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Abstract This work concerns with semi-Markov decision chains on a finite state
space. Assuming that the controller has a constant and positive risk-sensitive coeffi-
cient, an optimality equation for the corresponding (long-run) risk-sensitive average
cost index is formulated and, under suitable continuity-compactness conditions, it is
shown that a solution of such an equation determines the optimal average cost, as
well as an optimal stationary policy. Additionally, if the underlying Markov chain is
communicating, then it is proved that the optimality equation has a solution.
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1 Introduction

This paper is concerned with semi-Markov decision chains evolving on a finite state
space, which are mathematical models for a dynamical system whose state changes
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at random times. When the system arrives at one of the possible states, the controller
applies an admissible action and such an intervention has several effects: The distri-
bution of the random sojourn time at the state is determined, an immediate cost is
incurred, a holding cost is continuously paid at a certain rate until a transition occurs,
and the distribution of the next state depends on both the original one and the selected
action. As the system evolves, the costs are accumulated and, assuming that the con-
troller has a constant and positive risk-sensitivity coefficient, the performance of the
control policy is measured by the corresponding (long-run) expected average cost cri-
terion. The main objective of the work is to set an optimality equation characterizing
the optimal risk-sensitive average cost and rendering an optimal stationary policy.
This problem will be analyzed assuming that the random sojourn times are bounded,
as well as standard continuity-compactness conditions formulated in Assumption 2.1
below. The main results of the paper can be roughly described as follows:

(i) Verification result If the optimality equation admits a solution, then the optimal
risk-sensitive average cost function is constant and is immediately determined;
moreover, as usual, an optimal stationary policy can be obtained by taking mini-
mizers of the termwithin brackets in the right-hand side of the optimality equality.

(ii) Existence of solutions The optimality equation has a solution if, in addition to
Assumption 2.1, the following condition is satisfied: Under any stationary policy,
every state can be visited with positive probability regardless of the initial state.

Controlled semi-Markov chains have beenwidely used in applications, for instance,
in the study of queueing systems [1–3], production scheduling [4], or in maintenance
problems [5]. The average index has been intensively studied under the assumption
that the controller is risk-neutral; this means that a random cost Y is assessed via
its expected value. In that context, assuming that under the action of any stationary
policy the underlyingMarkov chain has a single recurrent class,mild conditions ensure
that the optimal risk-neutral average cost is constant and is characterized by a single
optimality equation; see, for instance, [3,6,7]. On the other hand, the study of the
risk-sensitive average criterion started, at least, with the seminal paper by Howard and
Matheson [8]. Recent work on that index has been highly concentrated on discrete-
time controlled Markov chains; models with finite state space have been studied; for
instance, in [9–11], the case of a denumerable state space was examined in [12,13],
whereas systemswith generalBorel state spacewere analyzed in [14–17].Applications
to mathematical finance are presented in [18], and risk-sensitive criteria with respect
to general utilities are studied in [19].

Presently, the risk-sensitive average criterion for discrete-time Markov decision
chains on a finite state space iswell understood, and necessary and sufficient conditions
for the characterization of the optimal average cost via a single optimality equation
are known [11,20]. However, to the best of the authors’ knowledge, a characterization
of the optimal risk-sensitive average index via an optimality equation is not presently
available in the semi-Markov context, a fact that provides the motivation for this
work. The results in this paper extend conclusions recently obtained in [21], where
uncontrolled semi-Markov chains were studied.

The organization of the paper is as follows: In Sect. 2, the controlled semi-Markov
model is introduced, and the risk-sensitive average index is defined. Then, in Sect. 3,
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the risk-sensitive average optimality equation is formulated, and the verification and
existence results are stated as Theorems 3.1 and 3.2, respectively; the approach used
to prove those conclusions, and the role of the basic assumptions in the arguments, are
discussed in Remark 3.1. Next, Sect. 4 contains the auxiliary results that will be used
to prove Theorem 3.1 in Sect. 5, whereas the demonstration of the existence theorem
is presented in Sect. 6. The exposition concludes in Sect. 7 with a brief discussion
about the results of the paper and an open problem.

2 The Model

In this section, the semi-Markov decision chain and the average criterion studied in
the paper are introduced. First, it is convenient to state some basic notation.

Notation For a topological space W , the corresponding Borel σ -field is denoted by
B(W ), whereas B(W ) stands for the class of all bounded and continuous functions
defined onW . The supremumnormonB(W ) is given by ‖h‖ := supw∈W |h(w)| < ∞,
for every h ∈ B(W ). The indicator function corresponding to an event A is denoted by
I [A], and every relation involving random variables holds almost surely with respect
to the underlying probability measure. Finally, for a sequence {rk} of real numbers,∑b

k=a rk := 0 when b < a.
Throughout the remainder S := (

S, A, {A(x)},C, {ρx,a(·)}, {Fx,a}, [px,y(·)]
)

stands for a controlled semi-Markov chain. The components of S are as follows:
The finite set S is the state space and is endowed with the discrete topology, the metric
space A is the action set and, for every x ∈ S, A(x) ⊂ A is the (nonempty) subset of
admissible actions at x . On the other hand,C : K → R is the immediate cost function,
where K := {(x, a) : a ∈ A(x), x ∈ S} is the class of admissible pairs, whereas for
each (x, a) ∈ K the mappings ρx,a : [0,∞[→ R and Fx,a(·) are the holding cost rate
and the sojourn time distribution function, respectively, corresponding to the applica-
tion of action a ∈ A(x) at state x ; it is assumed that the sojourn times are positive, so
that

Fx,a(0) = 0, (x, a) ∈ K. (1)

Finally, [px,y(a)] is the (controlled) transition law and satisfies
∑

y∈S px,y(a) = 1 for
every (x, a) ∈ K. The model S has the following interpretation: At time t = 0 the
system starts at X0 = x0 ∈ S. Now, suppose that after completing the nth transition
the system arrives at state Xn = x . At the arrival time, the decision maker applies a
control (action) An = a ∈ A(x) and such an intervention has four consequences: (i)
A cost C(x, a) is incurred, (ii) the system stays at x during a (random) sojourn time
Sn whose distribution function is Fx,a , (iii) a holding cost is incurred at a rate ρx,a ,
while the system stays at x , and (iv) regardless of the sojourn time Sn and the previous
states, actions and sojourn times, after Sn has elapsed the system jumps to other state
Xn+1 = y ∈ S with probability px,y(a); this is the Markov property of the decision
process. Note that the nth transition is completed at time Tn , where
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T0 = 0 and Tn =
n−1∑

i=0

Si , n = 1, 2, 3, . . . , (2)

so that the number of transitions Nt in the interval [0, t] is given by

Nt = sup{n ∈ N : Tn ≤ t}, t ≥ 0. (3)

The information recorded by the controller up to time Tn is given by Hn , where

H0 := X0, and Hn := (X0, A0, S0, . . . , Xn−1, An−1, Sn−1, Xn), n ≥ 1, (4)

so that, for every t ≥ 0 and n ∈ N,

Tn is σ(Hn)-measurable, and [Nt ≥ n] = [Tn ≤ t] ∈ σ(Hn). (5)

Assumption 2.1 (i) For each x ∈ S, the set A(x) is a compact subspace of A.
(ii) For each x, y ∈ S, a 	→ C(x, a) and a 	→ pxy (a) are continuous in a ∈ A(x).
(iii) The family {Fx,a}(x,a)∈K is supported on a compact interval and is weakly con-

tinuous, that is, there exists B > 0 such that

Fx,a(B) = 1, (x, a) ∈ K, (6)

and for each x ∈ S and u ∈ B([0, B]), a 	→ ∫ B
0 u(s) dFx,a(S) is continuous in

a ∈ A(x).
(iv) For every x ∈ S, the mapping (a, s) 	→ ρx,a(s) is continuous in (a, s) ∈ A(x)×

[0, B].
Except for the requirement (6), this assumption is rather standard. The role of

condition (6) will be discussed in Remark 3.1(ii). Since the space A(x) is compact so
is A(x) × [0, B]; thus, sup(a,s)∈A(x)×[0,B] |ρx,a(s)| < ∞ for every x ∈ S, by part (iv)
of Assumption 2.1, and then, using that the state space is finite, it follows that

Bρ := sup
(x,a)∈K, s∈[0,B]

|ρx,a(s)| < ∞. (7)

Policies A policy is a rule for choosing actions which, at each decision epoch Tn ,
may depend on the current state as well as on the record of previous states, actions
and sojourn times. A more formal description is as follows: For each n = 0, 1, 2, . . .,
define the space Hn of admissible histories until the completion of nth transition by
H0 := S, andHn := K×]0,∞[×Hn−1 for n = 1, 2, 3, . . .. A generic element ofHn is
denoted by hn = (x0, a0, s0, x1, . . . , xn−1, an−1, sn−1, xn), where xi ∈ S, ai ∈ A(xi )
and si > 0. A control policy π = {πn} is a special sequence of stochastic kernels: For
each n ∈ N and hn ∈ Hn , πn(· | hn) is a probability measure on B(A) satisfying that
πn(A(xn) | hn) = 1, whereas for every B ∈ B(A), the mapping hn 	→ πn(B | hn) is
Borel measurable. After observing the event [Hn = hn], under the action of policy π

the probability of choosing the nth action An within B ∈ B(A) is given by πn(B | hn).
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The collection of all policies is denoted by P . Define F := ∏
x∈S A(x), which is a

compact metric space and consists of all functions f : S → A such that f (x) ∈ A(x)
for each x ∈ S. A policy π ∈ P is stationary if there exists f ∈ F such that the
equality πn({ f (xn)} | hn) = 1 is always valid; in this case π and f are naturally
identified and, with this convention, F ⊂ P . Given the initial state X0 = x and the
policy π being used for choosing actions, the distribution of {(Xn, An, Sn)}n∈N is
uniquely determined via the Tulcea theorem [22]. Such a distribution is denoted by
Pπ
x , whereas Eπ

x stands for the corresponding expectation operator. The following
Markov relations are satisfied almost surely under each distribution Pπ

x : For each
x, y ∈ S, Ã ∈ B(A) and n ∈ N,

Pπ
x [X0 = x] = 1,

Pπ
x [An ∈ Ã |Hn] = πn( Ã |Hn),

Pπ
x [Sn ≤ t |Hn, An] = FXn,An (t), t ≥ 0,

Pπ
x [Xn+1 = y |Hn, An, Sn] = pXn ,y(An). (8)

As it will be shown in Lemma 4.1 below, the third equality in this display and (1),
together yield that Nt is finite Pπ

x almost surely for each t > 0, x ∈ S and π ∈ P .

The total cost up to a positive time Suppose that the system will be driven by the
controller up to time t > 0, so that the states X0, X1, . . . , XNt will be visited at times
T0, T1, . . . , TNt , respectively. For each nonnegative integer k ≤ Nt , the action Ak will
be applied at Xk , incurring an immediate cost C(Xk, Ak). As for the holding costs,
note that for k < Nt , the system will stay at Xk during the interval [Tk, Tk+1[⊂ [0, t],
where the inclusion is due to the fact that 0 ≤ Tk+1 ≤ TNt ≤ t , by (2) and (3). Since
Tk+1 = Tk+Sk , it follows that the system stays at Xk during Sk units of time, incurring
the holding cost

∫ Sk
0 ρXk ,Ak (r) dr . On the other hand, at time TNt the system arrives at

state XNt and stays there during the interval [TNt , t], since the next transitionwill occur
at time TNt+1 > t ; thus within the observation interval [0, t], the system stays at XNt in

an interval of length t − TNt , with corresponding holding cost
∫ t−TNt
0 ρXNt ,ANt

(r) dr .
Therefore, the total cost incurred up to time t > 0 is given by

Ct :=
Nt−1∑

k=0

[

C(Xk, Ak) +
∫ Sk

0
ρXk ,Ak (r) dr

]

+C(XNt , ANt ) +
∫ t−TNt

0
ρXNt ,ANt

(r) dr. (9)

Since Nt is always finite with probability 1, so is Ct , by (6) and (7).

Utility function and average criterion Throughout the remainder it is supposed that
the controller has constant risk-sensitivity λ > 0; this means that a random cost
Y is assessed via E[Uλ(Y )] (assumed to be finite), where Uλ(·) is the exponential
utility given by Uλ(x) := eλx for x ∈ R. If the decision maker can choose between
incurring one of the random costs Y1 or Y0, then paying Y0 will be preferred when
E[Uλ(Y1)] > E[Uλ(Y0)], whereas the controller will be indifferent between Y1 and
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Y0 when E[Uλ(Y1)] = E[Uλ(Y0)]. The certainty equivalent of a random cost Y with
respect to Uλ is the real number Eλ[Y ] given by

Eλ[Y ] := 1

λ
log

(
E

[
eλY

])
; (10)

sinceUλ(Eλ[Y ]) = E[Uλ(Y )], the controller is willing to pay the nonrandom amount
Eλ[Y ] to avoid facing the uncertainty conveyed by Y . Now, suppose that the system
will be driven up to time t > 0 using policy π ∈ P starting at X0 = x . The total cost
incurred in the time interval [0, t] is given in (9), and instead of facing the random
amount Ct , the decision maker will gladly pay the certainty equivalent

Jt,λ(x, π) := 1

λ
log

(
Eπ
x

[
eλCt

])
, (11)

which represents an average of Jt,λ(x, π)/t per unit of time. The λ-sensitive average
cost at state x under π is the largest limit point of those averages as t goes to ∞ :

Jλ(x, π) := lim sup
t→∞

1

t
Jt,λ(x, π). (12)

The optimal (λ-sensitive) average cost at state x is

J ∗
λ (x) := inf

π∈P
Jλ(x, π), (13)

and a policy π∗ ∈ P is (λ-)average optimal if Jλ(x, π) = J ∗
λ (x) for every state x .

The problem The main objective of the paper can be now stated as follows:

• To determine an optimality equation whose solutions characterize the optimal
average cost function J ∗

λ (·) and render optimal policies.

This problem is twofolded: On the one hand, it must be proved that J ∗
λ can be

obtained from a solution of the optimality equation (the verification result) and, on
the other hand, conditions must be provided ensuring the existence of solutions. In the
following sections the optimality equation for the risk-sensitive average index will be
stated, and the verification result will be established under Assumption 2.1, whereas
the existence theorem will be derived under an additional condition on the underlying
discrete-time process {Xn}, namely, the communication property in Assumption 3.1
introduced in the following section.

3 Main Results

In this section the main conclusions of the paper are stated. Consider the equation

eλh(x) = inf
a∈A(x)

Ex

[

e
λ
[
C(X0,A0)+

∫ S0
0 ρX0,A0 (t)dt−gS0+h(X1)

]∣
∣
∣
∣ A0 = a

]

, x ∈ S,

(14)
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where g is a real number and h(·) is a real function defined on the state space S. In
terms of the certainty equivalents introduced in (10), this relation can be expressed as

h(x) = Eλ

[

C(X0, A0) +
∫ S0

0
ρX0,A0(t) dt − gS0

+ h(X1)|X0 = x, A0 = a

]

, x ∈ S, (15)

whereas, via (8), the equality (14) can be more explicitly written as

eλh(x) = inf
a∈A(x)

[

eλC(x,a)

∫ B

0
eλ

[∫ s
0 ρx,a(t)dt−gs

]

dFx,a(s)

×
∑

y∈S
px,y(a)eλh(y)

⎤

⎦ , x ∈ S. (16)

As it is shown in the following theorem, each of these equivalent equalities is an
optimality equation for the λ-sensitive average criterion.

Theorem 3.1 (Verification) Suppose that the equality (16) is satisfied by the pair
(g, h(·)). Under Assumption 2.1 the following assertions (i) and (ii) hold.

(i) J ∗
λ (x) = g for every x ∈ S.

(ii) For each x ∈ S, the term within brackets in the right-hand side of (16) has
a minimizer f ∗(x) ∈ A(x), and the stationary policy f ∗ is optimal, that is,

Jλ(·, f ∗) = g. Moreover, lim
t→∞

1

t
Jt,λ(x, f ∗) = g for every x ∈ S.

It is interesting to observe that the right-hand side of (16) engages the whole distri-
bution function Fx,a of the sojourn time S0 given that action a is applied at the state
x . In contrast, the optimality equation in the risk-neutral context involves only the
expectations of the holding cost

∫ S0
0 ρx,a(t) dt and S0 [3,6]. As noted in [21], a reason

behind this difference is the nonlinearity of the mapping Y 	→ Eλ[Y ].
The existence of a solution of the optimality (16) will be established when, in

addition to Assumption 2.1, the following condition is satisfied.

Assumption 3.1 Under each stationary policy, the Markov chain {Xn} is communi-
cating , that is, given f ∈ F and x, y ∈ S, there exists a positive integer nx,y, f ≡ n and
states xk, 0 ≤ k ≤ n, such that (a) x0 = x, xn = y, and (b) pxk−1,xk ( f (xk−1)) > 0
for 1 ≤ k ≤ n,

Theorem 3.2 (Existence of solutions) Under Assumptions 2.1 and 3.1, there exist
g ∈ R and h : S → R such that the optimality Eq. (16) is satisfied.

Remark 3.1 (i) The existence of solutions of (16) cannot be generally ensured under
the sole Assumption 2.1. Indeed, when the sojourn times Sk are identically 1,
it is known that, if Assumption 3.1 fails, then the optimal average cost function
J ∗
λ (·) is not necessarily constant, and then (16) does not have a solution [11,20].
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(ii) Given a solution (g, h(·)) of (16), the main idea behind the proof of Theorem 3.1
is to compare the certainty equivalents of the relative total cost Ct − tg, incurred
up to time t > 0, with the one corresponding to C̃t − gTNt+1, where C̃t is
the total cost incurred up to the completion of the first transition posterior to t ,
which occurs at time TNt+1. Condition (6) in Assumption 2.1 makes it possible
to compare both certainty equivalents in a neat way, and allows a streamlined
exposition. As in [21], at the expense of complicating the argument, (6) can be
replaced by requirements on the conditional distribution of the sojourn times
Sn − r given that Sn > r for r > 0.

(iii) The argument used to derive Theorem 3.1 relies heavily on the following conse-
quence of the Markov property: For each t > 0 the random variable Nt has ‘light
tails’; that is, regardless of the initial state and the policy employed, the tails of the
distribution of Nt decay faster than any geometric sequence. On the other hand,
the existence result will be proved combining (i) known results on the existence
of solutions of the risk-sensitive optimality equation in the discrete-time case
and (ii) the intermediate value property of a continuous mapping defined on an
interval of the real line.

4 Auxiliary Tools for the Verification Theorem

This section contains the technical preliminaries that will be used to establish Theo-
rem 3.1. The main tool is Theorem 4.1, whose proof relies on the following lemma.

Lemma 4.1 Under Assumption 2.1 the assertions (i)–(i i i) below hold:

(i) Let x ∈ S be arbitrary and suppose that the function R : A(x) × [0, B] → R is
continuous. In this case, the mapping a 	→ ∫ B

0 R(a, s)dFx,a(s) is continuous in
a ∈ A(x).

(ii) Given α ∈]0, 1[, there exists an integer mα > 0 such that, for every (x, a) ∈ K,
the inequality

∫ B
0 e−μs dFx,a(s) ≤ α holds for every μ ≥ mα .

(iii) For each α ∈]0, 1[, t ≥ 0 and n ∈ N, Pπ
x [Nt ≥ n] ≤ αnemα t for all x ∈ S, and

π ∈ P , where mα is as in part (ii), and then

Pπ
x [Nt < ∞] = 1. (17)

Proof (i) Given an arbitrary state x , let {an} ∈ A(x) be a convergent sequence, write
a∗ := limn→∞ an , and note that R(a∗, ·) is continuous in [0, B], so that

lim
n→∞

∫ B

0
R(a∗, s)dFx,an (s) =

∫ B

0
R(a∗, s)dFx,a∗(s),

by Assumption 2.1(iii). Observe now that ‖R(an, ·) − R(a∗, ·)‖ → 0, by the ‘tube
lemma’ in [23], and then

∣
∣
∣
∣

∫ B

0
R(an, s)dFx,an (s) −

∫ B

0
R(a∗, s)dFx,an (s)

∣
∣
∣
∣ ≤ ‖R(an, ·) − R(a∗, ·)‖ → 0.
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Via the triangle inequality, these two last displays together imply that

lim
n→∞

∫ B

0
R(an, s)dFx,an (s) =

∫ B

0
R(a∗, s)dFx,a∗(s),

and the desired conclusion follows.
(ii) Let x ∈ S and α ∈]0, 1[ be arbitrary but fixed. For each n ∈ N define the function
gn : A(x) →]0,∞[ by gn(a) := ∫ B

0 e−nsdFx,a(s), a ∈ A(x), and note that gn(·) is
continuous, by Assumption 2.1(iii), whereas (1) and the dominated convergence theo-
rem together yield that limn→∞ gn(a) = 0 for every a ∈ A(x). Since gn(·) ≥ gn+1(·),
the compactness of the action set A(x) implies, that limn→∞ ‖gn(·)‖ = 0, by Dini’s
theorem. Thus, there exists mx,α > 0 such that gmx,α (a) = ∫ B

0 e−mx,αsdFx,a(s) ≤ α

for every a ∈ A(x). Since S is finite, it follows that mα := max{mx,α : x ∈ S} < ∞,
and the above display yields that

∫ B
0 e−μsdFx,a(s) ≤ α for every (x, a) ∈ K when

μ ≥ mα .
(iii) Let x ∈ S, π ∈ P and α ∈]0, 1[ be arbitrary. Given an integer n > 0, the
third equality in (8) yields that, conditionally on Xk, Ak for k = 0, 1, 2, . . . , n − 1,
the sojourn times S0, S1, . . . , Sn−1 are independent with corresponding distribution
functions FX0,A0 , FX1,A1 , . . . , FXn−1,An−1 , respectively. Thus, with mα as in part (ii),
it follows that

Eπ
x

[
e−mα[S0+S1+···+Sn−1]

∣
∣
∣ Xk, Ak, 0 ≤ k < n

]
=

n−1∏

k=0

∫ B

0
e−mαsdFXk ,Ak (s) ≤ αn,

and then Eπ
x

[
e−mαTn

] ≤ αn ; see (2). This relation yields that, for any t ≥ 0,

e−mα t Pπ
x [Tn ≤ t] ≤ Eπ

x

[
e−mαTn

]
≤ αn .

Hence, the equality [Nt ≥ n] = [Tt ≤ t] in (5) yields that Pπ
x [Nt ≥ n] ≤ αnemα t for

every n ∈ N; since 0 < α < 1, it follows that Pπ
x [Nt = ∞] = limn→∞ Pπ

x [Nt ≥
n] = 0. �

Theorem 4.1 Let (g, h(·)) be a solution of equation (16). Under Assumption 2.1, the
assertions (i) and (ii) below hold:

(i) The following inequality is valid for every x ∈ S, π ∈ P and t > 0:

eλh(x) ≤ Eπ
x

⎡

⎢
⎣e

λ

[
Nt∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (s)ds

)
−gTNt+1+h(XNt+1)

]⎤

⎥
⎦ . (18)

(ii) For each x ∈ S, the term within brackets in (16) has a minimizer f ∗(x) ∈ A(x),
and the policy f ∗ ∈ F satisfies that, for every x ∈ S and t > 0,
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eλh(x) = E f ∗
x

⎡

⎢
⎣e

λ

[
Nt∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (s)ds

)
−gTNt+1+h(XNt+1)

]⎤

⎥
⎦ . (19)

Proof (i) Let x ∈ S and π ∈ P be arbitrary but fixed, and note that (16) yields that
for every a ∈ A(x),

eλh(x) ≤ eλC(x,a)

∫ B

0
eλ

[∫ s
0 ρx,a(t)dt−gs

]

dFx,a(s)
∑

y∈S
px,y(a)eλh(y)

= Eπ
x

[

e
λ
[
C(X0,A0)+

∫ S0
0 ρX0,A0 (t)dt−gS0+h(X1)

]∣
∣
∣
∣ X0 = x, A0 = a

]

. (20)

More generally, via the Markov equalities (8) it follows that for every n ∈ N,

eλh(Xn) ≤ Eπ
x

[

e
λ
[
C(Xn ,An)+

∫ Sn
0 ρXn ,An (t)dt−gSn+h(Xn+1)

]∣
∣
∣
∣Hn, An

]

; (21)

see (4). It will be proved, by induction, that for every nonnegative integer n,

eλh(x) ≤ Eπ
x

⎡

⎢
⎣e

λ

[
Nt∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTNt+1+h(XNt+1)

]

I [Nt ≤ n]
⎤

⎥
⎦

+ Eπ
x

⎡

⎣e
λ

[
n∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+1+h(Xn+1)

]

I [Nt > n]
⎤

⎦ . (22)

To achieve this goal, note that taking the integral with respect to π0(·|x) in (20) it
follows that

eλh(x) ≤ Eπ
x

[

e
λ
[
C(X0,A0)+

∫ S0
0 ρX0,A0 (t)dt−gS0+h(X1)

]]

= Eπ
x

[

e
λ
[
C(X0,A0)+

∫ S0
0 ρX0,A0 (t)dt−gS0+h(X1)

]

I [Nt = 0]
]

+Eπ
x

[

e
λ
[
C(X0,A0)+

∫ S0
0 ρX0,A0 (t)dt−gS0+h(X1)

]

I [Nt > 0]
]

;

since T1 = S0, this last display immediately yields that (22) is valid for n = 0. Now
suppose that (22) holds for a certain nonnegative integer n, and observe that

e
λ

[
n∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+1+h(Xn+1)

]

I [Nt > n]

= e
λ

[
n∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+1

]

I [Nt ≥ n + 1]eλh(Xn+1)
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≤ e
λ
[∑n

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+1

]

I [Nt ≥ n + 1]
×Eπ

x

[

e
λ
[
C(Xn+1,An+1)+

∫ Sn+1
0 ρXn+1,An+1 (t)dt−gSn+1+h(Xn+2)

]∣
∣
∣
∣Hn+1, An+1

]

≤ Eπ
x

⎡

⎢
⎣e

λ

[
n+1∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−g[Tn+1+Sn+1]+h(Xn+2)

]

×I [Nt ≥ n + 1]|Hn+1, An+1
]
,

where (21) was used to set the first inequality, whereas the fact that the variables

I [Nt ≥ n + 1] and ∑n
k=0

(
C(Xk, Ak) + ∫ Sk

0 ρXk ,Ak (t) dt
)

− gTn+1 + h(Xn+1) are

σ(Hn+1)-measurable was used in the last step. Since Tn+2 = Tn+1 + Sn+1, by (2), it
follows that

Eπ
x

⎡

⎣e
λ

[
n∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+1+h(Xn+1)

]

I [Nt > n]
⎤

⎦

≤ Eπ
x

⎡

⎢
⎣e

λ

[
n+1∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+2+h(Xn+2)

]

I [Nt ≥ n + 1]
⎤

⎥
⎦

= Eπ
x

⎡

⎢
⎣e

λ

[
n+1∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t) dt

)
−gTn+2+h(Xn+2)

]

I [Nt = n + 1]
⎤

⎥
⎦

+Eπ
x

⎡

⎢
⎣e

λ

[
n+1∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+2+h(Xn+2)

]

I [Nt > n + 1]
⎤

⎥
⎦

= Eπ
x

⎡

⎢
⎣e

λ

[
Nt∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTNt+1+h(XNt+1)

]

I [Nt = n + 1]
⎤

⎥
⎦

+Eπ
x

⎡

⎢
⎣e

λ

[
n+1∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+2+h(Xn+2)

]

I [Nt > n + 1]
⎤

⎥
⎦ ,

and combining this relation with the induction hypothesis it follows that (22) is also
valid with n + 1 instead of n, completing the induction argument. Next, observe that
the monotone convergence theorem and (17) together yield that
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lim
n→∞ Eπ

x

⎡

⎢
⎣e

λ

[
Nt∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTNt+1+h(XNt+1)

]

I [Nt ≤ n]
⎤

⎥
⎦

= Eπ
x

⎡

⎢
⎣e

λ

[
Nt∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTNt+1+h(XNt+1)

]⎤

⎥
⎦ . (23)

Now, a glance at (2) and (6) shows that the inequalities Sk ≤ B and Tn+1 ≤ (n + 1)B
are always valid with probability 1, so that

e
λ

[
n∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+1+h(Xn+1)

]

I [Nt > n]
≤ eλ(n+1)[‖C‖+B(Bρ+|g|)]+λ‖h‖ I [Nt ≥ n + 1],

and then

Eπ
x

⎡

⎣e
λ

[
n∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+1+h(Xn+1)

]

I [Nt > n]
⎤

⎦

≤ eλ(n+1)[‖C‖+B(Bρ+|g|)]+λ‖h‖Pπ
x [Nt ≥ n + 1].

Now set α = e−λ[‖C‖+B(Bρ+|g|)]/2. Combining the above display and Lemma 4.1(ii)
it follows that

Eπ
x

⎡

⎣e
λ

[
n∑

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (t)dt

)
−gTn+1+h(Xn+1)

]

I [Nt > n]
⎤

⎦

≤ eλ‖h‖(1/2)n+1emα t → 0 as n → ∞.

After taking the limit as n goes to ∞ in both sides of (22), this last convergence and
(23) together lead to (18).
(ii) Let x ∈ S be arbitrary, and note that Assumption 2.1(iv) and the bounded
convergence theorem together imply that R(a, s) := eλ

[∫ s
0 ρx,a(t)dt−gs

]

is a con-
tinuous function of (a, s) ∈ A(x) × [0, B], and then the mapping a 	→
∫ B
0 eλ

[∫ s
0 ρx,a(t)dt−gs

]

dFx,a(s) is continuous in its domain A(x), by Lemma 4.1(i).
Combining this property with Assumption 2.1(i), it follows that the termwithin brack-
ets in (16) is a continuous function of a ∈ A(x), and then the compactness of A(x)
ensures the existence of a minimizer f ∗(x) ∈ A(x). It follows that the stationary
policy f ∗ satisfies

eλh(x) = eλC(x, f ∗(x))
∫ B

0
eλ

[∫ s
0 ρx, f ∗(x)(t)dt−gs

]

dFx, f ∗(x)(s)
∑

y∈S
px,y( f

∗(x))eλh(y)

= E f ∗
x

[

e
λ
[
C(X0,A0)+

∫ S0
0 ρX0,A0 (t)dt−gS0+h(X1)

]]

, x ∈ S.
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Starting from this equality, (19) can be obtained paralleling the induction argument
used in part (i) to obtain (18) from (20). �


5 Proof of the Verification Theorem

In this section Theorem 3.1 will be established. To begin with, note that (2) and (3)
together yield that TNt ≤ t < TNt+1 = TNt + SNt , for every t > 0, and then

0 ≤ t − TNt ≤ SNt ≤ B and TNt+1 − t ≤ SNt ≤ B; (24)

see (6) for the right-most inequalities. Now, a glance at (9) yields that

Nt∑

k=0

(

C(Xk, Ak) +
∫ Sk

0
ρXk ,Ak (s) ds

)

− gTNt+1

= (Ct − tg) +
∫ SNt

t−TNt

ρXNt ,ANt
(s) ds − (TNt+1 − t)g,

and combining this equality with (7) and (24) it follows that

∣
∣
∣
∣
∣

Nt∑

k=0

(

C(Xk, Ak) +
∫ Sk

0
ρXk ,Ak (s) ds

)

− gTNt+1 − (Ct − tg)

∣
∣
∣
∣
∣
≤ B(Bρ + |g|).

(25)

Proof of Theorem 3.1 Let (x, π) ∈ S × P be arbitrary and note that (18) yields that

e−2λ‖h‖ ≤ Eπ
x

[

e
λ
[∑Nt

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (s)ds

)
−gTNt+1

]]

. Using (25), this leads to

e−2λ‖h‖ ≤ Eπ
x

[
eλ[Ct−tg+B(Bρ+|g|)]

]
, so that e−2λ[‖h‖−B(Bρ+|g|)+tg] ≤ Eπ

x

[
eλCt

]
,

and then

g ≤ lim inf
t→∞

1

λt
log

(
Eπ
x

[
eλCt

])
≤ Jλ(x, π); (26)

since the policy π is arbitrary, it follows that

g ≤ J ∗
λ (x). (27)

Next, let the policy f ∗ ∈ F be such that, for each x ∈ S, the action f ∗(x) is aminimizer
of the right-hand side of (16). In this case, the equality (19) established in The-

orem 4.1(ii) implies that e2λ‖h‖ ≥ E f ∗
x

[

e
λ
[∑Nt

k=0

(
C(Xk ,Ak )+

∫ Sk
0 ρXk ,Ak (s) ds

)
−gTNt+1

]]

;

together with (25) this yields that e2λ‖h‖ ≥ E f ∗
x

[
eλ[Ct−tg−B(Bρ+|g|)]

]
, so that

e2λ‖h‖+λB(Bρ+|g|)+λtg ≥ E f ∗
x

[
eλCt

]
,
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and then g ≥ lim supt→∞ 1
λt log

(
E f ∗
x

[
eλCt

])
= Jλ(x, f ∗). Combining this relation

with (26) and (27), it follows that J ∗
λ (x) = g and Jλ(x, f ∗) = limt→∞ 1

λt E
f ∗
x

[
eλCt

]
;

this completes the proof, since the state x is arbitrary. �


6 Existence of Solutions

In this sectionTheorem3.2will established.The argument is basedon the risk-sensitive
average criterion for the discrete-time process {Xn}. Let P̃ be the subset of P that
consists of all policies satisfying that, for each positive integer n, the kernelπn depends
only on the states X0, A0, X1, A1, . . . , Xn−1, An−1, Xn , that is, for every history hn ∈
Hn , πn(·|hn) = πn(·|x0, a0, . . . , xn−1, an−1, xn). Given a function D ∈ B(K), define
the discrete-time average index at x ∈ S under π ∈ P̃ by

Vλ,D(x, π) : = lim sup
n→∞

1

λn
log

(
Eπ
x

[
eλ

∑n−1
k=0 D(Xk ,Ak )

])
, (28)

and let the λ-optimal discrete-time average value function be given by

V ∗
λ,D(x) := inf

π∈P̃
Vλ,D(x, π), x ∈ S. (29)

It follows that D 	→ V ∗
λ,D(·) is monotone and additively homogeneous, that is,

V ∗
λ,D(·) ≤ V ∗

λ,D1
(·) if D ≤ D1, and V ∗

λ,c+D(·) = c + V ∗
λ,D(·), (30)

where c ∈ R. SinceD ≤ D1+‖D−D1‖ it follows thatV ∗
λ,D(·) ≤ V ∗

λ,D1
(·)+‖D−D1‖,

and interchanging the role of D and D1 this yields that

‖V ∗
λ,D − V ∗

λ,D1
‖ ≤ ‖D − D1‖. (31)

Using that V ∗
λ,0 = 0, the monotonicity property in (30) yields that, for D, D1 ∈ B(S),

V ∗
λ,D ≤ 0 ≤ V ∗

λ,D1
when D ≤ 0 ≤ D1. (32)

Theorem 6.1 Suppose that for each x, y ∈ S, themappinga 	→ px,y(a) is continuous
in a ∈ A(x). Under Assumptions 2.1(i) and 3.1, the following assertions hold:

(i) For each D ∈ B(S) there exist μD ∈ R and hD : S → R such that

eλ[μD+hD(x)] = inf
a∈A(x)

⎡

⎣eλD(x,a)
∑

y∈S
px,y(a)eλh(y)

⎤

⎦ ,

μD = Vλ,D(x), x ∈ S. (33)

123



684 J Optim Theory Appl (2016) 170:670–686

(ii) For each D, D1 ∈ B(S) ,

|μD − μD1 | ≤ ‖D − D1‖. (34)

Part (i) was proved in [10], whereas part (ii) follows from (31) and (33).

Lemma 6.1 Suppose that Assumption 2.1 is valid, and for each g ∈ R define the
function Dg : K → R by

Dg(x, a) = C(x, a) + 1

λ
log

(∫ B

0
eλ

[∫ s
0 ρx,a(t)dt−gs

]

dFx,a(s)

)

, (x, a) ∈ K.(35)

With this notation, the following assertions (i)–(v) hold:

(i) Dg ∈ B(K) for each g ∈ R.
(ii) ‖Dg − Dg1‖ ≤ B|g − g1|, g, g1 ∈ R.
(iii) There exist g− ≥ 0 such that Dg− ≤ 0.
(iv) For each β > 0, there exists Mβ > 0 such that, when μ ≥ Mβ , the inequality∫ B

0 eμs dFx,a(s) > β holds for every (x, a) ∈ K.
(v) Dg+ ≥ 0 for some g+ ≤ 0.

Proof (i) Let x ∈ S and g ∈ R be arbitrary. As in the proof of Theorem 4.1(ii), the
mapping a 	→ ∫ B

0 eλ
[∫ s

0 ρx,a(t)dt−gs
]

dFx,a(s) is continuous in its domain A(x), and
then the continuity of C(x, ·) yields that Dg(x, ·) is also continuous. Since the state
space is endowed with the discrete topology, it follows that Dg ∈ B(K).

(ii) Observing that the inequality eλ
[∫ s

0 ρx,a(t)dt−gs
]

≤ eλ
[∫ s

0 ρx,a(t)dt−g1s
]

eλB|g−g1| is
always valid for every s ∈ [0, B], the desired conclusion follows via (35).
(iii) Let α = e−λ‖C‖/2 and select mα as in Lemma 4.1(ii). Using (7), note that,
for every (x, a) ∈ K,

∫ B
0 eλ

[∫ s
0 ρx,a(t)dt−(Bρ+γ )s

]

dFx,a(s) ≤ ∫ B
0 e−λγ s dFx,a(s) ≤ α

when γ ≥ mα/λ. Thus, setting g− := Bρ + mα/λ, via (35) it follows that the
inequality Dg−(x, a) ≤ ‖C‖ + log(α)/λ ≤ ‖C‖ − ‖C‖ − log(2)/λ < 0 holds for
every (x, a) ∈ K.
(iv) Let x ∈ S be arbitrary. By Assumption 2.1, the mapping rn(a) 	→ 1/

∫ B
0 ens

dFx,a(s) is continuous in a ∈ A(x) for every n ∈ N. Moreover, (1) and the monotone
convergence theorem yield that rn ↘ 0, and then, recalling that A(x) is compact,
Dini’s theorem implies that for each β > 0 there exists Mx,β ∈ N such that, for every

a ∈ A(x), the inequality 1/
∫ B
0 ens dFx,a(s) ≤ 1/β holds when n ≥ Mx,β , and the

conclusion follows setting Mβ : = max{Mx,β | x ∈ S}.
(v) Set β = eλ‖C‖ > 0 and select Mβ as in part (iv). Using (7), note that, for every

(x, a) ∈ K,
∫ B
0 eλ

[∫ s
0 ρx,a(t)dt+(Bρ+Mβ/λ)s

]

dFx,a(s) ≥ ∫ B
0 eMβ s dFx,a(s) ≥ β =

eλ‖C‖, a relation that, via (35), yields that Dg+ ≥0 for g+ :=−(Bρ +Mβ/λ). �

Proof of Theorem 3.2 For each g ∈ R, consider the function Dg ∈ B(K) defined in
(35). By Theorem 6.1, the discrete-time risk-sensitive average cost Vλ,Dg (·) is the
constant μDg , whereas Lemma 6.1(ii) and (34) together yield that g 	→ μDg is a
continuous mapping in g ∈ R. Now, let g+ and g− be as in parts (iii) and (v) of
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Lemma 6.1, so that Dg+ ≥ 0 and Dg− ≤ 0. In this case μDg+ ≥ 0 and μDg− ≤ 0, by
(32) and (33). From this point, the intermediate value property yields the existence of
a real number g∗ between g+ and g− such that μDg∗ = 0, and then Theorem 6.1(i)
ensures that for a certain function hDg∗ : S → R the following equality holds for
every x ∈ S:

e
λhDg∗ (x) = inf

a∈A(x)

⎡

⎣eλDg∗ (x,a)
∑

y∈S
px,y(a)e

λhDg∗ (y)

⎤

⎦

= inf
a∈A(x)

⎡

⎣eλC(x,a)

∫ B

0
eλ

[∫ s
0 ρx,a(t) dt−g∗s

]

dFx,a(s)
∑

y∈S
px,y(a)e

λhDg∗ (y)

⎤

⎦ ,

where the second equality is due to (35). Thus, the pair (g∗, hDg∗ (·)) satisfies the
optimality Eq. (16). �


7 Conclusions

In this paper semi-Markov decision chains endowed with the risk-sensitive average
criterion were studied. An optimality equation was formulated, and under Assumption
2.1, it was proved that if such an equation has a solution, then a risk-sensitive aver-
age optimal stationary policy can be immediately determined, and that the optimal
risk-sensitive average cost function is constant. If, additionally, the communication
condition in Assumption 3.1 holds, then it was verified that the optimality equation
has a solution. As already noted after the statement of Theorem 3.1, in the present
risk-sensitive context the right-hand side of the optimality equation involves thewhole
distribution functions of the sojourn times, a fact that establishes an interesting contrast
with the risk-neutral case, where the optimality equality engages only the expectations
of the sojourn times and the running costs; this difference can be traced back to the
nonlinearity of the mapping Y 	→ Eλ[Y ] when λ > 0. On the other hand, when the
communication condition in Assumption 3.1 fails, the optimal risk-sensitive average
cost function is not constant in general, and in that case it cannot be characterized
in terms of a single equation. Thus, it is interesting to look for a characterization
of the optimal average cost for semi-Markov decision chains with general transition
structure.
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