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Abstract The aim of the paper is to study an evolutionary quasi-variational inequality,
which expresses the equilibrium conditions of a general oligopolistic market equilib-
rium model, and to present its inverse formulation.
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1 Introduction

The paper is devoted to study existence and regularity results for a general evolu-
tionary quasi-variational inequality, which expresses the generalized Cournot-Nash
equilibrium principle. Furthermore, an optimal control perspective on the equilibrium
problem is provided by introducing an inverse variational inequality.
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Quasi-variational inequalities were introduced by Bensoussan and Lions in a series
of papers [1–4] in connection with the study of impulse control problems and their
applications. Then, they have been extensively studied in several publications, mainly
from the point of the view of the existence of solutions (see [5–7] among others). In
the same years, an iterative scheme for a class of quasi-variational inequalities has
been introduced by Noor [8]. More recently, many scholars, as F. Facchinei, A. Khan,
A.G. Khan and K.I. Noor, have presented other efficient numerical iterative methods;
see [9–12]. Particularly, in the last decade a lot of problems considering a feasible set
depending on equilibrium solutions have been studied (see, e.g., [13–17]).

The class of quasi-variational inequalities, which we study in this paper, results to
be an effective tool to describe the dynamic oligopolistic market equilibrium model
in which both the production and demand functions depend on the expected equilib-
rium solution. This is a more realistic situation since the perception of the expected
equilibrium solution influences the choice of the economic market users. In fact, the
firms adjust their production commodity in relation of the commodity shipments in
order to reduce production excesses. On the other hand, the request of commodities
can be altered by the demand markets according to the equilibrium distribution. In this
perspective, the problem is called “elastic” or “with adaptive constraint set”. Further-
more, the presence of production excesses may be justified in periods of economic
crisis, while demand excesses may have origin from the request of fundamental goods.
Moreover, since themarket model evolves in time, their simultaneous presencemay be
a consequence of the evident limited physical transportation of commodities between
a firm and a demand market.

In [18,19], the pioneering model presented in [20] has been improved in a more
realistic waywith the addition of production and demand excesses. Here, the important
question of finding some regularity properties for the solution has been answered.
Such regularity results are very helpful for the introduction of numerical schemes to
compute equilibrium solutions (see [21]). In [22,23] the analysis of the problem from
a producer’s perspective whose purpose is to maximize its own profit is abandoned. In
such papers the attention is focused on the policy-maker’s perspective whose aim is to
control the commodity exportations by means of the imposition of taxes or incentives.
The resulting optimization problem for the taxes and the commodity distribution is
formulated as an inverse variational inequality. Lately, in [24] the authors analyzed the
dynamic oligopolistic market equilibrium problem by considering only production as
a function effectively dependent on equilibrium solutions. Hence, the paper completes
the investigation on the dynamic oligopolistic market equilibrium model by including
also the demand excesses and the dependence of the demand function on the expected
equilibrium solution. Moreover, the possibility that control policies may be imposed
to regulate the amounts of exportation is analyzed. In particular, control policies take
place with the imposition of higher taxes or subsidies in order to restrict or encourage
the exportation (the control optimization problem).

The paper is organized as follows. In Sect. 2, we present the dynamic elas-
tic model and we formulate the equilibrium conditions by a suitable evolutionary
quasi-variational inequality. In Sect. 3, under quite general assumptions, we prove an
existence result. In Sect. 4, Kuratowski’s set convergence is presented because it is
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preliminary to obtain the continuity of the solution. Section 5 is devoted to the inverse
formulation of the problem. At last, in Sect. 6, we provide a numerical example.

2 Quasi-variational Inequalities in Dynamic Oligopolistic Markets

Let us introduce the dynamic oligopolistic market equilibrium model in which the
constraint set depends on the expected equilibrium solution. Let us consider m firms
Pi , i = 1, . . . ,m, that produce a homogeneous commodity andn demandmarkets Q j ,
j = 1, . . . , n, that are generally spatially separated. Assume that the homogeneous
commodity, produced by the m firms and consumed by the n markets, is involved
during a time interval [0, T ], T > 0. Let xi j (t), i = 1, . . . ,m, j = 1, . . . , n, denote
the nonnegative commodity shipment between the supply market Pi and the demand
market Q j , t ∈ [0, T ] . In particular, let us set xi (t) = (xi j (t)) j , i = 1, . . . ,m,
t ∈ [0, T ], as the strategy vector for the firm Pi , and x(t) = (xi j (t))i j , t ∈ [0, T ]. Let
us suppose that x ∈ L2([0, T ] ,Rmn+ ). Furthermore, we assume that the nonnegative
commodity shipment xi j between the producer Pi and the demand market Q j has
to satisfy time-dependent constraints; namely, there exist two nonnegative functions
x, x ∈ L2([0, T ] ,Rmn+ ) such that 0 ≤ xi j (t) ≤ xi j (t) ≤ xi j (t), ∀i = 1, . . . ,m,
∀ j = 1, . . . , n, a.e. in [0, T ]. Let us consider

D :=
{
x ∈ L2([0, T ],Rmn : xi j (t) ≤ xi j (t) ≤ xi j (t),

∀i = 1, . . . ,m, ∀ j = 1, . . . , n, a.e. in [0, T ]} .

We remark that D is a nonempty, compact and convex subset of L2([0, T ] ,Rmn).

Let pi (t, x(t)), i = 1, . . . ,m, denote the nonnegative commodity output produced by
firm Pi , t ∈ [0, T ]. Let q j (t, x(t)), j = 1, . . . , n, denote the nonnegative demand for
the commodity at demand market Q j , t ∈ [0, T ]. Here, unlike [24], we assume that
both production and demand functionsmay depend upon the entire production pattern.
With these assumptions we want to represent an actual situation in which a firm plans
its production taking into account the expected equilibrium distribution. As well as,
the expected equilibrium distribution influences the demand of the supply markets.
Let εi (t), i = 1, . . . ,m, be the nonnegative production excess for the commodity of
the firm Pi , t ∈ [0, T ] . Let δ j (t), j = 1, . . . , n, be the nonnegative demand excess
for the commodity of the demand market Q j , t ∈ [0, T ]. The dependence of the
commodity shipment x on the unknown solution x∗ satisfies the following feasibility
conditions:

n∑
j=1

xi j (t) + εi (t) = 1

T

∫ T

0
pi (t, x

∗(τ ))dτ, i = 1, . . . ,m, a.e. in [0, T ] , (1)

m∑
i=1

xi j (t) + δ j (t) = 1

T

∫ T

0
q j (t, x

∗(τ ))dτ, j = 1, . . . , n, a.e. in [0, T ] . (2)
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More precisely, condition (1) states that, given the unknown equilibrium solution,
the quantity produced by each firm Pi , t ∈ [0, T ], must be equal to the commodity
shipments from that firm to all the demand markets plus the production excess, at
the same time t ∈ [0, T ]. Moreover, conditions (2) states that, given the unknown
equilibrium solution, the quantity demanded by each demand market Q j , t ∈ [0, T ]
must be equal to the commodity shipments from all the firms to that demand market
plus the demand excess, at the same time t ∈ [0, T ] . Making use of (1), (2) and the
nonnegativity of production and demand excesses, we obtain

n∑
j=1

xi j (t) ≤ 1

T

∫ T

0
pi (t, x

∗(τ ))dτ, ∀i = 1, . . . ,m, a.e. in [0, T ] , (3)

m∑
i=1

xi j (t) ≤ 1

T

∫ T

0
q j (t, x

∗(τ ))dτ, ∀ j = 1, . . . , n, a.e. in [0, T ] . (4)

As a consequence, the set of feasible vectors x ∈ L2([0, T ] ,Rmn) is defined by the
multivalued mapping K : D ⇒ L2([0, T ] ,Rmn+ ) as

K(x∗) =
{
x ∈ D :
n∑
j=1

xi j (t) ≤ 1

T

∫ T

0
pi (t, x

∗(τ ))dτ, ∀i = 1, . . . ,m, a.e. in [0, T ] ,

m∑
i=1

xi j (t) ≤ 1

T

∫ T

0
q j (t, x

∗(t))dτ, ∀ j = 1, . . . , n, a.e. in [0, T ]

}
.

(5)

For each i = 1, . . . ,m and t ∈ [0, T ], let us associate each firm Pi with a production
cost fi (t, x(t)). Similarly, let us associate each demand market Q j with a demand
price for unity of the commodity d j (t, x(t)), j = 1, . . . , n, t ∈ [0, T ]. Let gi (t, x(t)),
i = 1, . . . ,m, t ∈ [0, T ], denote the storage cost of the commodity produced by
the firm Pi . Let ci j (t, x(t)), i = 1, . . . ,m, j = 1, . . . , n, t ∈ [0, T ], denote the
transaction cost, which includes the transportation cost associated with trading the
commodity between firm Pi and demand market Q j . Let ηi j (t), i = 1, . . . ,m, j =
1, . . . , n, t ∈ [0, T ], be the supply or resource tax imposed on supply market Pi for
the transaction with the demand market Q j . Let λi j (t), i = 1, . . . ,m, j = 1, . . . , n,

t ∈ [0, T ], be the incentive pay imposed on supply market Pi for the transaction with
the demand market Q j . Let hi j (t), i = 1, . . . ,m, j = 1, . . . , n, t ∈ [0, T ], be the
difference between the supply tax and the incentive pay for the transaction with the
demand market Q j , namely hi j (t) = ηi j (t) − λi j (t), i = 1, . . . ,m, j = 1, . . . , n,

t ∈ [0, T ], t ∈ [0, T ]. Hence, the profit vi (t, x(t)), i = 1, . . . ,m, of the firm Pi , at
the time t ∈ [0, T ] is, then,
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vi (t, x(t)) =
n∑
j=1

d j (t, x(t))xi j (t) − fi (t, x(t)) − gi (t, x(t))

−
n∑
j=1

ci j (t, x(t))xi j (t) −
n∑
j=1

hi j (t)xi j (t), (6)

namely, it is equal to the price that the demand markets are disposed to pay minus the
production costs, the storage costs and the transportation costs and taxes.

Let us denote by ∇Dv =
(

∂vi

∂xi j

)

i j

. Let us assume the following assumptions:

(i) vi (t, x(t)) is continuously differentiable for each i = 1, . . . ,m, a.e. in [0, T ],
(ii) ∇Dv is a Carathéodory function (namely, it is measurable in the first variable and

continuous with respect to the second one) such that

∃h ∈ L2([0, T ]) : ‖∇Dv(t, x(t))‖mn ≤ h(t) ‖x(t)‖mn , a.e. in [0, T ] , (7)

(iii) vi (t, x(t)) is pseudoconcave with respect to the variables xi , i = 1, . . . ,m, a.e.
in [0, T ], namely a.e. in [0, T ]:

〈∇Dvi (t, x1, . . . , xi , . . . , xm), xi − yi 〉 =
n∑
j=1

∂vi (t, x(t))

∂xi j
(xi j (t) − yi j (t)) ≥ 0

⇒ vi (t, x1, . . . , xi , . . . , xm) ≥ vi (t, x1, . . . , yi , . . . , xm).

In themodel them firms supply the commodity in a noncooperative fashion, accord-
ing to the dynamic elastic Cournot-Nash principle in the presence of excesses.

Definition 2.1 x∗ ∈ K(x∗) is a dynamic oligopolistic market equilibrium in the pres-
ence of excesses if and only if for each i = 1, . . . ,m and a.e. in [0, T ] we have

vi (t, x
∗(t)) ≥ vi (t, xi (t), x̂

∗
i (t)), (8)

where x̂∗
i (t) = (x∗

1 (t), . . . , x
∗
i−1(t), x∗

i+1(t), . . . , x
∗
m(t)), for i = 1, . . . ,m, a.e. in

[0, T ].

Definition 2.1 states that each firm Pi maximizes its own profit considered the
given optimal strategy x̂∗

i (t) of the other firms. The following result establishes the
equivalence between the equilibrium distribution and the solution of an evolutionary
quasi-variational inequality (for the proof see, for instance, [24], Theorem 2).

Theorem 2.1 Let us suppose that assumptions (i), (ii), (iii) are satisfied. Then, x∗ ∈
K(x∗) is a dynamic oligopolistic market equilibrium according to Definition 2.1 if
and only if it satisfies the evolutionary quasi-variational inequality

∫ T

0

m∑
i=1

n∑
j=1

(
−∂vi (t, x∗(t))

∂xi j

)
(xi j (t) − x∗

i j (t))dt ≥ 0, ∀x ∈ K(x∗). (9)
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3 An Existence Theorem for Equilibrium Solutions

Thanks to the variational formulation of the equilibrium problem, we are able to show
our main result about the existence of equilibrium solutions.

Theorem 3.1 Let v ∈ C1([0, T ] × D,Rm), let p ∈ L2([0, T ] × D,Rm) and let
q ∈ L2([0, T ] × D,Rn) be such that

(I) ∇Dv(t, x) is measurable in t , for every x ∈ R
mn+ , continuous in x, a.e. in [0, T ],

such that
∃γ ∈ L2([0, T ]): ‖∇Dv(t, x)‖ ≤ γ (t) + ‖x‖, ∀x ∈ R

mn+ , a.e. in [0, T ];
(II) p(t, x) is measurable in t , for every x ∈ R

mn+ , continuous in x, a.e. in [0, T ],
such that
∃φ ∈ L1([0, T ]): ‖p(t, x)‖ ≤ φ(t) + ‖x‖2, ∀x ∈ R

mn+ , a.e. in [0, T ];
(III) q(t, x) is measurable in t , for every x ∈ R

mn+ , continuous in x, a.e. in [0, T ],
such that
∃ψ ∈ L1([0, T ]): ‖q(t, x)‖ ≤ ψ(t) + ‖x‖2, ∀x ∈ R

mn+ , a.e. in [0, T ];
(IV) ∃η(t) ≥ 0, a.e. in [0, T ], η ∈ L∞([0, T ]) such that

‖p(t, x1) − p(t, x2)‖ ≤ η(t)‖x1 − x2‖, ∀x1, x2 ∈ R
mn+ , a.e. in [0, T ];

(V) ∃θ(t) ≥ 0, a.e. in [0, T ], θ ∈ L∞([0, T ]) such that
‖q(t, x1) − q(t, x2)‖ ≤ θ(t)‖x1 − x2‖, ∀x1, x2 ∈ R

mn+ , a.e. in [0, T ].
Then, the evolutionary quasi-variational inequality (9) admits a solution.

Proof Firstly, let us observe that under assumptions (I), (II) and (III) and if x∗ ∈
L2([0, T ],Rmn+ ), it results that t �→ ∇Dv(t, x∗(t)) ∈ L2([0, T ] ,Rmn), t �→
p(t, x∗(t)) ∈ L1([0, T ] ,Rm+), t �→ q(t, x∗(t)) ∈ L1([0, T ] ,Rn+). Moreover, by (I),
(II) and (III) it follows that ∇Dv, p and q belong to the class of Nemytskii operators.

In order to show thatK(x∗) is a closedmultifunction, we fix two arbitrary sequences
{xk} and {yk} such that xk → x and yk → y in L2([0, T ],Rmn), with yk ∈ K(xk),
∀k ∈ N, and we prove y ∈ K(x). Since yk ∈ K(xk), we have xi j (t) ≤ yki j (t) ≤ xi j (t),
for i = 1, . . . ,m, j = 1, . . . , n and a.e. in [0, T ]. The convergence of the sequence
{yk} in L2([0, T ],Rmn) implies that also y satisfies the capacity constraints.Moreover,
the following relationships hold:

n∑
j=1

yki j (t) ≤ 1

T

∫ T

0
pi (t, x

k(τ ))dτ, i = 1, . . . ,m, a.e. in [0, T ],

m∑
i=1

yki j (t) ≤ 1

T

∫ T

0
q j (t, x

k(τ ))dτ, j = 1, . . . , n, a.e. in [0, T ].

The left-hand sides converge almost everywhere to
n∑
j=1

yi j (t); the right-hand sides,

meanwhile, for i = 1, . . . ,m and j = 1, . . . , n, respectively, for (IV) and (V), it
follows
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sup
[0,T ]

∥∥∥∥
∫ T

0

[
p(t, xk(τ )) − p(t, x(τ ))

]
dτ

∥∥∥∥ ≤ ‖η‖L∞([0,T ])
∫ T

0
‖xk(τ ) − x(τ )‖dτ,

sup
[0,T ]

∥∥∥∥
∫ T

0

[
q(t, xk(τ )) − q(t, x(τ ))

]
dτ

∥∥∥∥ ≤ ‖θ‖L∞([0,T ])
∫ T

0
‖xk(τ ) − x(τ )‖dτ.

Since the convergence of {xk} in L2([0, T ],Rmn) implies the convergence even in

L1([0, T ],Rmn), we get that

{
1

T

∫ T

0
pi (t, x

k(τ ))dτ

}
and

{
1

T

∫ T

0
q j (t, x

k(τ ))dτ

}

convergeuniformly to
1

T

∫ T

0
pi (t, x(τ ))dτ and

1

T

∫ T

0
q j (t, x(τ ))dτ in L1([0, T ],Rm),

respectively.
Let us show the lower semicontinuity of the multifunctionK. To this aim we fix an

arbitrary sequence {xk} such that xk → x , in L2([0, T ],Rmn), and an arbitrary y ∈
K(x), we prove that there exists a sequence {yk} such that yk → y, in L2([0, T ],Rmn),
with yk ∈ K(xk), ∀k ∈ N. Let us note that, for i = 1, . . . ,m, j = 1, . . . , n and k ∈ N,
and if

aki j (t) = yi j (t) − xi j (t) + 1

nT

[∫ T

0
pi (t, x(τ ))dτ −

∫ T

0
pi (t, x

k(τ ))dτ

]
,

bki j (t) = yi j (t) − xi j (t) + 1

mT

[∫ T

0
q j (t, x(τ ))dτ −

∫ T

0
q j (t, x

k(τ ))dτ

]
,

we obtain, by virtue of the uniform convergence of

{
1

T

∫ T

0
pi (t, x

k(τ ))dτ

}
to

1

T

∫ T

0
pi (t, x(τ ))dτ in L1([0, T ],Rm) and the uniform convergence of

{
1

T

∫ T

0
q j (t, x

k(τ ))dτ

}
to

1

T

∫ T

0
q j (t, x(τ ))dτ in L1([0, T ],Rn), that

lim
k→+∞ aki j (t) = yi j (t) − xi j (t) ≥ 0, a.e. in [0, T ],
lim

k→+∞ bki j (t) = yi j (t) − xi j (t) ≥ 0, a.e. in [0, T ].

As a consequence, there exists an index ν1 such that for k > ν1 it results aki j (t) ≥ 0,
∀i = 1, . . . ,m, ∀ j = 1, . . . , n, a.e. in [0, T ], and there exists an index ν2 such that
for k > ν2 we have bki j (t) ≥ 0, ∀i = 1, . . . ,m, ∀ j = 1, . . . , n, a.e. in [0, T ]. Then,
let ν = max {ν1, ν2}, let us define the sequence {yk} as:
– for k > ν, ∀i = 1, . . . ,m, ∀ j = 1, . . . , n,

yki j (t) = xi j (t) + min{xi j (t) − xi j (t), a
k
i j (t), b

k
i j (t)}, a.e. in [0, T ],
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– for k ≤ ν, ∀i = 1, . . . ,m, ∀ j = 1, . . . , n,

yki j (t) = PK(xk )yi j (t), a.e. in [0, T ],

where PK(xk )(·) denotes the Hilbertian projection on K(xk).
It is easy to verify that yk ∈ K(xk), ∀k ∈ N. Moreover, {yk} converges to y in

L2([0, T ],Rmn). Finally, it is simple to show that K(x) is a closed, bounded and
convex subset of D and since the space D is compact,K(x), ∀x ∈ D, is compact too.
As a consequence, all the assumptions of Tan’s Theorem (see [7]) are satisfied and the
existence of at least one solution is guaranteed. ��

4 Regularity and Sensitivity Results for Equilibrium Solutions

The section is devoted to show continuity and sensitivity results for solutions to
the evolutionary quasi-variational inequality which expresses the dynamic elastic
Cournot-Nash principle in the presence of excesses.

4.1 Set Convergence

The Kuratowski’s set convergence (see [25]) has an important role in order to establish
regularity results.

Let {Kn} be a sequence of subsets of a metric space (X, d). Recall that

d − limnKn = {x ∈ X : ∃{xn} eventually in Kn such that xn
d→ x},

d − limnKn = {x ∈ X : ∃{xn} frequently in Kn such that xn
d→ x},

where eventually means that there exists δ ∈ N such that xn ∈ Kn for any n ≥ δ and
frequentlymeans that there exists an infinite subset N ⊆ N such that xn ∈ Kn for any
n ∈ N .

We say that {Kn} converges to some subset K ⊆ X in Kuratowski’s sense, and we
briefly write Kn → K if d − limnKn = d − limnKn = K.

In order to verify that Kn → K, it suffices to check that

(K1) for any x ∈ K, there exists a sequence {xn} converging to x ∈ X such that xn
lies in Kn for all n ∈ N,

(K2) for any subsequence {xn} converging to x ∈ X such that xn lies in Kn , for all
n ∈ N, then the limit x belongs to K.

The following lemma ensures that the feasible set of themodel satisfies the property
of Kuratowski’s set convergence.

Lemma 4.1 Let x, x ∈ C0
(
[0, T ] ,Rmn+

)
, let p ∈ C0([0, T ] × R

mn+ ,Rm+) be such
that ∃φ ∈ C0([0, T ],R+): ‖p(t, y)‖ ≤ φ(t)+‖y‖2, let q ∈ C0([0, T ]×R

mn+ ,Rn+) be
such that ∃ψ ∈ C0([0, T ],R+): ‖q(t, y)‖ ≤ ψ(t) + ‖y‖2, and let {tk} be a sequence
such that tk → t, with t ∈ [0, T ] , as k → +∞. Then, the set sequence
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K(tk, x
∗) =

{
x(tk) ∈ R

mn : xi j (tk) ≤ xi j (tk) ≤ xi j (tk),

∀i = 1, . . . ,m, ∀ j = 1, . . . , n,
n∑
j=1

xi j (tk) ≤ 1

T

∫ T

0
pi (tk, x

∗(τ ))dτ, ∀i = 1, . . . ,m,

m∑
i=1

xi j (tk) ≤ 1

T

∫ T

0
q j (tk, x

∗(τ ))dτ, ∀ j = 1, . . . , n

}

∀k ∈ N, converges to

K(t, x∗) =
{
x(t) ∈ R

mn : xi j (t) ≤ xi j (t) ≤ xi j (t),

∀i = 1, . . . ,m, ∀ j = 1, . . . , n,
n∑
j=1

xi j (t) ≤ 1

T

∫ T

0
pi (t, x

∗(τ ))dτ, ∀i = 1, . . . ,m,

m∑
i=1

xi j (t) ≤ 1

T

∫ T

0
q j (t, x

∗(τ ))dτ, ∀ j = 1, . . . , n

}
,

as k → +∞, in Kuratowski’s sense.

Proof In the first part, we prove condition (K1). Let {tk} be a sequence such that
tk → t, with t ∈ [0, T ] , as k → +∞. Using the assumptions, we obtain that
‖p(t, x∗(τ ))‖, ‖q(t, x∗(τ ))‖ ∈ L1([0, T ]). Moreover, by virtue of the continuity of p
and q with respect to the first variable and making use of a well-known generalization
of Lebesgue’s Theorem, we have

lim
n→+∞

∫ T

0
p(tn, x

∗(τ ))dτ =
∫ T

0
p(t, x∗(τ ))dτ, ∀x∗ ∈ L2([0, T ],Rmn+ ),

lim
n→+∞

∫ T

0
q(tn, x

∗(τ ))dτ =
∫ T

0
q(t, x∗(τ ))dτ, ∀x∗ ∈ L2([0, T ],Rmn+ ).

Let us fix x(t) ∈ K(t) and let us set

ai j (tk) = xi j (t) − xi j (tk) + m
∫ T
0 pi (tk, x∗(τ ))dτ + n

∫ T
0 q j (tk, x∗(τ ))dτ

mnT

−m
∫ T
0 pi (t, x∗(τ ))dτ + n

∫ T
0 q j (t, x∗(τ ))dτ

mnT
,

it results

lim
k→+∞ ai j (tk) = xi j (t) − xi j (t) ≥ 0.

123



J Optim Theory Appl (2016) 170:476–492 485

As a consequence, there exists an index ν1 such that, for k > ν1, we get ai j (tk) ≥ 0,
∀i = 1, . . . ,m, ∀ j = 1, . . . , n. We remark

lim
k→+∞

⎧⎨
⎩

1

mT

⎡
⎣

n∑
j=1

∫ T

0
q j (tk, x

∗(τ ))dτ −
n∑
j=1

∫ T

0
q j (t, x

∗(τ ))dτ − εi (t)

⎤
⎦
⎫⎬
⎭

= −εi (t) ≤ 0, ∀i = 1, . . . ,m,

where ε is the production excess function. Then, there exists an index ν2 such that for
k > ν2 we have, ∀i = 1, . . . ,m,

1

mT

⎡
⎣

n∑
j=1

∫ T

0
q j (tk, x

∗(τ ))dτ −
n∑
j=1

∫ T

0
q j (t, x

∗(τ ))dτ

⎤
⎦ − εi (t) ≤ 0.

Moreover, it results

lim
k→+∞

{
1

nT

[
m∑
i=1

∫ T

0
pi (tk, x

∗(τ ))dτ −
m∑
i=1

∫ T

0
pi (t, x

∗(τ ))dτ − δ j (t)

]}

= −δ j (t) ≤ 0, ∀ j = 1, . . . , n,

where δ is the demand excess function. Hence, there exists an index ν3 such that for
k > ν3 we have, ∀ j = 1, . . . , n,

1

nT

[
m∑
i=1

∫ T

0
pi (tk, x

∗(τ ))dτ −
m∑
i=1

∫ T

0
pi (t, x

∗(τ ))dτ

]
− δ j (t) ≤ 0.

Hence, we can consider a sequence {x(tk)} such that:

– for k > ν = max{ν1, ν2, ν3}, ∀i = 1, . . . ,m, ∀ j = 1, . . . , n,

xi j (tk) = xi j (tk) + min{xi j (t) − xi j (t), xi j (tk) − xi j (tk), ai j (tk)},

– for k ≤ ν, ∀i = 1, . . . ,m, ∀ j = 1, . . . , n,

xi j (tk) = PK(tk ,x∗)xi j (t).

It is easy to verify that x(tk) ∈ K(tk, x∗), ∀k ∈ N and that x(tk) → x(t), as k → +∞.
Then, condition (K1) is shown. Finally, it is simple to check condition (K2). ��

4.2 Continuity of Solutions to Quasi-variational Inequalities

In [26,27] some continuity results for quasi-variational inequalities in infinite-
dimensional spaces have been proved. It is worth to remark that similar results have
been obtained for weighted quasi-variational inequalities in nonpivot Hilbert spaces
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(see [13]). In the following, making use Theorem 8 in [27] and Lemma 4.1, we can
show the continuity theorem for dynamic elastic oligopolistic market equilibrium
solutions in the presence of excesses.

Theorem 4.1 Let x, x ∈ C0
(
[0, T ] ,Rmn+

)
, let p ∈ C0([0, T ] × R

mn+ ,Rm+) be such
that, in [0, T ]:

∃φ ∈ C0([0, T ]): ‖p(t, x)‖ ≤ φ(t) + ‖x‖2, ∀x ∈ R
mn,

∃η ∈ C0([0, T ],R+): ‖p(t, x1) − p(t, x2)‖ ≤ η‖x1 − x2‖, ∀x1, x2 ∈ R
mn,

let q ∈ C0([0, T ] × R
mn+ ,Rn+) be such that, in [0, T ]:

∃ψ ∈ C0([0, T ]): ‖q(t, x)‖ ≤ ψ(t) + ‖x‖2, ∀x ∈ R
mn,

∃θ ∈ C0([0, T ],R+): ‖q(t, x1) − q(t, x2)‖ ≤ θ‖x1 − x2‖, ∀x1, x2 ∈ R
mn.

Moreover, let ∇Dv ∈ C0([0, T ] × R
mn+ ,Rm+) be an operator satisfying the following

conditions, in [0, T ]:
∃γ ∈ C0([0, T ]): ‖∇Dv(t, x)‖ ≤ γ (t) + ‖x‖, ∀x ∈ R

mn,
∃μ > 0: 〈−∇Dv(t, x) + ∇Dv(t, y), x − y〉 ≥ μ‖x − y‖2, ∀x, y ∈ R

mn.
Then, the dynamic elastic market equilibrium distribution in the presence of excesses
x∗ ∈ K(x∗) is continuous in [0, T ].

4.3 A Sensitivity Result

Now, a sensitivity theorem is shown in order to clarify the behavior of solutions when
some change in data occur (for the proof see, for instance, [24], Theorem 8).

Theorem 4.2 Let us assume that the profit function changes from v(·) to the perturbed
function ṽ(·) and let us denote by x∗ and x̃ the correspondent solutions of the cor-
responding quasi-variational inequalities. Let ∇Dv be a Carathéodory function such
that

∃h ∈ L2([0, T ]): ‖∇Dv(t, x(t))‖mn ≤ h(t) + ‖x(t)‖mn, a.e. in [0, T ],
∃α > 0 : � −∇Dv(x) + ∇Dv(y), x − y �≥ α ‖x − y‖2L2 , ∀x, y ∈ K(x∗)1.

Then, it follows that

∥∥x∗ − x̃
∥∥
L2 ≤ 1

α

∥∥−∇D ṽ(̃x) + ∇Dv(x∗)
∥∥
L2 .

5 The Policy-Maker’s Point of View: Inverse Formulation

The policy-maker has an important role to understand the problems derived from the
economic world. For this reason, we want to analyze control policies in the dynamic
elastic oligopolistic market equilibrium problem in the presence of excesses. Let us

1 We recall that in the Hilbert space L2([0, T ],Rk ) we define the canonical bilinear form on
L2([0, T ],Rk ) × L2([0, T ],Rk ) given by

� φ,w �:=∈T
0 〈φ(t), w(t)〉dt,

where φ ∈ L2([0, T ],Rk ).
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denote by the variable h the difference between the supply tax η and the incentive pay
λ for transactions. In this new perspective the optimal control equilibrium conditions
will be introduced.

Let x(h) = x(t, h) be the function of regulatory taxes. Let us assume that x(t, h) is a
Carathéodory function and there exists γ (t) ∈ L2([0, T ]) such that ‖x(t, h(t))‖mn ≤
γ (t) + ‖h(t)‖mn , a.e. in [0, T ]. Let us introduce the set of feasible states

� =
{
ω ∈ L2([0, T ] ,Rmn) : xi j (t) ≤ ωi j (t) ≤ xi j (t),

∀i = 1, . . . ,m, ∀ j = 1, . . . , n, a.e. in [0, T ]

}
,

and define the optimal regulatory tax as follows.

Definition 5.1 Avector h∗ ∈ L2([0, T ] ,Rmn) is an optimal regulatory tax if and only
if x(t, h∗) ∈ � and for i = 1, . . . ,m, j = 1, . . . , n and a.e. in [0, T ] the following
conditions hold:

xi j (t, h
∗(t)) = xi j (t) ⇒ h∗

i j (t) ≤ 0,

xi j (t) < xi j (t, h
∗(t)) < xi j (t) ⇒ h∗

i j (t) = 0,

xi j (t, h
∗(t)) = xi j (t) ⇒ h∗

i j (t) ≥ 0.

Definition 5.1 means that if h∗ is the optimal regulatory tax, then the corresponding
state x(t, h∗) has to satisfy capacity constraints, namely x(t, h∗) ∈ �. Moreover, if
one requires that xi j (t, h∗(t)) = xi j (t), then the exportationsmust be promoted. If one
postulates that xi j (t, h∗(t)) = xi j (t), then the exportations must be reduced. Finally,
if one requires that xi j (t) < xi j (t, h∗(t)) < xi j (t), taxes equal incentive pays. We are
able to show the inverse formulation of the model (see [22], Theorem 3.1):

Theorem 5.1 A regulatory tax h∗ ∈ L2([0, T ] ,Rmn) is an optimal regulatory tax if
and only if it solves the inverse variational inequality:

x(t, h∗) ∈ � :
∫ T

0

m∑
i=1

n∑
j=1

(
ωi j (t) − xi j (t, h

∗(t))
)
h∗
i j (t)dt ≤ 0, ∀ω ∈ �. (10)

Let us note that only recently the strict connection between the classical variational
inequalities and inverse variational inequalities has been unveiled (see, for instance,
[28–30]). Also in this case, we are able to provide a classical variational inequality
formulation of the optimal equilibrium control problem. The advantage of such a
standard formulation lies in the fact we can have disposal of all the theoretical and
numerical advances in the theory of variational inequalities to treat fully the problem.

Theorem 5.2 Let W = L2([0, T ] ,Rmn)×�, F : [0, T ]×W → L2([0, T ] ,R2mn),
z(t) = (h(t), ω(t))T , and F(t, z(t)) = (ω(t) − x(t, h(t)),−h(t))T . The evolution-
ary inverse variational inequality (10) is equivalent to the evolutionary variational
inequality
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z∗ ∈ W :
∫ T

0

2m∑
l=1

n∑
j=1

Fl j (t, z
∗(t))

(
zl j (t) − z∗l j (t)

)
dt ≥ 0, ∀z ∈ W. (11)

Proof If (11) holds true, then we obtain easily that z∗ = (h∗, ω∗)T ∈ W ,

∫ T

0

⎛
⎝

m∑
i=1

n∑
j=1

(ω∗
i j (t) − xi j (t, h

∗(t)))(hi j (t) − h∗
i j (t))

⎞
⎠ dt

−
∫ T

0

⎛
⎝

m∑
i=1

n∑
j=1

h∗
i j (t)(ωi j (t) − ω∗

i j (t))

⎞
⎠ dt ≥ 0 (12)

holds for every z = (h, ω)T ∈ W . Setting h(t) = h∗(t) − ω∗(t) + x(t, h∗(t)) and
ω(t) = ω∗(t) in (12), we have

−
∫ T

0

m∑
i=1

n∑
j=1

(ω∗
i j (t) − xi j (t, h

∗(t)))2dt ≥ 0.

Hence, x(t, h∗(t)) = ω∗(t), a.e. in [0, T ] . Thus, x(t, h∗(t)) ∈ � and (12) indicates
that (10) holds. Conversely, if h∗ ∈ L2([0, T ] ,Rmn) is a solution to (10), then z∗ =
(h∗, x(t, h∗))T ∈ W is a solution to (11). In fact, it results

∫ T

0

m∑
i=1

n∑
j=1

(xi j (t, h
∗(t)) − xi j (t, h

∗(t)))(hi j (t) − h∗
i j (t))dt

︸ ︷︷ ︸
=0

−
∫ T

0

m∑
i=1

n∑
j=1

h∗
i j (t)(ωi j (t) − xi j (t, h

∗(t)))dt

︸ ︷︷ ︸
≥0

≥ 0.

��

6 A Numerical Example

Let us consider two firms and two demand markets, as in Fig. 1. More precisely, let
x, x ∈ L2([0, 1],R4) be the capacity constraints such that, a.e. in [0, 1],

x(t) =
⎛
⎜⎝
0

2

5
t

0
1

4
t

⎞
⎟⎠ , x(t) =

(
t 4t
1

2
t t

)
.
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Fig. 1 Network structure of the
numerical dynamic spatial
oligopoly problem

Let D =
{
x ∈ L2([0, T ],R4) : xi j (t) ≤ xi j (t) ≤ xi j (t), ∀i = 1, 2, ∀ j = 1, 2

}
.

Furthermore, let p, q ∈ L1([0, 1] × D,R2) be the production and demand functions,
defined as p(t) = (

10t + 2x∗
22(t), 4t + 2x∗

11(t) + 2x∗
12(t)

)T and

q(t) = (
6t + x∗

11(t) + x∗
12(t), 8t + 2x∗

21(t)
)T , a.e. in [0, 1]. The feasible set is

K(x∗) =
{
x ∈ D :

2∑
j=1

xi j (t) ≤
∫ 1

0
pi (t, x

∗(τ ))dτ, ∀i = 1, 2, a.e. in [0, 1] ,

2∑
i=1

xi j (t) ≤
∫ 1

0
q j (t, x

∗(τ ))dτ, ∀ j = 1, 2, a.e. in [0, 1]

}
.

Let v ∈ L2([0, 1] × D,R2) be the profit function given by, a.e. in [0, 1],

v1(t, x(t)) = −8x211(t) − 2x212(t) − 4x11(t)x12(t) + 8t x11(t) + 4t x12(t),

v2(t, x(t)) = −2x221(t) − 6x222(t) − 2x21(t)x22(t) + 3t x21(t) + 5t x22(t).

Hence, the operator −∇Dv ∈ L2([0, 1] × D,R4) is, a.e. in [0, 1],

−∇Dv(t, x(t)) =
(
16x11(t) + 4x12(t) − 8t 4x12(t) + 4x11(t) − 4t
4x21(t) + 2x22(t) − 3t 12x22(t) + 2x21(t) − 5t

)
.

The dynamic oligopolistic market equilibrium distribution in the presence of excesses
is the solution to the evolutionary quasi-variational inequality:

∫ 1

0

2∑
i=1

2∑
j=1

(
−∂vi (t, x∗(t))

∂xi j

)
(xi j (t) − x∗

i j (t))dt ≥ 0, ∀x ∈ K(x∗). (13)

In order to compute the solution to (13) we make use of the direct method (see [31]).
We solve the following system, a.e. in [0, 1],

16x∗
11(t) + 4x∗

12(t) − 8t = 0

4x∗
11(t) + 4x∗

12(t) − 4t = 0

123



490 J Optim Theory Appl (2016) 170:476–492

4x∗
21(t) + 2x∗

22(t) − 3t = 0

2x∗
21(t) + 12x∗

22(t) − 5t = 0

x∗ ∈ K(x∗)

The system solution is

x∗(t) =
⎛
⎜⎝

1

3
t

2

3
t

13

22
t

7

22
t

⎞
⎟⎠ .

We observe that x∗ /∈ K(x∗) because x∗
21(t) >

1

2
t. Now we consider the set

K̃(x∗) =
{
x ∈ D : x∗

21(t) = 1

2
t, a.e. in [0, 1] ,

2∑
j=1

xi j (t) ≤
∫ 1

0
pi (t, x

∗(τ ))dτ, ∀i = 1, 2, a.e. in [0, 1] ,

2∑
i=1

xi j (t) ≤
∫ 1

0
q j (t, x

∗(τ ))dτ, ∀ j = 1, 2, a.e. in [0, 1]

}

and the system

16x∗
11(t) + 4x∗

12(t) − 8t = 0

4x∗
11(t) + 4x∗

12(t) − 4t = 0

2x∗
21(t) + 12x∗

22(t) − 5t = 0

x∗ ∈ K̃(x∗)

We can observe that the system solution

x∗(t) =
⎛
⎜⎝

1

3
t

2

3
t

1

2
t

1

3
t

⎞
⎟⎠

is an equilibrium solution, in [0, 1], since 4x∗
21(t) + 2x∗

22(t) − 3t < 0, a.e. in [0, 1].
We remark that

∫ 1

0
p1(t, x

∗(τ ))dτ = 10t + 2

3
,

∫ 1

0
p2(t, x

∗(τ ))dτ = 4t + 1,

∫ 1

0
q1(t, x

∗(τ ))dτ = 6t + 1

2
,

∫ 1

0
q2(t, x

∗(τ ))dτ = 8t + 1

2
,
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then the production and demand excesses are ε(t) =
(
27t + 2

3
,
19t + 6

6

)T

and

δ(t) =
(
31t + 3

6
,
14t + 1

2

)T

, respectively. We note that the adaptive constraints

allow us to analyze a more general model. Moreover, the presence of the excesses
influences the equilibrium distribution.

7 Conclusions

In the paper, we consider the dynamic oligopolistic market equilibrium problem in
which the production and demand functions depend on the forecasted equilibrium
commodity shipment. The equivalence between the dynamic elastic Cournot-Nash
equilibrium principle and an evolutionary quasi-variational inequality is obtained.
Thanks to the quasi-variational formulation, some existence and regularity results are
proved. Finally, the policy-maker optimization problem is presented.
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