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Abstract In this paper, a new subclass of tensors is introduced and it is proved that
this class of new tensors can be defined by the feasible region of the corresponding
tensor complementarity problem. Furthermore, the boundedness of solution set of the
tensor complementarity problem is equivalent to the uniqueness of solution for such a
problemwith zero vector. For the tensor complementarity problemwith a strictly semi-
positive tensor, we proved the global upper bounds of its solution set. In particular,
such upper bounds are closely associated with the smallest Pareto eigenvalue of such
a tensor.
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1 Introduction

The nonlinear complementarity problemwas introduced byCottle in his Ph.D. thesis in
1964. In the last decades, many mathematical workers have concentrated a lot of their
energy and attention on this classical problem because of a multitude of interesting
connections to numerous disciplines and a wide range of important applications in
operational research, applied science and technology such as optimization, economic
equilibrium problems, contact mechanics problems, structural mechanics problem,
nonlinear obstacle problems, traffic equilibrium problems, and discrete-time optimal
control. For more details, see [1–4] and references therein. Well over a thousand
articles and several books have been published on this classical subject, which has
developed into a well-established and fruitful discipline in the field of mathematical
programming.

The linear complementarity problem is a special case of nonlinear complementarity
problem. It is well known that the linear complementarity problem has wide and
important applications in engineering and economics (Cottle et al. [5]; Han et al. [3]).
Cottle and Dantzig [6] studied the existence of solution of the linear complementarity
problem with the help of the structure of the matrix. Some relationships between
the uniqueness and existence of solution of the linear complementarity problem and
semi-monotonicity of the matrices were showed by Eaves [7], Karamardian [8], Pang
[9,10] and Gowda [11], respectively. Cottle [12] studied some classes of the complete
matrix (a matrix is called complete iff the matrix and all its principal submatrices
are the same class of matrix) and obtained that each complete matrix that the linear
complementarity problem has a solution is a strictly semi-monotone matrix.

The tensor complementarity problem, as a special type of nonlinear complemen-
tarity problems, is a new topic emerged from the tensor community, inspired by the
growing research on structured tensors. At the same time, the tensor complementarity
problem as a natural extension of the linear complementarity problem seems to have
similar properties to the problem and to have its particular and nice properties other
than ones of the classical linear complementarity problem. So how to obtain the nice
properties and their applications of the tensor complementarity problem will be very
interesting by means of the special structure of higher-order tensor (hypermatrix).

The notion of the tensor complementarity problem is used firstly by Song and
Qi [13], and they showed the existence of solution for such a problem with some
classes of structured tensors. In particular, they showed that the nonnegative tensor
complementarity problem has a solution if and only if all principal diagonal entries
of such a tensor are positive. Che et al. [14] showed the existence of solution for the
symmetric positive definite tensor complementarity problem and copositive tensors.
Luo et al. [15] studied the sparsest solutions to tensor complementarity problems.
Song and Qi [16] studied the solution of the semi-positive tensor complementarity
problem and obtained that a symmetric tensor is (strictly) semi-positive if and only if
it is (strictly) copositive.

In this paper, we study the properties of solution set of the tensor complementar-
ity problem by means of the special structure of tensors. We first introduce a new
subclass of tensors and give its two equivalent definitions by means of the tensor
complementarity problem. Subsequently, it is proved that each tensor that the tensor
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complementarity problem has a solution is a subclass of such tensors. Furthermore, it
be proved that the solution set of the tensor complementarity problem is bounded if
and only if such a problem with zero vector has unique solution. We finally present
the global upper bounds for solution of the tensor complementarity problem with a
strictly semi-positive tensor with the help of the smallest Pareto eigenvalue of such a
tensor.

2 Preliminaries

Throughout this paper, we use small letters x, y, v, α, . . . for scalars, small bold letters
x, y, . . . for vectors, capital letters A, B, . . . for matrices, bold capital letters A,B, . . .

for tensors. All the tensors discussed in this paper are real. Let In := {1, 2, . . . , n},
and R

n := {x = (x1, x2, . . . , xn)� : xi ∈ R, i ∈ In}, Rn+ := {x ∈ R
n : x ≥ 0},

R
n− := {x ∈ R

n : x ≤ 0}, Rn++ := {x ∈ R
n : x > 0}, where R is the set of real

numbers, x� is the transpose of a vector x, and x ≥ 0 (x > 0, x ≤ 0) means xi ≥ 0
(xi > 0, xi ≤ 0) for all i ∈ In .

Let F be a nonlinear function from R
n into itself. The nonlinear complementarity

problem is to find a vector x ∈ R
n such that

x ≥ 0, F(x) ≥ 0, and x�F(x) = 0,

or to show that no such vector exists. Let A = (ai j ) be an n × n real matrix and
F(x) = q + Ax. Then such a nonlinear complementarity problem is called the linear
complementarity problem, denoted by LCP(A,q), i.e., to find x ∈ R

n such that

x ≥ 0,q + Ax ≥ 0, and x�(q + Ax) = 0,

or to show that no such vector exists.
In 2005, Qi [17] introduced the concept of positive (semi-)definite symmetric

tensors. A realmth-order n-dimensional tensor (hypermatrix)A = (ai1···im ) is a multi-
array of real entries ai1···im , where i j ∈ In for j ∈ Im . If the entries ai1···im of a tensor
A are invariant under any permutation of their indices, then A is called a symmetric
tensor. We denote the zero tensor by O. Let x ∈ R

n . Then Axm−1 is a vector in R
n

with its i th component as

(
Axm−1

)
i
:=

n∑
i2,...,im=1

aii2···im xi2 · · · xim

for i ∈ In . Then Axm is a homogeneous polynomial of degree m, defined by

Axm := x�(Axm−1) =
n∑

i1,...,im=1

ai1···im xi1 · · · xim .
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A tensorA is calledpositive semi-definite if for any vector x ∈ R
n and an even number

m, Axm ≥ 0, and is called positive definite if for any nonzero vector x ∈ R
n and

an even number m, Axm > 0. Recently, miscellaneous structured tensors are widely
studied, for example Zhang et al. [18] and Ding et al. [19] for M-tensors, Song and
Qi [20] for P–(P0)tensors and B–(B0)tensors, Qi and Song [21] for B–(B0)tensors,
Song and Qi [22] for infinite and finite dimensional Hilbert tensors, Song and Qi [23]
for E-eigenvalues of weakly symmetric nonnegative tensors and references therein.

Definition 2.1 Let A = (ai1···im ) be a real mth-order n-dimensional tensor.

(i) The tensor complementarity problem, denoted by TCP(A,q), is to find x ∈
R
n such that

x ≥ 0 (1)

q + Axm−1 ≥ 0 (2)

x�(q + Axm−1) = 0 (3)

or to show that no such vector exists.
(ii) A vector x is said to be (strictly) feasible iff x satisfies the inequality (1) and

(strict) inequality (2).
(iii) The TCP(A,q) is said to be (strictly) feasible iff a (strictly) feasible vector

exists.
(iv) The set of all feasible vector of the TCP(A,q) is said to be its feasible region.
(v) The TCP(A,q) is said to be solvable iff there is a feasible vector satisfying the

Eq. (3).
(vi) A is called a Q-tensor [13] iff the TCP(A,q) is solvable for all q ∈ R

n .
(vii) A is called a R0-tensor [13] iff the TCP(A, 0) has unique solution.
(viii) A is called a R-tensor [13] iff it is a R0-tensor and the TCP(A,q) has unique

solution for q = (1, 1, . . . , 1)�.
Let w = q + Axm−1. Then a feasible vector x of the TCP(A,q) is its solution if and
only if

xiwi = xiqi + xi
(
Axm−1

)
i
= 0 for all i ∈ In . (4)

Recently, Song and Qi [13] extended the concepts of (strictly) semi-monotone
matrices to (strictly) semi-positive tensors.

Definition 2.2 LetA = (ai1···im ) be a realmth-order n-dimensional symmetric tensor.
A is said to be

(i) semi-positive iff for each x ≥ 0 and x �= 0, there exists an index k ∈ In such
that

xk > 0 and
(
Axm−1

)
k

≥ 0;

(ii) strictly semi-positive iff for each x ≥ 0 and x �= 0, there exists an index k ∈ In
such that

xk > 0 and
(
Axm−1

)
k

> 0;
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(iii) a P-tensor (Song and Qi [20]) iff for each x in Rn and x �= 0, there exists i ∈ In
such that

xi
(
Axm−1

)
i
> 0;

(iv) a P0-tensor (Song and Qi [20]) iff for every x in R
n and x �= 0„ there exists

i ∈ In such that xi �= 0 and

xi
(
Axm−1

)
i
≥ 0;

(v) copositive (Qi [24]) if Axm ≥ 0 for all x ∈ R
n+;

(vi) strictly copositive (Qi [24]) if Axm > 0 for all x ∈ R
n+ \ {0}.

Lemma 2.1 (Song and Qi [13, Corollary 3.3,Theorem 3.4]) Each strictly semi-
positive tensor must be a R-tensor, and each R-tensor must be a Q-tensor. A
semi-positive R0-tensor is a Q-tensor.

Song and Qi [25] introduced the concept of Pareto H-(Z-)eigenvalue and used it
to portray the (strictly) copositive tensor. For the number and computation of Pareto
H-(Z-)eigenvalue see Ling et al. [26] and Chen et al. [27].

Definition 2.3 Let A = (ai1···im ) be a real mth-order n-dimensional tensor. A real
number μ is said to be

(i) Pareto H-eigenvalue of A iff there is a nonzero vector x ∈ R
n satisfying

Axm = μx�x[m−1], Axm−1 − μx[m−1] ≥ 0, x ≥ 0, (5)

where x[m−1] = (xm−1
1 , xm−1

2 , . . . , xm−1
n )�.

(ii) Pareto Z-eigenvalue of A iff there is a nonzero vector x ∈ R
n satisfying

Axm = μ(x�x)
m
2 , Axm−1 − μ(x�x)

m
2 −1x ≥ 0, x ≥ 0. (6)

Lemma 2.2 (Song andQi [25, Theorem3.1,3.3,Corollary3.5]) Let a symmetric tensor
A be strictly copositive. Then

(i) A has at least one Pareto H-eigenvalue λ(A) := minx≥0‖x‖m=1
Axm and

λ(A) = min{λ : λ is Pareto H-eigenvalue of A} > 0, (7)

where ‖x‖m = (∑n
i=1 |xi |m

) 1
m ;

(ii) A has at least one Pareto Z-eigenvalue μ(A) := min
x≥0

‖x‖2=1

Axm and

μ(A) = min{μ : μ is Pareto Z-eigenvalue of A} > 0. (8)
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3 Solution of the TCP(A, q)

3.1 S-tensor and Feasible Solution of the TCP(A,q)

We first introduce the concept of the S-tensor, which is a natural extension of S-matrix
[5].

Definition 3.1 Let A = (ai1···im ) be a real mth-order n-dimensional tensor. A is said
to be a

(i) S-tensor iff the system

Axm−1 > 0, x > 0

has a solution;
(ii) S0-tensor iff the system

Axm−1 ≥ 0, x ≥ 0, x �= 0

has a solution.

Proposition 3.1 LetA be a real mth-order n-dimensional tensor. ThenA is a S-tensor
if and only if the system

Axm−1 > 0, x ≥ 0 (9)

has a solution.

Proof It follows from Definition 3.1 that the necessity is obvious. Now we show the
sufficiency. In fact, if there exists y such that

Aym−1 > 0, y ≥ 0.

Clearly, y �= 0. Since Aym−1 is continuous on y, it follows that

A(y + te)m−1 > 0

for some small enough t > 0, where e = (1, 1, . . . , 1)�. It is obvious that y+ te > 0.
So A is an S-tensor. �	

Now, by means of the solution of the TCP(A,q), we may give the following equiv-
alent definition of S-tensor.

Theorem 3.1 LetA be a real mth-order n-dimensional tensor. ThenA is a S-tensor if
and only if the TCP(A,q) is feasible for all q ∈ R

n. Meanwhile, each Q-tensor must
be an S-tensor.

Proof Let A is a S-tensor. Then it follows from Definition 3.1 of S-tensor that there
exists y such that

Aym−1 > 0, y > 0.
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So for each q ∈ R
n , there exists some scalar t > 0 such that

A(
m−1

√
ty)m−1 = tAym−1 ≥ −q.

Clearly, m−1
√
ty > 0, and so m−1

√
ty is a feasible vector of the TCP(A,q).

On the other hand, if the TCP(A,q) is feasible for all q ∈ R
n , we take q < 0. Let

z is a feasible solution of the TCP(A,q). Then

z ≥ 0 and q + Azm−1 ≥ 0,

and hence

Azm−1 ≥ −q > 0.

So z is a solution of the system (9). It follows fromProposition 3.1 thatA is an S-tensor.
�	

3.2 R0-Tensor and Boundedness of Solution Set of the TCP(A,q)

Theorem 3.2 Let A be a real mth-order n-dimensional tensor. Then the following
three conclusions are equivalent:

(i) A is R0-tensor;
(ii) For each q ∈ R

n and each t, s ∈ R with t > 0, the set

Γ (q, s, t) = {x ≥ 0 : q + Axm−1 ≥ 0 and x�q + tAxm ≤ s}

is bounded;
(iii) For each q ∈ R

n, the solution set of the TCP(A,q) is bounded.

Proof (i) ⇒ (ii). Suppose that there exist q′ ∈ R
n , s′ ∈ R and t ′ > 0 such that the

set Γ (q′, s′, t ′) is not bounded. Let a sequence {xk} ⊂ Γ (q′, s′, t ′) be an unbounded

sequence. Then the sequence { xk

‖xk‖ } is bounded, and so there exists x′ ∈ R
n and a

subsequence { xk j

‖xk j ‖ } such that

lim
j→∞

xk j

‖xk j ‖ = x′ �= 0 and lim
j→∞ ‖xk j ‖ = ∞.

From the definition of Γ (q′, s′, t ′), it follows that

q′

‖xk j ‖m−1
+ A(

xk j

‖xk j ‖ )m−1 ≥ 0 and
x�q′

‖xk j ‖m + t ′A(
xk j

‖xk j ‖ )m ≤ s′

‖xk j ‖m , (10)

and hence, by the continuity of Axm and Axm−1, let j → ∞,

A(x′)m−1 ≥ 0 and A(x′)m ≤ 0.
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Since x′ ≥ 0, we have

A(x′)m = (x′)�A(x′)m−1 ≥ 0.

Thus, A(x′)m = 0, and hence, x′ is a nonzero solution of the TCP(A, 0). This contra-
dicts the assumption that A is R0-tensor.

(ii) ⇒ (iii). It follows from the definition of Γ (q, s, t) that

Γ (q, 0, 1) = {x ≥ 0 : q + Axm−1 ≥ 0 and x�(q + Axm−1) = 0}.

That is, Γ (q, 0, 1) is the solution set of the TCP(A,q). So the conclusion follows.
(iii) ⇒ (i). Suppose A is not R0-tensor. Then the TCP(A, 0) has a nonzero solution

x∗, and so x∗ ∈ Γ (0, 0, 1). Since x∗ �= 0, τx∗ ∈ Γ (0, 0, 1) for all τ > 0. Therefore,
the set Γ (0, 0, 1) is not bounded. This contradicts the assumption (iii). So A is R0-
tensor. �	

It is known that each semi-positive tensor is an R0-tensor and each P0-tensor is a
semi-positive tensor (Song and Qi [13]). The following conclusions are obvious.

Corollary 3.1 LetA be a semi-positive tensor. Then for each q ∈ R
n, the solution set

of the TCP(A,q) is bounded.

Corollary 3.2 Let A be a P0-tensor. Then for each q ∈ R
n, the solution set of the

TCP(A,q) is bounded.

3.3 Solution of TCP(A,q) with Strictly Semi-positive Tensors

In this section, we discuss the global upper bound for solution of TCP(A,q) with
strictly semi-positive and symmetric tensorA. Song and Qi [16] showed the following
conclusion about a symmetric tensor.

Lemma 3.1 (Song and Qi [16, Theorem 3.2,3.4]) Let A = (ai1···im ) be a real mth-
order n-dimensional tensor. Then a symmetric tensor A is strictly semi-positive if and
only if it is strictly copositive. Moreover, the TCP(A,q) has a unique solution 0 for
q ≥ 0 when A is strictly semi-positive.

Theorem 3.3 Let a symmetric tensor A = (ai1···im ) be strictly semi-positive. If x is a
solution of the TCP(A,q), then

‖x‖m−1
m ≤ ‖(−q)+‖m

λ(A)
, (11)

where λ(A) is defined in Lemma 2.2 (i), ‖x‖m :=
(

n∑
i=1

|xi |m
) 1

m

and x+ :=
(max{x1, 0},max{x2, 0}, . . . ,max{xn, 0})�.
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Proof It follows from Lemmas 2.2 and 3.1 that

λ(A) = min{λ; λ is Pareto H -eigenvalue of A} = min
y≥0

‖y‖m=1

Aym > 0. (12)

Since x is a solution of the TCP(A,q), we have

Axm − x�(−q) = x�(Axm−1 + q) = 0, Axm−1 + q ≥ 0 and x ≥ 0.

Suppose that q ≥ 0. Then x = 0 by Lemma 3.1, and the conclusion is obvious.
So we may assume that q is not nonnegative; then, x �= 0 (suppose not, x = 0,
Axm−1 + q = q, which contradict to the fact that Axm−1 + q ≥ 0). Therefore, we
have

Axm

‖x‖mm
= A

(
x

‖x‖m
)m

≥ λ(A) > 0.

Thus, we have

0 < ‖x‖mmλ(A) ≤ Axm = x�(−q) ≤ x�(−q)+ ≤ ‖x‖m‖(−q)+‖m .

The desired conclusion follows. �	
Theorem 3.4 Let a symmetric tensor A = (ai1···im ) be strictly semi-positive. If x is a
solution of the TCP(A,q), then

‖x‖m−1
2 ≤ ‖(−q)+‖2

μ(A)
, (13)

where μ(A) is defined in (8) in Lemma 2.2.

Proof It follows from Lemma 2.2 and 3.1 that

μ(A) = min{μ : μ is Pareto Z -eigenvalue of A} = min
y≥0

‖y‖2=1

Aym > 0. (14)

Similarly, we also may assume that q is not nonnegative; then, x �= 0, and so

Axm

‖x‖m2
= A

(
x

‖x‖2
)m

≥ μ(A) > 0.

Thus, we have

0 < ‖x‖m2 μ(A) ≤ Axm = x�(−q) ≤ x�(−q)+ ≤ ‖x‖2‖(−q)+‖2.

The desired conclusion follows. �	
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We now introduce a quantity for a strictly semi-positive tensor A.

β(A) := min
x≥0

‖x‖∞=1

max
i∈In

xi (Axm−1)i , (15)

where ‖x‖∞ := max{|xi |; i ∈ In}. It follows from the definition of strictly semi-
positive tensor that β(A) > 0. Then the following equation is well defined in Theorem
3.5.

Theorem 3.5 Let a real mth-order n-dimensional tensor A = (ai1···im ) be strictly
semi-positive. If x is a solution of the TCP(A,q), then

‖x‖m−1∞ ≤ ‖(−q)+‖∞
β(A)

. (16)

Proof Suppose that q ≥ 0. Then x = 0 by Lemma 3.1, and the conclusion is obvious.
So we may assume that q is not nonnegative, and similarly to the proof technique of
Theorem 3.3, we have 0 ≤ x �= 0. It follows from the definition of β(A) and (4) that

0 < ‖x‖m∞β(A) ≤ max
i∈In

xi (Axm−1)i = max
i∈In

xi (−q)i

= max
i∈In

xi ((−q)+)i ≤ ‖x‖∞‖(−q)+‖∞.

The desired conclusion follows. �	
It iswell known that the nonlinear complementarity problemwith pseudo-monotone

and continuous function F has a solution if it has a strictly feasible point x∗ (i.e.,
x∗ ≥ 0, F(x∗) > 0) ([3, Theorem 2.3.11]). A function F fromR

n+ into itself is called
pseudo-monotone iff for all vectors x, y ∈ R

n+,

(x − y)�F(y) ≥ 0 ⇒ (x − y)�F(x) ≥ 0.

Now we give an example to certify the function F deduced by a strictly semi-positive
tensor is not pseudo-monotone. However, the corresponding nonlinear complemen-
tarity problem has a solution by Lemma 2.1.

Example 3.1 Let A = (ai1i2i3) ∈ T3,2 and a111 = 1, a122 = 1, a211 = 1, a221 = −2,
a222 = 1 and all other ai1i2i3 = 0. Then

Ax2 =
(
x21 +x22
x21 −2x1x2 + x22

)
.

Clearly, A is strictly semi-positive, and so it is a Q-tensor.
Let F(x) = Ax2 + q for q = (− 3

2 ,− 1
2 )

�. Then F is not pseudo-monotone. In
fact,

F(x) = Ax2 + q =
(
x21 +x22 − 3

2
(x21 −x2)2 − 1

2

)
.
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Take x = (1, 0)� and y = (1, 1)�. Then

x − y =
(
0
−1

)
, F(x) =

(− 1
2

1
2

)
and F(y) =

( 1
2− 1

2

)
.

Clearly, we have

(x − y)�F(y) = 0 × 1

2
− 1 × (−1

2
) > 0.

However,

(x − y)�F(x) = 0 × (−1

2
) − 1 × 1

2
< 0,

and hence F is not pseudo-monotone. �	

4 Conclusions

In this paper, we discussed the equivalent relationships between the feasible solution
of the tensor complementarity problem and a class of tensors. It is showed that the
solution set of the tensor complementarity problem is bounded if and only if such
a complementarity problem with zero vector has unique solution. By means of two
constants with respect to the smallest Pareto eigenvalue of tensor, we proved the global
upper bounds for solution of the tensor complementarity problem with a strictly semi-
positive and symmetric tensor. A new quantity is introduced for a strictly semi-positive
tensor. For a strictly semi-positive tensor (not symmetric), the global upper bounds for
such a tensor complementarity problem are proved by means of such a new quantity.
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