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Abstract This paper presents an approximate method for solving a class of fractional
optimization problems with multiple dependent variables with multi-order fractional
derivatives and a group of boundary conditions. The fractional derivatives are in the
Caputo sense. In the presented method, first, the given optimization problem is trans-
formed into an equivalent variational equality; then, by applying a special form of
polynomial basis functions and approximations, the variational equality is reduced to
a simple linear system of algebraic equations. It is demonstrated that the derived linear
system has a unique solution. We get an approximate solution for the initial optimiza-
tion problem by solving the final linear system of equations. The choice of polynomial
basis functions provides a method with such flexibility that all initial and boundary
conditions of the problem can be easily imposed. We extensively discuss the conver-
gence of the method and, finally, present illustrative test examples to demonstrate the
validity and applicability of the new technique.
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1 Introduction

In this article, an efficient approximate method for solving a class of fractional
optimization problems is developed. The discussed problem is formulated by a bilin-
ear form, which is a real valued functional of multiple dependent variables with
multi-order fractional derivatives. Fractional derivatives are defined in the Caputo
sense.

An important type of fractional optimization problems are fractional variational
problems (FVPs). General optimality conditions have been developed for FVPs in
previous works. For instance, Euler–Lagrange equations for FVPs with Riemann–
Liouville and Caputo derivatives are derived in [1] and [2], respectively. Optimality
conditions for FVPs with functionals containing both fractional derivatives and inte-
grals are presented in [3]. Such formulas are also developed for FVPs with other
definitions of fractional derivatives in [4,5]. The general form of the Euler–Lagrange
equations for FVPs with Riemann–Liouville, Caputo, Riesz–Caputo and Riesz–
Riemann–Liouville derivatives is derived in [6]. A number of other generalizations of
Euler–Lagrange equations for problems with free boundary conditions can be found
in [7–10].

Optimal solutions of FVPs should satisfy Euler–Lagrange equations [1–3]. Hence,
solving Euler–Lagrange equations leads to optimal solutions to FVPs. Except for some
special cases [11], it is hard to find exact solutions for Euler–Lagrange equations.
There exist examples of numerical methods, developed and applied by researchers
of the field, for solving various classes of FVPs. Some of them can be found in
[12–17].

It is known that for optimization problems with bilinear form operators, there exists
an equivalent variational equality [18]. Building on this existence, we develop a
method for solving multidimensional optimization problems with multi-order frac-
tional derivatives and a group of boundary conditions. First, equivalent variational
equality of the given multi dimensional optimization problem is derived; then, by
expanding unknown functions in terms of special forms of polynomial basis func-
tions and substituting them in the variational equality, a linear system of algebraic
equations is achieved. It is proved that the derived system of equations has a unique
solution. By approximating fractional derivative operators with Legendre orthonor-
mal polynomial basis functions, the linear system turns into an approximate linear
system. By solving the subsequent approximate system of equations, we determine
unknown coefficients of the expansions for each variable. Thus, we get polyno-
mial functions as approximate solutions for the problem. The main advantage of
our method over the schemes presented in [12,13,15,16] is that we easily derive
a linear system of equations that can be solved instead of the main optimization
problem. The existence and uniqueness of the solution for the derived linear system
is guaranteed. We also get smooth approximate solutions, in terms of polynomials,
that satisfy all initial and boundary conditions of the problem. Examples demonstrate
that by applying only few number of approximations we can achieve satisfactory
results.
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2 Problem Formulation

Operator B is defined as follows

B :
(m+1)n∏

i=1

L2[t0, t1] ×
(m+1)n∏

i=1

L2[t0, t1] → R,

(U, V ) �→ B(U, V ), U, V ∈ L2[t0, t1],

where the product space
∏(m+1)n

i=1 L2[t0, t1] is equipped with the following product
norm

‖ ( f1, . . . , f(m+1)n) ‖π =
⎛

⎝
(m+1)n∑

j=1

‖ f j ‖2L2[t0,t1]

⎞

⎠

1
2

,

‖ f j ‖L2[t0,t1] =
(∫ t1

t0
f 2j dt

) 1
2

. (1)

Assumption 2.1 Operator B is considered to have the following properties

(i) Bilinearity. For all U, V,W ∈ ∏(m+1)n
i=1 L2[t0, t1] and a, b ∈ R

B(aU + bV,W ) = aB(U,W ) + bB(V,W ),

B(W, aU + bV ) = aB(W,U ) + bB(W, V ).

(ii) Boundedness. There exists a constant d > 0 such that

| B(U, V ) |≤ d ‖ U ‖π‖ V ‖π , U, V ∈
(m+1)n∏

i=1

L2[t0, t1].

(iii) Symmetry.

B(U, V ) = B(V,U ), U, V ∈
(m+1)n∏

i=1

L2[t0, t1].

(iv) Strong positivity. There exists c > 0 such that

c ‖ U ‖2π≤ B(U,U ), U ∈
(m+1)n∏

i=1

L2[t0, t1].

Functional J is defined as follows:

J [u1, . . . , un] := 1

2
B(U,U ) − L(U ) + C, (2)
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where L : ∏(m+1)n
i=1 L2[t0, t1] → R is a bounded linear operator, C is a real constant,

U = (u1, . . . , un,
C
t0D

α1
t u1, . . . ,

C
t0D

α1
t un, . . . ,

C
t0D

αm
t u1, . . . ,

C
t0D

αm
t un),

t ∈ [t0, t1], α1 < · · · < αm,

and the fractional derivative is defined in the Caputo sense

C
t0D

α
t u(t) := 1

Γ (n − α)

∫ t

t0
(t − τ)n−α−1u(n)(τ ), n − 1 < α < n.

In cases for which α = n, the Caputo derivative is defined as C
t0D

α
t u(t) := u(n)(t).

We consider that there exists an element, say (u∗
1, . . . , u

∗
n) ∈ ∏n

i=1 Ei [t0, t1], that
minimizes the functional J on the space

∏n
i=1 Ei [t0, t1],

Ei [t0, t1] := {u ∈ C�αm	[t0, t1] : u(k)(t0) = uki0, u
(k)(t1) = uki1, 0 ≤ k ≤ �αm	 − 1}.

For this article, our goalwas to find approximateminimizing solution for the functional
J on

∏n
i=1 Ei [t0, t1].

3 Variational Equality

Without any loss of generality, we let t0 = 0, t1 = 1 and t ∈ [0, 1] in problem (2).

Theorem 3.1 The minimization problem of Sect. 2 is equivalent to the following vari-
ational problem

B(U, V ) = L(V ), (3)

for (u1, . . . , un) ∈ ∏(m+1)n
i=1 Ei [0, 1] fixed and (v1, . . . , vn) ∈ ∏(m+1)n

i=1 E∗[0, 1],
where

U = (u1, . . . , un,
C
0 D

α1
t u1, . . . ,

C
0 D

α1
t un, . . . ,

C
0 D

αm
t u1, . . . ,

C
0 D

αm
t un),

t ∈ [0, 1],
V = (v1, . . . , vn,

C
0 D

α1
t v1, . . . ,

C
0 D

α1
t vn, . . . ,

C
0 D

αm
t v1, . . . ,

C
0 D

αm
t vn),

t ∈ [0, 1],
E∗[0, 1] = {u ∈ C�αm	[0, 1] : u(k)(0) = u(k)(1) = 0, 0 ≤ k ≤ �αm	 − 1}.

Proof Let
Γ (t) = J [(u1, . . . , un) + t (v1, . . . , vn)], t ∈ R;

then, we have

Γ (t) = 1

2
B(U + tV,U + tV ) − L(U + tV ) + C

= 1

2
t2B(V, V ) + t[B(U, V ) − L(V )] + 1

2
B(U,U ) − L(U ) + C.
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Since B(V, V ) is positive for all V 
= 0, the necessary and sufficient condition of
minimality, Γ ′(0) = 0, is equivalent with the following condition:

B(U, V ) = L(V ), ∀(v1, . . . , vn) ∈
(m+1)n∏

i=1

E∗[0, 1],

and the proof is completed. �
Corollary 3.1 shows that variational equality (3) determines a unique solution for

minimization problem (2).

Corollary 3.1 Let (u1, . . . , un) and (w1, . . . , wn) be two minimizing solutions for
the functional J ; then, we have

‖ u j−w j ‖L2[0,1]= 0, ‖ C
0 D

αi
t u j−C

0 D
αi
t w j ‖L2[0,1]= 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proof According to Theorem 3.1, we have

B(U, V ) = L(V ), B(W, V ) = L(V ), ∀(v1, . . . , vn) ∈
n∏

i=1

E∗
i [0, 1],

where

U = (u1, . . . , un,
C
0 D

α1
t u1, . . . ,

C
0 D

α1
t un, . . . ,

C
0 D

αm
t u1, . . . ,

C
0 D

αm
t un), t ∈ [0, 1],

W = (w1, . . . , wn,
C
0 D

α1
t w1, . . . ,

C
0 D

α1
t wn, . . . ,

C
0 D

αm
t w1, . . . ,

C
0 D

αm
t wn), t ∈[0, 1].

Let (v1, . . . , vn) = (u1, . . . , un) − (w1, . . . , wn); then, by Assumption 2.1 we get

c ‖ U − W ‖2π≤ B(U − W,U − W ) = 0,

and the proof is completed by considering (1). �

4 Approximate Solution of the Variational Equality

In this section, we present an approximate method for solving variational equality (3).
Consider expansions u j,k(t), 1 ≤ j ≤ n, in the following form

u j,k(t) = C j,k
T .Ψk(t) + w j (t), Ψk(t) =

⎛

⎜⎜⎜⎝

ψ0(t)
ψ1(t)

...

ψk(t)

⎞

⎟⎟⎟⎠ , C j,k =

⎛

⎜⎜⎜⎝

c j,0
c j,1
...

c j,k

⎞

⎟⎟⎟⎠ , (4)

ψ j (t) = φ j (t)t
�αm	(1 − t)�αm	, 0 ≤ j ≤ k. (5)
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Here, φ j s, j ∈ {0}⋃N are shifted Legendre orthonormal polynomials

φ j (t) = √
2 j + 1

j∑

k=0

(−1) j+k ( j + k)!tk
( j − k)!(k!)2 , j = 0, 1, 2, ... t ∈ [0, 1], (6)

and each w j is the Hermit interpolating polynomial that satisfies all initial and bound-
ary conditions of u j . Now let

Uk : = (u1,k, . . . , un,k,
C
0 D

α1
t u1,k, . . . ,

C
0 D

α1
t un,k, . . . ,

C
0 D

αm
t u1,k, . . . ,

C
0 D

αm
t un,k),

t ∈ [0, 1],

μi, j : = (0, . . . , 0,

i th︷︸︸︷
ψ j , 0, . . . , 0,

(i+n)th︷ ︸︸ ︷
C
0 D

α1
t ψ j , 0, . . . , 0,

(i+mn)th︷ ︸︸ ︷
C
0 D

αm
t ψ j , 0, . . . , 0),

t ∈ [0, 1];

then,
B(Uk, μi, j ) = L(μi, j ), 0 ≤ j ≤ k, 1 ≤ i ≤ n, (7)

forms a linear system of n(k + 1) equations and unknowns. By solving linear system
(7), we achieve coefficients of expansions (4). Thus, we get an approximate solution
for minimization problem (2) in terms of polynomials. Note that expansion (4) and
consequent approximate solutions satisfy all the boundary conditions of the problem.
In Lemma 4.2, we show that linear system (7) has a unique solution. First, we state
a lemma, which plays an important role in our discussion in this section and the
subsequent section.

Lemma 4.1 Let

E[0, 1] = { f (t) ∈ Cn[0, 1] : f ( j)(0) = f j
0 , f ( j)(1) = f j

1 , j = 0, 1, . . . , n − 1},
‖ f ‖n = ‖ f ‖∞ + ‖ f ′ ‖∞ + · · · + ‖ f (n) ‖∞,

where f j
0 , f j

1 are given constant values. There exists a sequence of polynomial func-
tions {sl(t)}l∈N in E[0, 1] such that sl → f with respect to ‖ . ‖n.
Proof [14]. �
Lemma 4.2 For any k ∈ N, linear system (7) has unique solution.

Proof Let

ηk := in f {J [u1, . . . , un] : (u1, . . . , un) ∈
n∏

i=1

Pk[0, 1]
⋂

Ei [0, 1]}.

�
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Here Pk[0, 1] denotes the space of polynomials with a degree of at most k. According
to Assumption 2.1, we have

J [u1, . . . , un] = 1

2
B(U,U ) − L(U ) + C ≥ 1

2
c ‖ U ‖2π − ‖ L ‖‖ U ‖π +C,

U = (u1, . . . , un,
C
0 D

α1
t u1, . . . ,

C
0 D

α1
t un, . . . ,

C
0 D

αm
t u1, . . . ,

C
0 D

αm
t un),

t ∈ [0, 1].
If ‖ U ‖π→ ∞, then J [u1, . . . , un] → ∞. Hence, ηk > −∞. By the definition of ηk ,
there exists a sequence {(γ k

1, j , . . . , γ
k
n, j )} j∈N ⊆ ∏n

i=1 Pk[0, 1]
⋂

Ei [0, 1] such that

lim j→∞ J [γ k
1, j , . . . , γ

k
n, j ] = ηk . In addition, it can be observed that

2B(Γ k
i , Γ k

i ) + 2B(Γ k
j , Γ

k
j ) = B(Γ k

i − Γ k
j , Γ

k
i − Γ k

j ) + B(Γ k
i + Γ k

j , Γ
k
i + Γ k

j ),

where

Γ k
j : = (γ k

1, j , . . . , γ
k
n, j ,

C
0 D

α1
t γ k

1, j , . . . ,
C
0 D

α1
t γ k

n, j , . . . ,
C
0 D

αm
t γ k

1, j , . . . ,
C
0 D

αm
t γ k

n, j ),

t ∈ [0, 1].

It is obvious that (
γ k
1,i+γ k

1, j
2 , . . . ,

γ k
n,i+γ k

n, j
2 ) ∈ ∏n

i=1 Pk[0, 1]
⋂

Ei [0, 1] and J [ γ k
1,i+γ k

1, j
2 ,

. . . ,
γ k
n,i+γ k

n, j
2 ] ≥ ηk . Hence

J
[
γ k
1,i , . . . , γ

k
n,i ] + J [γ k

1, j , . . . , γ
k
n, j

]

= 1

4
B(Γ k

i − Γ k
j , Γ

k
i − Γ k

j ) + 2J [γ
k
1,i + γ k

1, j

2
, . . . ,

γ k
n,i + γ k

n, j

2
]

≥ 1

4
c ‖ Γ k

i − Γ k
j ‖π +2ηk . (8)

Inequality (8) shows that the sequence {(γ k
1, j , . . . , γ

k
n, j )} j∈N is a Cauchy sequence

with respect to the product norm ‖.‖π . On the other hand, according to Lemma 4.1,
Pk[0, 1]⋂ Ei [0, 1] is a closed subset of theBanach space (C�αm	[0, 1], ‖.‖�αm	). Thus,
it is a complete metric space with respect to ‖.‖�αm	. Because Pk[0, 1]⋂ Ei [0, 1] is a
finite dimensional Banach space, it is complete with respect to any norm. Hence,
there exists an element, say (γ k

1 , . . . , γ k
n ) ∈ ∏n

i=1 Pk[0, 1]
⋂

Ei [0, 1], such that
(γ k

1, j , . . . , γ
k
n, j ) → (γ k

1 , . . . , γ k
n ). According to Assumption 2.1, bilinear opera-

tor B and linear operator L are bounded. So it can be easily observed that ηk =
lim j→∞ J [γ k

1, j , . . . , γ
k
n, j ] = J [γ k

1 , . . . , γ k
n ]. So far we have shown that there exists

an element (γ k
1 , . . . , γ k

n ) ∈ ∏n
i=1 Pk[0, 1]

⋂
Ei [0, 1] that minimizes the functional J

on
∏n

i=1 Pk[0, 1]
⋂

Ei [0, 1]. Therefore, according to Theorem 3.1, Γ k is a solution
for the system (7), where

Γ k : = (γ k
1 , . . . , γ k

n , C0 D
α1
t γ k

1 , . . . , C0 D
α1
t γ k

n , . . . , C0 D
αm
t γ k

1 , . . . , C0 D
αm
t γ k

n ),

t ∈ [0, 1].
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Now we are going to show that the solution is unique. Suppose (uk1, . . . , u
k
n) and

(wk
1, . . . , w

k
n) are two solutions of system (7)

B(Uk, μi, j ) = L(μi, j ), B(Wk, μi, j ) = L(μi, j ), 0 ≤ j ≤ k, 1 ≤ i ≤ n,

Uk = (uk1, . . . , u
k
n,

C
0 D

α1
t uk1, . . . ,

C
0 D

α1
t ukn, . . . ,

C
0 D

αm
t uk1, . . . ,

C
0 D

αm
t ukn),

t ∈ [0, 1],
Wk = (wk

1, . . . , w
k
n,

C
0 D

α1
t wk

1, . . . ,
C
0 D

α1
t wk

n, . . . ,
C
0 D

αm
t wk

1, . . . ,
C
0 D

αm
t wk

n),

t ∈ [0, 1];

then, we have
B(Uk, V ) = L(V ), B(Wk, V ) = L(V ),

where

V = (v1, . . . , vn,
C
0 D

α1
t v1, . . . ,

C
0 D

α1
t vn, . . . ,

C
0 D

αm
t v1, . . . ,

C
0 D

αm
t vn), t ∈ [0, 1],

(v1, . . . , vn) ∈
n∏

i=1

Pk[0, 1]
⋂

E∗[0, 1].

Now let V = Uk − Wk ; then, c ‖ Uk − Wk ‖π≤ B(Uk − Wk,Uk − Wk) = 0.
Referring to the definition of ‖ . ‖π in (1), we get ‖ ukj − wk

j ‖L2[0,1]= 0, and
the uniqueness is proved given that norms are equivalent in finite dimensional Banach
spaces. �

Now we rewrite linear system (7) explicitly in terms of unknown coefficients ci, j ,
1 ≤ i ≤ n, 0 ≤ j ≤ k. First, Uk is decomposed as follows:

Uk =
n∑

r=1

(0, . . . , 0, ur,k, 0, . . . , 0,
C
0 D

α1
t ur,k, 0, . . . , 0,

C
0 D

αm
t ur,k, 0, . . . , 0). (9)

Considering expansions (4), we have

(0, . . . , 0, ur,k, 0, . . . , 0,
C
0 D

α1
t ur,k, 0, . . . , 0,

C
0 D

αm
t ur,k, 0, . . . , 0)

= (0, . . . , 0,Cr,k
T .Ψk(t) + wr (t), 0, . . . , 0,Cr,k

T .C0 D
α1
t Ψk(t)

+ C
0 D

α1
t wr (t), 0, . . .

0,Cr,k
T .C0 D

αm
t Ψk(t) + C

0 D
αm
t wr (t), 0, . . . , 0)

=
k∑

l=0

cr,l (0, . . . , 0,

r th︷ ︸︸ ︷
ψl(t), 0, . . . , 0,

(n+r)th︷ ︸︸ ︷
C
0 D

α1
t ψl(t), 0, . . . , 0,

(mn+r)th︷ ︸︸ ︷
C
0 D

αm
t ψl(t), 0, . . . , 0)︸ ︷︷ ︸

λr,l

+ (0, . . . , 0, wr (t), 0, . . . , 0,

(n+r)th︷ ︸︸ ︷
C
0 D

α1
t wr (t), 0, . . . , 0,

(mn+r)th︷ ︸︸ ︷
C
0 D

αm
t wr (t), 0, . . . , 0)︸ ︷︷ ︸

ωr

.

(10)
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By applying (9) and (10), system (7) can be rewritten as follows:

n∑

r=1

k∑

l=0

cr,lB(λr,l , μi, j ) +
n∑

r=1

B(ωr , μi, j ) = L(μi, j ), 0 ≤ j ≤ k, 1 ≤ i ≤ n.

(11)
We need to solve linear system (11) to find approximate solution for problem (3).
In order to simplify the calculation of each B(λr,l , μi, j ), in Lemma 4.3 we approx-
imate elements C

0 D
αr
t ψl(t), 1 ≤ r ≤ m, 0 ≤ l ≤ k, by the Legendre orthonormal

polynomials φ j s, j ∈ {0}⋃N, utilizing the following theorem.

Theorem 4.1 Let f ∈ L2[0, 1], rm = ∑m
j=0 c jφ j , where c j = ∫ 1

0 f (t)φ j (t)dt; then,

lim
m→∞ ‖ f − rm ‖L2[0,1]= 0.

Proof [19]. �
Lemma 4.3 Consider

Dα
r,γ =

⎛

⎜⎜⎜⎝

dα
0
dα
1
...

dα
γ

⎞

⎟⎟⎟⎠ , γ (t) =

⎛

⎜⎜⎜⎝

φ0(t)
φ1(t)

...

φγ (t)

⎞

⎟⎟⎟⎠ ,

dα
s = √

(2r + 1)(2s + 1)
r∑

k=0

�αm	∑

i=0

s∑

j=0

[(−1)i+r+k+ j+s
(�αm	

i

)

( j + s)!(r + k)!Γ (2�αm	 + k − i + 1)

(s − j)!( j !)2(r − k)!(k!)2Γ (2�αm	 + k − i − α + 1)
δ(αm, k, i, α, j)],

0 ≤ s ≤ γ,

where

δ(αm, k, i, α, j) = 1

2�αm	 + k + j − i − α + 1
,

for �α	 ≤ 2�αm	 + k − i and δ(αm, k, i, α, j) = 0, for �α	 > 2�αm	 + k − i ; then,

lim
γ→∞ ‖ C

0 D
α
t ψr − Dα

r,γ
T
.γ ‖L2[0,1]= 0.

Proof By utilizing (6), we get

ψr (t) = φr (t)t
�αm	(1 − t)�αm	 = t�αm	(1 − t)�αm	√2r + 1

r∑

k=0

(−1)r+k (r + k)!tk
(r − k)!(k!)2

= √
2r + 1

r∑

k=0

(−1)r+k (r + k)!tk+�αm	(1 − t)�αm	

(r − k)!(k!)2
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= √
2r + 1

r∑

k=0

(−1)r+k (r + k)!tk+�αm	

(r − k)!(k!)2
�αm	∑

i=0

(�αm	
i

)
(−1)i t�αm	−i

= √
2r + 1

r∑

k=0

�αm	∑

i=0

(−1)i+r+k
(�αm	

i

)
(r + k)!

(r − k)!(k!)2 t
2�αm	+k−i .

With respect to the fact that C0 D
α
t t

k = Γ (k+1)
Γ (k+1−α)

tk−α , when �α	 ≤ k, and C
0 D

α
t t

k = 0
for �α	 > k [20], we get the Caputo derivative of ψr (t)

C
0 D

α
t ψr (t) = √

2r + 1
r∑

k=0

�αm	∑

i=0

(−1)i+r+k
(�αm	

i

)

Γ (2�αm	 + k − i + 1)(r + k)!
Γ (2�αm	 + k − i − α + 1)(r − k)!(k!)2 t

2�αm	+k−i−α, (12)

when �α	 ≤ 2�αm	 + k − i, and C
0 D

α
t ψr (t) = 0 when �α	 > 2�αm	 + k − i . Now

by applying Theorem 4.1, we approximate t2�αm	+k−i−α for �α	 ≤ 2�αm	 + k − i
with Legendre orthonormal basis functions φss, and we get

t2�αm	+k−i−α �
γ∑

s=0

βα
s φs, (13)

βα
s =

∫ 1

0
t2�αm	+k−i−αφsdt

= √
2s + 1

s∑

j=0

(−1) j+s (s + j)!
(s − j)!( j !)2(2�αm	 + k − i − α + j + 1)

,

lim
γ→∞ ‖ t2�αm	+k−i−α −

γ∑

s=0

βα
s φs ‖L2[0,1]= 0. (14)

Substituting (13) and (14) in (12) we get dα
s , and the proof is completed. �

By applying Lemma 4.3 , system (11) is approximated as follows

n∑

r=1

k∑

l=0

cγ

r,lB(λ
γ

r,l , μ
γ

i, j ) +
n∑

r=1

B(ωr , μ
γ

i, j ) = L(μ
γ

i, j ), 0 ≤ j ≤ k, 1 ≤ i ≤ n,

λ
γ

r,l = (0, . . . , 0,

r th︷ ︸︸ ︷
ψl(t), 0, . . . , 0,

(n+r)th︷ ︸︸ ︷
Dα1
l,γ .γ , 0, . . . , 0,

(mn+r)th︷ ︸︸ ︷
Dαm
l,γ .γ , 0, . . . , 0),

μ
γ

i, j = (0, . . . , 0,

i th︷︸︸︷
ψ j , 0, . . . , 0,

(i+n)th︷ ︸︸ ︷
Dα1

j,γ .γ , 0, . . . , 0,

(i+mn)th︷ ︸︸ ︷
Dαm

j,γ .γ , 0, . . . , 0),

t ∈ [0, 1]. (15)
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By solving system (15), the following approximate solution for the problem is
achieved:

uγ

j,k(t) = Cγ

j,k
T
.Ψk(t) + w j (t), Cγ

j,k =

⎛

⎜⎜⎜⎝

cγ

j,0
cγ

j,1
...

cγ

j,k

⎞

⎟⎟⎟⎠ . (16)

5 Convergence

In this section, we discuss the convergence of the method presented in section 4.
In Theorem 5.1, we show that, with an increase in values of k and γ in (16), the
approximate minimizing function (uγ

1,k, . . . , u
γ

n,k) tends to (u∗
1, . . . , u

∗
n). First, we

state some basic properties of Caputo fractional derivatives needed in Lemma 5.1 and
Theorem 5.1.

Let f ∈ Cn[0, 1]. For the Caputo fractional derivative of order α, n − 1 < α ≤ n,
C
0 D

α
t f (t) ∈ C[0, 1]. We also have [20]

‖ C
0 D

α
t f (t) ‖∞≤ ‖ f (n) ‖∞

Γ (n − α + 1)
, n − 1 < α ≤ n. (17)

Lemma 5.1 Suppose C j,k , 1 ≤ j ≤ n, k ∈ N, is the solution of system (11); then, for
a sufficiently large value of γ ∈ N, there exists a unique solution Cγ

j,k for the system
(15), where

lim
γ→∞ | C j,k − Cγ

j,k |= 0.

Proof By utilizing Lemma 4.3, we get

lim
γ→∞ ‖ λ

γ

r,l − λr,l ‖π= 0, lim
γ→∞ ‖ μ

γ

i, j − μi, j ‖π= 0.

According to Assumption 2.1, the bilinear operator B and the linear operator L are
bounded. Hence,

lim
γ→∞B(λ

γ

r,l , μ
γ

i, j ) = B(λr,l , μi, j ), (18)

lim
γ→∞B(ωr , μ

γ

i, j ) = B(ωr , μi, j ), (19)

lim
γ→∞L(μ

γ

i, j ) = L(μi, j ). (20)

Consider linear systems (11) and (15) as follows:

M(k+1)n×(k+1)n X = b(k+1)n, Mγ

(k+1)n×(k+1)n Xγ = bγ

(k+1)n, (21)

where

M(k+1)n×(k+1)n : = [B(λr,l , μi, j )]1≤i,r≤n,0≤ j,l≤k,

Mγ

(k+1)n×(k+1)n : = [B(λ
γ

r,l , μ
γ

i, j )]1≤i,r≤n,0≤ j,l≤k,
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b(k+1)n : = [L(μi, j ) −
n∑

r=1

B(ωr , μi, j )]1≤i≤n,0≤ j≤k,

bγ

(k+1)n : = [L(μ
γ

i, j ) −
n∑

r=1

B(ωr , μ
γ

i, j )]1≤i≤n,0≤ j≤k,

X : = [ci, j ]1≤i≤n,0≤ j≤k, Xγ := [cγ

i, j ]1≤i≤n,0≤ j≤k .

According to Lemma 4.2, linear system (7) has a unique solution. So det
M(k+1)n×(k+1)n 
= 0, and (18) and (19) show us that, for a sufficiently large value
of γ , det Mγ

(k+1)n×(k+1)n 
= 0. This means that, for a sufficiently large value of γ , the
linear system (15) has a unique solution. Let

X = M−1
(k+1)n×(k+1)nb(k+1)n, Xγ = Mγ −1

(k+1)n×(k+1)nb
γ

(k+1)n,

for a sufficiently large γ ; then,

M−1
(k+1)n×(k+1)n = [mi, j ]1≤i, j≤(k+1)n, Mγ −1

(k+1)n×(k+1)n = [mγ

i, j ]1≤i, j≤(k+1)n,

mi, j = (−1)i+ j det M̃i, j

det M(k+1)n×(k+1)n
, mγ

i, j =(−1)i+ j
det M̃γ

i, j

det Mγ

(k+1)n×(k+1)n

.

Here M̃i, j and M̃γ

i, j are matrices achieved by deleting the i th row and j th column

of matrices M(k+1)n×(k+1)n and Mγ

(k+1)n×(k+1)n , respectively. 0 < ε < 1 is given.
Because the determinant of a matrix is a polynomial constructed by matrix entries,
considering (18) and (19) it can be observed that, for a sufficiently large value of γ ,

| mi, j − mγ

i j |< ε

2((k + 1)n)(‖ b(k+1)n ‖1 +1)
,

‖ M−1
(k+1)n×(k+1)n − Mγ −1

(k+1)n×(k+1)n ‖1= max j=1,...,(k+1)n

(k+1)n∑

i=1

| mi, j

−mγ

i, j |< ε

2(‖ b(k+1)n ‖1 +1)
.

By (18)–(20), it is also observed that for a large enough γ ,

‖ b(k+1)n − bγ

(k+1)n ‖1 =
n∑

i=1

k∑

j=0

| L(μi, j ) −
n∑

r=1

B(ωr , μi, j ) − L(μ
γ

i, j )

+
n∑

r=1

B(ωr , μ
γ

i, j ) |

≤
n∑

i=1

k∑

j=0

| L(μi, j ) − L(μ
γ

i, j ) |
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+
n∑

i=1

k∑

j=0

n∑

r=1

| B(ωr , μ
γ

i, j ) − B(ωr , μi, j )) |

≤ ε

2 ‖ M−1
(k+1)n×(k+1)n ‖1

,

‖ bγ

(k+1)n ‖1<‖ b(k+1)n ‖1 +1.

Hence,

‖ X − Xγ ‖1≤‖ M−1
(k+1)n×(k+1)n − Mγ

(k+1)n×(k+1)n ‖1‖ bγ

(k+1)n ‖1
+ ‖ M−1

(k+1)n×(k+1)n ‖1‖ b(k+1)n − bγ

(k+1)n ‖1< ε,

and the proof is completed. �
Theorem 5.1 Suppose ε > 0 is given; then, for sufficiently large values of k and γ

we have

‖ uγ

j,k − u∗
j ‖L2[0,1]< ε, ‖ C

0 D
αi
t uγ

j,k − C
0 D

αi
t u∗

j ‖L2[0,1]
< ε, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proof Let (u1,k, . . . , un,k) be the solution of system (7):

B(Uk, μi, j ) = L(μi, j ), 0 ≤ j ≤ k, 1 ≤ i ≤ n,

Uk = (u1,k, . . . , un,k,
C
0 D

α1
t u1,k, . . . ,

C
0 D

α1
t un,k,

. . . , C0 D
αm
t u1,k, . . . ,

C
0 D

αm
t un,k), t ∈ [0, 1]. (22)

According to Theorem 3.1

B(U∗, μi, j ) = L(μi, j ), 0 ≤ j ≤ k,

1 ≤ i ≤ n,

U∗ = (u∗
1, . . . , u

∗
n,

C
0 D

α1
t u∗

1, . . . ,
C
0 D

α1
t u∗

n, . . . ,
C
0 D

αm
t u∗

1, . . . ,
C
0 D

αm
t u∗

n),

t ∈ [0, 1],

μi, j = (0, . . . , 0,

i th︷︸︸︷
ψ j , 0, . . . , 0,

(i+n)th︷ ︸︸ ︷
C
0 D

α1
t ψ j , 0, . . . , 0,

(i+mn)th︷ ︸︸ ︷
C
0 D

αm
t ψ j , 0, . . . , 0),

t ∈ [0, 1]. (23)

So, considering (22) and (23), it can be observed that

B(U∗ −Uk, μi, j ) = 0, 0 ≤ j ≤ k, 1 ≤ i ≤ n. (24)

By Lemma 4.1, there exists a sequence, say {(v1,k, . . . , vn,k)}k∈N, (v1,k, . . . , vn,k) ∈∏n
i=1 Pk[0, 1]

⋂
Ei [0, 1], such that vi,k → u∗

i , 1 ≤ i ≤ n with respect to ‖ . ‖�αm	.
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Considering (24), we get

B(U∗ −Uk,Uk − Vk) = 0, (25)

where

Vk = (v1,k, . . . , vn,k,
C
0 D

α1
t v1,k, . . . ,

C
0 D

α1
t vn,k, . . . ,

C
0 D

αm
t v1,k, . . . ,

C
0 D

αm
t vn,k),

t ∈ [0, 1].

From (25) we obtain

B(U∗ −Uk,Uk) = B(U∗ −Uk, Vk), (26)

and
B(U∗ −Uk,U

∗ −Uk) = B(U∗ −Uk,U
∗ − Vk). (27)

Now by referring to Assumption 2.1, we get

c ‖ U∗ −Uk ‖2π≤ B(U∗ −Uk,U
∗ −Uk)

= B(U∗ −Uk,U
∗ − Vk) ≤ d ‖ U∗ −Uk ‖π‖ U∗ − Vk ‖π . (28)

ε > 0 is given. With respect to (17), it can be easily observed that with an increase in
the value of k, ‖ U∗ − Vk ‖π tends to zero. So inequality (28) shows that for a large
enough value of k,

‖ u j,k − u∗
j ‖L2[0,1]<

ε

2
, 1 ≤ j ≤ n, (29)

‖ C
0 D

αi
t u j,k − C

0 D
αi
t u∗

j ‖L2[0,1]<
ε

2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (30)

Now for a fixed value of k that satisfies (29) and (30), according to (17) and Lemma
5.1, γ can be set sufficiently large such that

‖ u j,k − uγ

j,k ‖L2[0,1]<
ε

2
, 1 ≤ j ≤ n, (31)

‖ C
0 D

αi
t u j,k − C

0 D
αi
t uγ

j,k ‖L2[0,1]<
ε

2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (32)

Hence, by (29)–(32)

‖ uγ

j,k−u∗
j ‖L2[0,1]<ε, ‖ C

0 D
αi
t uγ

j,k−C
0 D

αi
t u∗

j ‖L2[0,1]<ε, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

and the proof is completed. �
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6 Illustrative Test Problems

In this section, we apply the method presented in section 4 for solving the following
test examples. The well-known symbolic software “Mathematica” has been employed
for calculations and creating figures.

Example 6.1 Consider the following one dimensional problem:

J [u] =
∫ 1

0

⎡

⎣(u − t
5
2 )2+

(
C
0 D

1
4
t u− 5

√
πΓ

( 7
4

)
t
9
4

2Γ ( 34 )Γ ( 134 )

)2

+
(
C
0 D

5
4
t u − 15

√
π t

5
4

8Γ ( 94 )

)2
⎤

⎦ dt,

u(0) = 0, u(1) = 1, u′(0) = 0, u′(1) = 5

2
,

with exact solution u(t) = t
5
2 and J [u] = 0. For the above problem we have

B(U,U ) = 2
∫ 1

0
[u2 + (C0 D

1
4
t u)2 + (C0 D

5
4
t u)2]dt,

L(U ) =
∫ 1

0
[2t 52 u + 5

√
π t

9
4 Γ ( 74 )

Γ ( 34 )Γ ( 134 )

C
0 D

1
4
t u + 15

√
π t

5
4

4Γ ( 94 )

C
0 D

5
4
t u]dt,

U = (u, C0 D
1
4
t u, C0 D

5
4
t u).

Considering k = γ = 2 in approximation (16), we get

u22(t) = C2
2
T
.Ψ2(t) +

w(t)︷ ︸︸ ︷
1

2
(t3 + t2), C2

2
T = (−0.200713, 0.0473973,−0.0307623).

The approximate solution u22(t) and the exact solution u(t) = t
5
2 are plotted in Fig. 1.

The absolute errors in example 6.1 are shown in Table 1.

Fig. 1 Approximate solution u22
and exact solution uex for
example 6.1
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Table 1 Absolute errors J [uγ
k ], ‖ uγ

k − u ‖L2[0,1] and r
γ
k (t) =| uγ

k (t) − u(t) | in example 6.1

k = 2, γ = 2 k = 3, γ = 3 k = 4, γ = 4 k = 6, γ = 8 k = 8, γ = 10

J [uγ

k ] 0.0000239986 1.93247 × 10−6 7.53904 × 10−7 1.78218 × 10−7 5.3472 × 10−8

‖ uγ

k − u ‖L2 0.000253616 0.000045574 0.0000228848 7.62337 × 10−6 1.31637 × 10−11

rγ

k (0.1) 0.0000763215 0.0000435221 6.13833 × 10−6 0.0000102726 1.01177 × 10−6

rγ

k (0.2) 0.000358197 0.000075664 0.0000482497 0.0000105751 4.22995 × 10−7

rγ

k (0.3) 0.000305898 0.0000682096 1.4552 × 10−6 2.43947 × 10−6 2.68171 × 10−6

rγ

k (0.4) 0.0000436661 0.0000267363 0.0000388717 0.0000101246 4.96084 × 10−6

rγ

k (0.5) 0.000328348 0.0000681006 0.0000121884 9.95576 × 10−6 4.33955 × 10−6

rγ

k (0.6) 0.00027321 0.000021515 0.0000218256 3.64774 × 10−6 7.96366 × 10−6

rγ

k (0.7) 0.0000779828 0.0000365532 0.0000161373 0.0000110476 2.61757 × 10−6

rγ

k (0.8) 0.000381109 0.0000325869 3.75163 × 10−6 5.72225 × 10−6 3.75093 × 10−6

rγ

k (0.9) 0.000283569 4.02147 × 10−6 1.00144 × 10−6 1.65765 × 10−7 3.08488 × 10−6

Example 6.2 Consider the following two dimensional problem:

J [u1, u2] =
∫ 1

0

[
(u1 − t2.5 − t2 − 1)2 + (u2 − t4.5)2 +

(
C
0 D

1
2
t u1 − 8t1.5

3
√

π

−15π t2

16
√

π

)2

+
(
C
0 D

1
2
t u2 − 315

√
π t4

256

)2
]
dt,

u1(0) = 1, u1(1) = 3, u2(0) = 0, u2(1) = 1,

with exact solution u1(t) = t2.5 + t2 + 1, u2(t) = t4.5 and J [u1, u2] = 0. For the
above problem we have

B(U,U ) = 2
∫ 1

0
[u21 + u22 +

(
C
0 D

1
2
t u1

)2

+ (C0 D
1
2
t u2)

2]dt,

L(U ) = 2
∫ 1

0

[
(t2.5 + t2 + 1)u1 + t4.5u2 +

(
8t1.5

3
√

π
+ 15π t2

16
√

π

)
C
0 D

1
2
t u1

+315
√

π t4

256
C
0 D

1
2
t u2

]
dt,

U =
(
u1, u2,

C
0 D

1
2
t u1,

C
0 D

1
2
t u2

)
.

Considering k = 4 and γ = 5 in approximations (16), we get
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Fig. 2 Approximate solution u51,4 and u52,4 and exact solution u1 and u2 in example 6.2

Table 2 Absolute errors in
example 6.2

k = 4, γ = 5 k = 5, γ = 6

J [uγ
1,k , u

γ
2,k ] 1.46611 × 10−8 2.46182 × 10−9

‖ uγ
1,k − u1 ‖L2 0.0000278101 9.6746 × 10−6

‖ uγ
2,k − u1 ‖L2 4.28933 × 10−6 7.36128 × 10−7

| uγ
1,k (0.2)−u1(0.2) | 0.0000159945 3.80061 × 10−6

| uγ
2,k (0.2)−u2(0.2) | 3.80061 × 10−6 3.73575 × 10−8

| uγ
1,k (0.4)−u1(0.4) | 0.0000159945 2.21351 × 10−6

| uγ
2,k (0.4)−u2(0.4) | 3.44725 × 10−6 1.49141 × 10−8

| uγ
1,k (0.6)−u1(0.6) | 0.0000365409 5.94102 × 10−6

| uγ
2,k (0.6)−u2(0.6) | 6.42433 × 10−6 3.53047 × 10−7

| uγ
1,k (0.8)−u1(0.8) | 0.0000247625 2.74471 × 10−6

| uγ
2,k (0.8)−u2(0.8) | 4.27137 × 10−6 1.77875 × 10−7

u51,4(t) = C5
1,4

T
.Ψ4(t) +

w1(t)︷ ︸︸ ︷
2t + 1, u52,4(t) = C5

2,4
T
.Ψ4(t) +

w2(t)︷︸︸︷
t ,

C5
1,4 =

⎛

⎜⎜⎜⎜⎝

2.28032
0.138894

−0.0119808
0.0022769

−0.00083613

⎞

⎟⎟⎟⎟⎠
, C5

2,4 =

⎛

⎜⎜⎜⎜⎝

1.96607
0.711015
0.127428

0.00683953
−0.000351182

⎞

⎟⎟⎟⎟⎠
.

The approximate solutionu51,4(t) andu
5
2,4(t) and the exact solutionu1(t) = t2.5+t2+1

and u2(t) = t4.5 are plotted in Fig. 2. The absolute errors in example 6.2 are shown
in Table 2.

7 Conclusions

An approximate method was developed for solving a class of fractional optimization
problems. First, the optimization problem was transformed into a variational equality;
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then, using a special type of polynomial basis functions, the variational equality was
reduced to a linear system of algebraic equations with a unique solution. The approx-
imate solutions are smooth polynomial functions with high flexibility in satisfying all
initial and boundary conditions of the problem. The convergence of the method was
extensively discussed, and illustrative test examples were presented to demonstrate
efficiency of the new technique.
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