i SiUi + UT
i RiUi

)
,

L(X,U) = yT4XN+1 + L0(X̄,U),

L0(X̄,U) = −
N∑

i=1

ωi

(
yT3iXi + yT5iUi

)
. (37)
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The first-order optimality conditions for (35) reduce to ∇T ∗[X,U,�] = y. See Garg
et al. [2] for the manipulations needed to obtain the first-order optimality conditions
in this form.

Notice that the state variable XN+1 in the quadratic program (35) can be expressed
as a function of X̄, U, and the parameter y2. After making this substitution, we obtain
a new quadratic Q̄ and a new linear term L̄ in the objective:

Q̄(X̄,U) = Q0(X̄,U) + Q1(X̄,U),

Q1(X̄,U) =
(

N∑

i=1

ωi (AiXi + BiUi )

)T

T

(
N∑

i=1

ωi (AiXi + BiUi )

)

,

L̄(X̄,U) = L0(X̄,U) +
N∑

i=1

ωi (y4 + 2Ty2)
T(AiXi + BiUi ).

Hence, the elimination of XN+1 from the quadratic program (35) leads to the reduced
problem

minimize 1
2 Q̄(X̄,U) + L̄(X̄,U)

subject to
∑N

j=1 Di jX j = AiXi + BiUi + y1i , 1 ≤ i ≤ N .

}

(38)

By (A1), we have

Q̄(X̄,U) ≥ α

(
N∑

i=1

ωi

(
|Xi |2 + |Ui |2

)
)

. (39)

Since α andω are strictly positive, the objective of (38) is strongly convex with respect
to X̄ and U, and by Lemma 5.1, the quadratic programming problem is feasible.
Hence, there exists a unique solution to both (35) and (38) for any choice of y, and
since the constraints are linear, the first-order necessary optimality conditions hold.
Consequently, ∇T ∗[X,U,�] = y has a solution for any choice of y and the proof is
complete. ��

6 ω-Norm Bounds

In this section, we obtain a bound for the (X,U) component of the solution to
∇T ∗[X,U,�] = y in terms of y. We bound the Euclidean norm of XN+1, while
the other components of the state and the control are bounded in the ω-norm defined
by

‖X̄‖2ω =
N∑

i=1

ωi |Xi |2 and ‖U‖2ω =
N∑

i=1

ωi |Ui |2. (40)
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This defines a norm since the Gauss quadrature weight ωi > 0 for each i . Since the
(X,U) component of the solution to ∇T ∗[X,U,�] = y is a solution of the quadratic
program (35), we will bound the solution to the quadratic program.

First, let us think more abstractly. Let π be a symmetric, continuous bilinear func-
tional defined on a Hilbert spaceH, let � be a continuous linear functional, let φ ∈ H,
and consider the quadratic program

min

{
1

2
π(v + φ, v + φ) + �(v + φ) : v ∈ V

}

,

where V is a subspace of H. If w is a minimizer, then by the first-order optimality
conditions, we have

π(w, v) + π(φ, v) + �(v) = 0 for all v ∈ V.

Inserting v = w yields

π(w,w) = −(π(w, φ) + �(w)). (41)

We apply this observation to the quadratic program (38). We identify � with the
linear functional L̄, and π with the bilinear form associated with the quadratic Q̄.
The subspace V is the null space of the linear operator in (38), and φ is a particular
solution of the linear system. For the particular solution of the linear system in (38),
we take X̄ = χ and U = 0, where χ denotes the solution to (31) given by Lemma 5.1
for p = y1. The complete solution of (38) is the particular solution (χ , 0) plus the
minimizer over the null space, which we denote (XN ,UN ).

In the relation (41) describing the null space component (XN ,UN ) of the solution,
π(w,w) corresponds to Q̄(X̄N ,UN ). The terms on the right side of (41) correspond
to

π(w, φ) =
N∑

i=1

ωi

[
(χT

i Qi + zTAi )XN
i + (χT

i Si + zTBi )UN
i

]
, and

�(w) =
N∑

i=1

ωi

[(
(y4 + 2Ty2)

TAi − yT3i
)
XN
i +

(
(y4 + 2Ty2)

TBi − yT5i
)
UN
i

]
,

where

z = T

(
N∑

i=1

ωiAiχ i

)

.

(A1) implies that the quadratic term has the lower bound

π(w,w) = Q̄(X̄N ,UN ) ≥ α(‖X̄N ‖2ω + ‖UN ‖2ω). (42)
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The terms corresponding to π(w, φ) and �(w) can all be bounded in terms of the
ω-norms of X̄ and U and ‖y‖. For example, by the Schwarz inequality, we have

N∑

i=1

ωiyT3iX
N
i ≤

(
N∑

i=1

ωi |y3i |2
)1/2 (

N∑

i=1

ωi |XN
i |2

)1/2

≤ √
2‖y3‖∞

(
‖X̄N ‖2ω + ‖UN ‖2ω

)1/2
. (43)

The last inequality exploits the fact that the ωi sum to 2 and |y3i | ≤ ‖y3‖∞. To
handle the terms involving χ in π(w, φ) and �(w), we utilize the upper bound |χ j | ≤
2‖y‖∞/(1 − 2β) given in (33). Hence, we have

|z| ≤ |T|
N∑

i=1

ωi |Ai |
[
2‖y‖∞/(1 − 2β)

] ≤ [2β/(1 − 2β)] |T|‖y‖∞
N∑

i=1

ωi

= [4β/(1 − 2β)] |T|‖y‖∞,

where we used (A2) to obtain the bound

|Ai | =
√

|AT
i Ai | ≤

√

‖AT
i Ai‖∞ ≤

√

‖AT
i ‖∞‖Ai‖∞ ≤ β. (44)

Combine upper bounds of the form (43) with the lower bound like (42) to conclude that
‖X̄N ‖ω and ‖UN ‖ω are bounded by a constant times ‖y‖∞. The complete solution
of (38) is the null space component that we just bounded plus the particular solution
(χ , 0). Again, since ‖χ j‖∞ ≤ 2‖y‖∞/(1−2β), we deduce that the complete solution
(X̄,U), null space component plus particular solution, has ‖X̄‖ω and ‖U‖ω bounded
by a constant times ‖y‖∞. Finally, the equation for XN+1 in (35) yields

|XN+1| ≤ |y2| +
N∑

i=1

ωi [|Ai ||Xi | + |Bi ||Ui |] .

Again, the Schwarz inequality gives bounds such as

N∑

i=1

ωi |Ai ||Xi | ≤
(

N∑

i=1

ωi |Ai |2
)1/2

‖X̄‖ω ≤ √
2β‖X̄‖ω,

where the last inequality is due to (44) and the fact that theωi sum to 2. Since ‖X̄‖ω and
‖U‖ω are bounded by a constant times ‖y‖∞, so is |XN+1|. This yields the following:

Lemma 6.1 If (A1), (A2), and (P1) hold, then there exists a constant c, independent
of N , such that the solution (X,U) of (35) satisfies |XN+1| ≤ c‖y‖∞, ‖X̄‖ω ≤ c‖y‖∞,
and ‖U‖ω ≤ c‖y‖∞.
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7 Infinity Norm Bounds

We now need to convert these ω-norm bounds for X and U into ∞-norm bounds and,
at the same time, obtain an ∞-norm estimate for �. By Lemma 5.1, the solution to
the dynamics in (35) can be expressed

X̄ = (I − D̄−1A)−1D̄−1BU + (D̄ − A)−1y1, (45)

where B is the block diagonal matrix with i th diagonal block Bi . Taking norms and
utilizing the bounds ‖(D̄−A)−1y1‖∞ ≤ 2‖y1‖∞/(1−2β) and

∥
∥(I − D̄−1A)−1

∥
∥∞ ≤

1/(1 − 2β) from Lemma 5.1, we obtain

‖X̄‖∞ ≤
(
‖D̄−1BU‖∞ + 2‖y1‖∞

)
/(1 − 2β). (46)

We now write

D̄−1BU = [D−1
1:N ⊗ In]BU = [(W1/2D1:N )−1 ⊗ In]BUω, (47)

where W is the diagonal matrix with the quadrature weights on the diagonal and Uω

is the vector whose i th element is
√

ωiUi . Note that the
√

ωi factors in (47) cancel
each other. An element of the vector D̄−1BU is the dot product between a row of
(W1/2D1:N )−1⊗In and the column vectorBUω. By (P2) the rows of (W1/2D1:N )−1⊗
In have Euclidean length bounded by

√
2. By the properties of matrix norms induced

by vector norms, we have

|BUω| ≤ |B||Uω| = |B|‖U‖ω. (48)

Thus thinking of D̄−1BU in (47) as being the dot product of BUω with a vector of
length at most

√
2, where the Euclidean length of BUω is estimated in (48), we have

‖D̄−1BU‖∞ ≤ √
2|B|‖U‖ω. (49)

Combine Lemma 6.1 with (46) and (49) to deduce that ‖X̄‖∞ ≤ c‖y‖∞, where c is
independent of N . Since |XN+1| ≤ c‖y‖∞ by Lemma 6.1, it follows that

‖X‖∞ ≤ c‖y‖∞. (50)

Next, we use the third and fourth components of the linear system

∇T ∗[X,U,�] = y (51)

to obtain bounds for �. These equations can be written

D̄†�̄ + D̄†
N+1�N+1 + AT�̄ + QX̄ + SU = y3 (52)
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and
�N+1 − TXN+1 = y4, (53)

where D̄† = D†
1:N ⊗In , D̄

†
N+1 = D†

N+1⊗In andD
†
N+1 is the (N +1)th column ofD†,

�̄ is obtained by vertically stacking �1 through �N , and Q and S are block diagonal
matrices with i th diagonal blocks Qi and Si , respectively.

We show in Proposition 10.1 of the “Appendix” that D1:N = −JD†
1:NJ, where J is

the exchange matrix with ones on its counterdiagonal and zeros elsewhere. It follows
thatD−1

1:N = −J(D†
1:N )−1J. Consequently, the elements inD−1

1:N are the negative of the

elements in (D†
1:N )−1, but rearranged as in (60). As a result, (D†

1:N )−1 also possesses
properties (P1) and (P2), and the analysis of the discrete costate closely parallels
the analysis of the state. The main difference is that the costate equation contains
the additional �N+1 term along with the additional equation (53). By (53) and the
previously established bound ‖X‖∞ ≤ c‖y‖∞, it follows that

‖�N+1‖∞ ≤ c‖y‖∞, (54)

where c is independent of N . Since D†1 = 0, we deduce that (D†
1:N )−1D†

N+1 = −1.
It follows that

(D̄†)−1D̄†
N+1 = [(D†

1:N )−1 ⊗ In][D†
N+1 ⊗ In] = −1 ⊗ In .

Exploiting this identity, the analog of (45) is

�̄ = (I + (D̄†)−1AT)−1[(1 ⊗ In)�N+1 + (D̄†)−1(y3 − QX̄ − SU)].

Hence, we have

‖�̄‖∞ ≤ ‖(1 ⊗ In)�N+1 + (D̄†)−1(y3 − QX̄ − SU)‖∞/(1 − 2β). (55)

Moreover, ‖(1 ⊗ In)�N+1‖∞ ≤ c‖y‖∞ by (54), ‖(D̄†)−1y3‖∞ ≤ 2‖y3‖∞,
and ‖(D̄†)−1QX̄‖∞ ≤ 2‖Q‖∞‖X̄‖∞ where ‖X̄‖∞ is bounded by (50). The term
‖(D̄†)−1SU)‖∞ is handled exactly as ‖D̄−1BU‖∞ was handled in the state equation
(45). Combine (54) with (55) to conclude that ‖�‖∞ ≤ c‖y‖∞ where c is independent
of N .

Finally, let us examine thefifth component of the linear system (51). These equations
can be written

STi Xi + RiUi + BT
i �i = y5i , 1 ≤ i ≤ N .

By (A1) the smallest eigenvalue ofRi is greater than α > 0. Consequently, the bounds
‖X‖∞ ≤ c‖y‖∞ and ‖�‖∞ ≤ c‖y‖∞ imply the existence of a constant c, independent
of N , such that ‖U‖∞ ≤ c‖y‖∞. In summary, we have the following result:
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Lemma 7.1 If (A1)–(A2) and (P1)–(P2) hold, then there exists a constant c, indepen-
dent of N , such that the solution of ∇T ∗[X,U,�] = y satisfies

max {‖X‖∞, ‖U‖∞, ‖�‖∞} ≤ c‖y‖∞.

Let us now prove Theorem 2.1 using Proposition 3.1. By Lemma 7.1, μ =
‖∇T (X∗,U∗,�∗)−1‖∞ is bounded uniformly in N . Choose ε small enough that
εμ < 1. When we compute the difference ∇T (X,U,�) − ∇T (X∗,U∗,�∗) for
(X,U,�) near (X∗,U∗,�∗) in the ∞-norm, theD andD† constant terms cancel, and
we are left with terms involving the difference of derivatives of f or C up to second
order at nearby points. By the smoothness assumption, these second derivatives are
uniformly continuous on the closure of � and on a ball around x∗(1). Hence, for r
sufficiently small, we have

‖∇T (X,U,�) − ∇T (X∗,U∗,�∗)‖∞ ≤ ε

whenever
max{‖X − X∗‖∞, ‖U − U∗‖∞, ‖� − �∗‖∞} ≤ r. (56)

Since the smoothness η ≥ 4 in Theorem 2.1, let us choose η = 4 in Lemma 4.1 and
then take N̄ large enough that

∥
∥T

(
X∗,U∗,�∗)∥∥ ≤ (1 − με)r/μ for all N ≥ N̄ .

Hence, by Proposition 3.1, there exists a solution to T (X,U,�) = 0 satisfying (56).
Moreover, by (18) and (20), the estimate (10) holds.

Notice that the smoothness parameter η does not enter into the discretization. We
chose η = 4 to establish the existence of a unique solution to T (X,U,�) = 0
satisfying (56). Once we know that the solution exists, larger values for η can be
inserted in the error bound (10) if the problem solution has more than 4 continuous
derivatives. In particular, if the problem solution has an infinite number of continuous
derivatives that are nicely bounded, then we might take η = N + 1 in (10).

The analysis shows the existence of a solution to T (X,U,�) = 0, which cor-
responds to the first-order necessary optimality conditions for either (11) or (2). To
complete the proof, we need to show that this stationary point is a local minimizer
when the assumption that ∇2C(x∗(1)) is positive semidefinite is strengthened to pos-
itive definite. After replacing the KKTmultipliers by the transformed quantities given
by (17), the Hessian of the Lagrangian is a block diagonal matrix whose i th diago-
nal block, 1 ≤ i ≤ N , is ωi∇2

(x,u)H(Xi ,Ui ,�i ), where H is the Hamiltonian, and

whose (N+1)st diagonal block is∇2C(XN+1). In computing the Hessian, we assume
that the X and U variables are arranged in the following order: X1, U1, X2, U2, . . .,
XN , UN , XN+1. By the strengthened version of (A1), the Hessian is positive definite
when evaluated at (X∗,U∗,�∗). By continuity of the second derivative of C and f
and by the convergence result (10), we conclude that the Hessian of the Lagrangian,
evaluated at the solution of T (X,U,�) = 0 satisfying (56), is positive definite for
N sufficiently large. Hence, by the second-order sufficient optimality condition [22,
Thm.12.6], (X,U) is a strict local minimizer of (11). This completes the proof of
Theorem 2.1.
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Fig. 1 The base 10 logarithm of the error in the sup-norm at the collocation points as a function of the
polynomial degree for example (57)

8 Numerical Illustrations

The first example we study is

minimize 1
2

∫ 1

0

[
u(t)2 + x(t)u(t) + 5

4 x(t)
2
]
dt (57)

subject to x ′(t) = .5x(t) + u(t), x(0) = 1,

with the optimal solution

x∗(t) = cosh(1 − t)

cosh(1)
, u∗(t) = − sinh(1 − t) + .5 cosh(1 − t)

cosh(1)
.

To put this problem in the form of (1), we could introduce a new state variable y with
dynamics

y′(t) = 1

2

(
u(t)2 + x(t)u(t) + 1.25x(t)2

)
, y(0) = 0,

in which case the objective is y(1). Finally, we make the change of variable t =
(1+τ)/2 to obtain the form (1). For this problem, (A1)–(A2) are satisfied sowe expect
the error to decay at least as fast as the boundgiven inTheorem2.1. Since thederivatives
of the hyperbolic functions are nicely bounded, exponential convergence is expected.
Figure 1plots the logarithmof the error in the sup-normat the collocationpoints. Fitting
the data of Fig. 1 by straight lines, we find that the error is O(10−1.5N ) roughly.

Although the assumptions (A1)–(A2) are sufficient for exponential convergence, the
following example indicates that these assumptions are conservative. Let us consider
the unconstrained control problem
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Fig. 2 The base 10 logarithm of the error in the sup-norm as a function of the number of collocation points
for example (58)

min
{
−x(2) : ẋ(t) = 5

2 (−x(t) + x(t)u(t) − u(t)2), x(0) = 1
}

. (58)

The optimal solution and associated costate are

x∗(t) = 4/a(t), a(t) = 1 + 3 exp(2.5t),

u∗(t) = x∗(t)/2,
λ∗(t) = −a2(t) exp(−2.5t)/[exp(−5) + 9 exp(5) + 6].

This violates (A2) since ‖∇x f (x∗(t),u∗(t))‖∞ is around 5/2 for t near 2. Nonetheless,
as shown in Fig. 2, the logarithm of the error decays nearly linearly; the error behaves
like c10−0.6N for either the state or the control and c10−0.8N for the costate.

A more complex problem with a known solution is

min
∫ 1

0

[
2x21 x

2
2 + 1.25/x22 + u2/x2 + u21 + u22

]
dt, (59)

subject to the dynamics

ẋ1 = x1 + u1/x2 + u2x1x2, x1(0) = 1,
ẋ2 = −x2(0.5 + u2x2), x2(0) = 1.

The argument “(t)” on the states and controls was suppressed. The solution of the
problem is
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Fig. 3 The base 10 logarithm of the error in the sup-norm as a function of the number of collocation points
for example (59)

x∗
1 (t) = cosh(1 − t)(2 exp(3t) + exp(3))

(2 + exp(3)) exp(3t/2) cosh(1)
,

x∗
2 (t) = cosh(1)

cosh(1 − t)
,

u∗
1(t) = 2(exp(3t) − exp(3))

(2 + exp(3)) exp(3t/2)
,

u∗
2(t) = − cosh(1 − t)(tanh(1 − t) + 0.5)

cosh(1)
.

Figure 3 plots the logarithm of the sup-norm error in the state and control as a function
of the number of collocation points. The convergence is again exponentially fast,

9 Conclusions

A Gauss collocation scheme is analyzed for an unconstrained control problem. When
the problem has a smooth solution with η continuous derivatives and with a Hamil-
tonian that satisfies a strong convexity assumption, we show that the discrete problem
has a local minimizer in a neighborhood of the continuous solution, and as the degree
N of the approximating polynomials increases, the error in the sup-norm at the col-
location point is O(N 3−p), where p = min{η, N + 1}. Numerical examples confirm
the exponential convergence.
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while one of the reviewers correctly pointed out that this assumption could be relaxed to positive semidefinite
without effecting the convergence results for a stationary point of the discrete problem.

10 Appendix

In (15), we define a new matrix D† in terms of the differentiation matrix D. The
following proposition shows that the elements of D† can be gotten by rearranging the
elements of D.

Proposition 10.1 The entries of the matrices D and D† satisfy

Di j = −D†
N+1−i,N+1− j , 1 ≤ i ≤ N , 1 ≤ j ≤ N . (60)

In other words, D1:N = −JD†
1:NJ where J is the exchange matrix with ones on its

counterdiagonal and zeros elsewhere. Equivalently, D†
1:N = −JD1:NJ.

Proof By (9) the elements of D can be expressed in terms of the derivatives of a set
of Lagrange basis functions evaluated at the collocation points:

Di j = L̇ j (τi ) where L j ∈ PN , L j (τk) =
{
1 if k = j,
0 if 0 ≤ k ≤ N , k 
= j.

In (9) we give an explicit formula for the Lagrange basis functions, while here we
express the basis function in terms of polynomials L j that equal one at τ j and vanish
at τk where 0 ≤ k ≤ N , k 
= j . These N + 1 conditions uniquely define L j ∈ PN .
Similarly, by Garg et al. [2, Thm. 1], the entries of D†

1:N are given by

D†
i j = Ṁ j (τi ) where Mj ∈ PN , Mj (τk) =

{
1 if k = j,
0 if 1 ≤ k ≤ N + 1, k 
= j.

Observe that MN+1− j (t) = L j (−t) due to the symmetry of the quadrature points
around t = 0:

(a) Since −τN+1− j = τ j , we have L j (−τN+1− j ) = L j (τ j ) = 1.
(b) Since τN+1 = 1 and τ0 = −1, we have L j (−τN+1) = L j (τ0) = 0.
(c) Since −τi = τN+1−i , we have L j (−τi ) = L j (τN+1−i ) = 0 if i 
= N + 1 − j .

Since MN+1− j (t) is equal to L j (−t) at N + 1 distinct points, the two polynomials
are equal everywhere. Replacing MN+1− j (t) by L j (−t), we have

D†
N+1−i,N+1− j = −L̇ j (−τN+1−i ) = −L̇ j (τi ) = −Di j . ��

Tables 1 and 2 illustrate properties (P1) and (P2) for the differentiation matrixD. In
Table 1, we observe that ‖D−1

1:N‖∞ monotonically approaches the upper limit 2. More
precisely, it is found that ‖D−1

1:N‖∞ = 1 + τN , where the final collocation point τN
approaches one as N tends to infinity. In Table 2, we give the maximum 2-norm of
the rows of [W1/2D1:N ]−1. It is found that the maximum is attained by the last row of
[W1/2D1:N ]−1, and the maximum monotonically approaches

√
2.
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Table 1 ‖D−1
1:N ‖∞

N 25 50 75 100 125 150

Norm 1.995557 1.998866 1.999494 1.999714 1.999816 1.999872

N 175 200 225 250 275 300

Norm 1.999906 1.999928 1.999943 1.999954 1.999962 1.999968

Table 2 Maximum Euclidean norm for the rows of [W1/2D1:N ]−1

N 25 50 75 100 125 150

Norm 1.412201 1.413703 1.413985 1.414085 1.414131 1.414156

N 175 200 225 250 275 300

Norm 1.414171 1.414181 1.414188 1.414193 1.414196 1.414199
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