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1 Introduction

As a generalization of the linear complementarity problem [1], the tensor complemen-
tarity problem has been introduced and investigated in [2–6]; it is a specific class of
nonlinear complementarity problems [7–9]. By using properties of structured tensors,
many good results for the tensor complementarity problem have been obtained in the
literature.

It is well known that a linear complementarity problem has the property of global
uniqueness and solvability (GUS-property), if and only if the matrix involved in the
concerned problem is a P-matrix [10]. It is also well known that such a result cannot
be generalized to the nonlinear complementarity problem [8,9]. A natural question
is whether such a result can be generalized to the tensor complementarity problem
or not? That is, whether the result that a tensor complementarity problem has the
GUS-property if and only if the tensor involved in the problem is a P tensor holds
or not? Such a question was proposed by Song and Qi (see Question 6.3 in [2]). In
this paper, we show that the answer to this question is negative by constructing two
counterexamples.

It has been shown that the tensor complementarity problem with a P tensor has a
solution; while our counterexample demonstrates that it is possible, such a problem
has more than one solution. Thus, a natural question is what more we can say about the
solution set of such a complementarity problem; and another natural question is that
for which kind of tensor, the corresponding tensor complementarity problem has the
GUS-property. For the first question, we will show that the solution set of the tensor
complementarity problem is nonempty and compact when the involved tensor is a P
tensor; and for the second question, we will introduce a new class of tensors, called
the strong P tensor and show that the corresponding tensor complementarity problem
has the GUS-property. We also show that every strong P tensor is a P tensor, but the
converse does not hold; and hence, many results obtained for the case of the P tensor
are still satisfied for the case of the strong P tensor.

The rest of this paper is organized as follows. In the next section, we first briefly
review some basic concepts and results which are useful in the subsequent analysis. In
Sect. 3, we give a negative answer to the result that a tensor complementarity problem
has the GUS-property if and only if the tensor involved in the problem is a P tensor,
and show that the solution set of the tensor complementarity problem with a P tensor
is compact. In Sect. 4, we introduce the concept of the strong P tensor and discuss its
related properties. Conclusions are drawn in Sect. 5.

2 Preliminaries

The complementarity problem, denoted by CP(F), consists in finding a point x ∈ R
n

such that

x ≥ 0, F(x) ≥ 0, 〈x, F(x)〉 = 0.
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When F(x) = Ax + q with given A ∈ R
n×n and q ∈ R

n , CP(F) reduces to the
linear complementarity problem (denoted by LCP(q, A)), which consists in finding a
point x ∈ R

n such that

x ≥ 0, Ax + q ≥ 0, 〈x, Ax + q〉 = 0;

and when F(x) = A xm−1 + q with given A = (ai1,i2,...,im ) ∈ Tm,n (the set of
all real mth-order n-dimensional tensors) and q ∈ R

n , CP(F) reduces to the tensor
complementarity problem (denoted by TCP(q,A )) [2–6], which consists in finding
a point x ∈ R

n such that

x ≥ 0, A xm−1 + q ≥ 0, 〈x,A xm−1 + q〉 = 0,

where A xm−1 ∈ R
n is defined by

(A xm−1)i :=
n∑

i2,...,im=1

aii2,...,im xi2 , . . . , xim , ∀i ∈ {1, 2, . . . , n}.

It is easy to see that

A xm = 〈x,A xm−1〉 =
n∑

i1,i2,...,im=1

ai1,i2,...,im xi1xi2 , . . . xim .

Throughout this paper, for any positive integer n, we denote [n] := {1, 2, . . . , n}
and R

n+ := {x ∈ R
n : x ≥ 0}. For any x ∈ R

n , we denote

[x]+ := (max{x1, 0}, . . . ,max{xn, 0})T .

The eigenvalue of tensor is initially studied by Qi [11] and Lim [12]. If there exist
a nonzero vector x ∈ R

n and a scalar λ ∈ R such that

(A xm−1)i = λxm−1
i , ∀i ∈ [n],

then λ is called anH-eigenvalue ofA and x is called anH-eigenvector ofA associated
with λ; and moreover, if there exist a nonzero vector x ∈ R

n and a scalar λ ∈ R such
that

A xm−1 = λx, ∀i ∈ [n] and 〈x, x〉 = 1,

then λ is called a Z-eigenvalue of A and x is called a Z-eigenvector of A associated
with λ.

Recently, many classes of structured tensors are introduced, and the related proper-
ties are studied [2–6,13–19]. In this paper, we need the following concepts of several
structured tensors.
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Definition 2.1 Let A = (ai1,...,im ) ∈ Tm,n . We say that A is

(1) a strictly semi-positive tensor iff for each x ∈ R
n+ \ {0}, there exists an index

i ∈ [n] such that xi > 0 and (A xm−1)i > 0;
(2) a P tensor iff for each x ∈ R

n \ {0}, there exists an index i ∈ [n] such that
xi (A xm−1)i > 0;

(3) an R-tensor iff there is no (x, t) ∈ (Rn+ \ {0}) × R+ such that for any i ∈ [n],

(A xm−1)i + t = 0, if xi > 0,

(A xm−1)i + t ≥ 0, if xi = 0.

Obviously, every P tensor is a strictly semi-positive tensor and an R-tensor. In this
paper, we also need the following concepts of functions.

Definition 2.2 ([3,8]) Let mapping F : K ⊆ R
n → R

n . We say that F is

(1) a P-function iff for all pairs of distinct vectors x and y in K ,

max
i∈[n] (xi − yi )(Fi (x) − Fi (y)) > 0;

(2) a uniform P-function iff there exists a constant μ > 0 such that for all pairs of
vectors x and y in K ,

max
i∈[n] (xi − yi )(Fi (x) − Fi (y)) ≥ μ‖x − y‖2.

Obviously, every uniform P-function is a P-function. In addition, it is easy to see
from Definitions 2.1 and 2.2 that if the mapping A xm−1 + q with any given q ∈ R

n

is a P-function, then A is a P tensor.
Recall that LCP(q, A) is said to have the GUS-property if LCP(q, A) has a unique

solution for every q ∈ R
n . Similarly, we say that TCP(q,A ) has the GUS-property if

TCP(q,A ) has a unique solution for every q ∈ R
n . For the solvability of LCP(q, A),

an important result is that LCP(q, A) has the GUS-property if and only if the matrix
A is a P-matrix. In fact, the GUS-property has been extensively discussed for vari-
ous complementarity problems, including nonlinear complementarity problems [20],
linear complementarity problems over symmetric cones [21] and Lorentz cone linear
complementarity problems in Hilbert spaces [22]. A natural question is given by

Q1 Whether or not TCP(q,A ) has the GUS-property if and only if the tensor A is
a P tensor?

Such a question was proposed by Song and Qi (see Question 6.3 in [2]). In the next
section, we will answer this question.

3 Answer to Q1

First, we construct a TCP(q,A ), which has a unique solution for every q ∈ R
2.
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Example 3.1 Let A = (ai1,i2,i3) ∈ T3,2, where a111 = 1, a222 = 1 and all other
ai1i2i3 = 0. Then,

A x2 =
(
x21
x22

)
.

In this case, TCP(q,A ) consists in finding x ∈ R
2 such that

{
x1 ≥ 0,
x2 ≥ 0,

{
x21 + q1 ≥ 0,
x22 + q2 ≥ 0,

and

{
x1(x21 + q1) = 0,
x2(x22 + q2) = 0.

(1)

For any q ∈ R
2, let xq := (xq1 , xq2 ) ∈ R

2 be given by

xqi :=
{
0, if qi ≥ 0,√−qi , otherwise.

It is easy to see that for every q ∈ R
2, TCP(q,A ) given by (1) has a unique solution

xq . Thus, we obtain that TCP(q,A ) given in this example has the GUS-property.

It is proved in [23, Proposition 2.1] that there does not exist an odd-order P tensor;
and hence, the tensor given in Example 3.1 is not a P tensor. This, together with
Example 3.1, implies that one does not obtain that tensor A is a P tensor under the
assumption that TCP(q,A ) has the GUS-property.

Second, we construct the following TCP(q,A ), whereA ∈ T4,2 is a P tensor, but
it has two distinct solutions for some q ∈ R

2.

Example 3.2 Let A = (ai1,i2,i3,i4) ∈ T4,2, where a1111 = 1, a1112 = −2, a1122 = 1,
a2222 = 1 and all other ai1i2i3i4 = 0. Then,

A x3 =
(
x31 − 2x21 x2 + x1x22

x32

)
,

and

x1(A x3)1 = x41 − 2x31 x2 + x21 x
2
2 , x2(A x3)2 = x42 .

For any x ∈ R
2 \ {0}, it is easy to see that

– when x2 �= 0, it follows that x2(A x3)2 > 0; and
– when x2 = 0, it follows that x1 �= 0 since x �= 0, and in this case, we have

x1(A x3)1 = x41 > 0.

Thus, for any x ∈ R
2\{0}, there is at least one index i ∈ {1, 2} such that xi (A x3)i >

0. So, we obtain that tensorA given in this example is a P tensor by Definition 2.1(2).
Taking q = (0,−1)T , we consider TCP(q,A ), which consists in finding x ∈ R

2

such that
{
x1 ≥ 0,
x2 ≥ 0,

{
x31 − 2x21 x2 + x1x22 ≥ 0,
x32 − 1 ≥ 0,

and

{
x1(x31 − 2x21 x2 + x1x22 ) = 0,
x2(x32 − 1) = 0.

(2)
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It is easy to see that both x = (0, 1)T and x = (1, 1)T are the solutions to
TCP(q,A ) given by (2).

From Example 3.2, we obtain that TCP(q,A ) with a P tensorA does not possess
the GUS-property.

Note that TCP(q,A ) with a P tensor A has a solution for every q ∈ R
n by [3,

Corollary 3.3], and it is possible that this class of complementarity problems has more
than one solution from Example 3.2. What more can we say about the solution set of
this class of complementarity problems? In the following, we show that the solution
set of TCP(q,A ) with a P tensor A is compact.

Theorem 3.1 For any q ∈ R
n and a P tensor A ∈ Tm,n, the solution set of

TCP(q,A ) is nonempty and compact.

Proof SinceA is a P tensor, it follows from [3, Corollary 3.3] that TCP(q,A ) has a
solution for every q ∈ R

n . So we only need to show that the solution set of TCP(q,A )

is compact. We divide the proof into two parts.
Part 1We show the boundedness of the solution set. To this end, we first show the

following result:

R1 If there is a sequence {xk} ⊂ R
n+ satisfying

‖xk‖ → ∞ and
[−A (xk)m−1 − q]+

‖xk‖ → 0 as k → ∞, (3)

then there exists an i ∈ [n] such that xki [A (xk)m−1 + q]i > 0 holds for some
k ≥ 0.

In the following, we assume that the result R1 does not hold and derive a contra-
diction. Given an arbitrary sequence {xk} ⊂ R

n+ satisfying (3), then since the result
R1 does not hold, we have that

xki [A (xk)m−1 + q]i ≤ 0, ∀i ∈ [n], ∀k ≥ 0. (4)

Since the sequence { xk

‖xk‖ } is bounded, without any loss of generality, we can assume

limk→∞ xk

‖xk‖ = x̄ ∈ R
n . From {xk} ⊂ R

n+ and ‖xk‖ → ∞ as k → ∞, we obtain
that

x̄ ≥ 0, x̄ �= 0. (5)

If i ∈ {i ∈ [n] : [A (xk)m−1 + q]i ≤ 0}, then

[−(A (xk)m−1 + q)i ]+ = −[A (xk)m−1 + q]i .
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Since limk→∞ qi
‖xk‖ = 0 for all i ∈ [n], we have

0 = lim
k→∞

[−(A (xk)m−1 + q)i ]+
‖xk‖ = lim

k→∞
−[A (xk)m−1]i − qi

‖xk‖m−1

= lim
k→∞

−[A (xk)m−1]i
‖xk‖m−1 = −[A x̄m−1]i ;

and moreover, if i ∈ {i ∈ [n] : [A (xk)m−1 + q]i ≥ 0}, then

0 ≤ lim
k→∞

[A (xk)m−1 + q]i
‖xk‖m−1 = lim

k→∞
[A (xk)m−1]i

‖xk‖m−1 = [A x̄m−1]i .

Combining these two situations together, we have

[A x̄m−1]i ≥ 0, ∀i ∈ [n]. (6)

In addition, by using (4), we have

x̄i [A x̄m−1]i = lim
k→∞

xki
‖xk‖

[A (xk)m−1]i
‖xk‖m−1 = lim

k→∞
xki

‖xk‖
[A (xk)m−1 + q]i

‖xk‖m−1 ≤ 0.

By using (5) and (6), we have x̄i [A x̄m−1]i ≥ 0. This, together with the above
inequality, implies

x̄i [A x̄m−1]i = 0, ∀i ∈ [n]. (7)

Furthermore, by combining (5) with (6) and (7), we obtain that x̄ is a nonzero
solution of TCP(0,A ). However, since every P tensor is a strictly semi-positive
tensor, while if A is strictly semi-positive, then TCP(0,A ) has a unique solution 0
(see [4, Theorem 3.2]). This derives a contradiction. So the result R1 holds.

Now, suppose that the solution set of TCP(q,A ) is unbounded. Then, there exists
an unbounded solution sequence {xk} of TCP(q,A ) such that ‖xk‖ → ∞ as k → ∞,
and for all i ∈ [n], k ≥ 0, it follows that

xk ≥ 0, A (xk)m−1 + q ≥ 0, 〈xk,A (xk)m−1 + q〉 = 0. (8)

Obviously, [A (xk)m−1 + q]i ≥ 0 implies that

[−(A (xk)m−1 + q)i ]+
‖xk‖ → 0 as k → ∞.

Thus, the solution sequence {xk} satisfies (3); and furthermore, by using the result
R1, there exist an index i0 ∈ [n] and an integer k∗ > 0 such that xk

∗
i0

[A (xk
∗
)m−1 +

q]i0 > 0, which is contrary to that xki [A (xk)m−1 + q]i = 0 for all i ∈ [n] and k ≥ 0.
So the solution set of TCP(q,A ) is bounded.
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Part 2 We now show that the solution set of TCP(q,A ) is closed. Suppose that
{xk} is a solution sequence of TCP(q,A ) and

lim
k→∞ xk = x̄, (9)

we need to show that x̄ solves TCP(q,A ). Since A xm−1 + q is continuous, by (9)
we have

lim
k→∞[(A (xk)

m−1 + q] = A

(
lim
k→∞ xk

)m−1

+ q = A x̄m−1 + q. (10)

Since {xk} is a solution sequence of TCP(q,A ), we have that (8) holds. Further-
more, by using (8), (9) and (10), we can obtain that

x̄ ≥ 0, A x̄m−1 + q ≥ 0, 〈x̄,A x̄m−1 + q〉 = 0.

So x̄ is a solution of TCP(q,A ). Therefore, we obtain that the solution set is closed.
Combining Part 1 with Part 2, we obtain that the solution set of TCP(q,A ) is

compact. This completes the proof. ��
In our proof of Part 1, we use the property of the strictly semi-positive tensor.

When we revise this paper, we are informed that two new papers [24,25] studied the
boundedness of the solution set of two related classes of TCP(q,A ). It is easy to
see that our approach is different from those in these two papers. Recall that a tensor
A ∈ Tm,n is called an R0-tensor, if and only if there exists no x ∈ R

n+ \ {0} such that

(A xm−1)i = 0, if xi > 0,

(A xm−1)i ≥ 0, if xi = 0.

Obviously, every R-tensor is an R0-tensor, and every strictly semi-positive tensor is
also an R0-tensor. Thus, every P tensor is certainly an R0-tensor. In fact, in Part 1, we
demonstrate that, ifA is an R0-tensor, thenR1 holds; and ifR1 holds and the solution
set of the corresponding TCP(q,A ) is nonempty, then it is bounded. Thus, the result
of Part 1 can be also obtained by using the property of the R0-tensor. In particular,
by using our method given in Part 1, some better results can be easily obtained (see
a new paper [26]).

4 Strong P Tensor and Related Properties

In this section, we consider the question: for which kind of tensor, TCP(q,A ) has the
GUS-property. For this purpose, we introduce a new class of tensors, called the strong
P tensor, which is defined as follows.

Definition 4.1 Let A = (ai1,...,im ) ∈ Tm,n . We say that A is a strong P tensor iff
A xm−1 is a P-function.
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It iswell known that amatrix A ∈ R
n×n is aP-matrix if and only if F(x) = Ax+q is

aP-function for anyq ∈ R
n . Note thatA xm−1 is aP-function if and only ifA xm−1+q

is a P-function for any q ∈ R
n . Thus, the strong P tensor is a generalization of the

P-matrix from matrix to tensor. From the definitions of the P tensor and the strong P
tensor, it is easy to see that every strong P tensor must be a P tensor. The strong P
tensor is defined with the help of the P-function, so an advantage of this way is that
the related results and methods associated with the P-function can be applied to study
this class of tensors.

Now we are going to give a simple example of the strong P tensor.

Example 4.1 Given a tensor A = (ai1,i2,...,im ) ∈ Tm,n , where m is an even number,
aii,··· ,i > 0 for all i ∈ [n] and all other ai1,i2,...,im = 0. Obviously,

A xm−1 =

⎛

⎜⎜⎝

a11,...,1x
m−1
1

a22,...,2x
m−1
2· · ·

ann,...nxm−1
n

⎞

⎟⎟⎠ .

Then, for all pairs of distinct vectors x and y in Rn , we have

(xi − yi )
[
(A xm−1)i − (A ym−1)i

]
= (xi − yi )(aii,...,i x

m−1
i − aii,...,i y

m−1
i )

= aii,...,i (xi − yi )(x
m−1
i − ym−1

i ).

Since x and y are two different vectors, aii,...,i > 0 for all i ∈ [n] and m is an even
number, there exists at least one index j ∈ [n] such that x j �= y j , and thus

a j j,..., j (x j − y j )(x
m−1
j − ym−1

j ) > 0.

That is to say,

max
i∈[n] (xi − yi )((A xm−1)i − (A ym−1)i ) > 0.

So A xm−1 is a P-function and thus A is a strong P tensor.

The following result comes from [27, Theorem 2.3].

Lemma 4.1 Let F : Rn+ → R
n be a P-function; then, the corresponding CP(F) has

no more than one solution.

With the help of Lemma 4.1, we show the following result.

Theorem 4.1 Suppose thatA ∈ Tm,n is a strong P tensor; then, TCP(q,A ) has the
GUS-property.
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Proof Since A is a strong P tensor, it follows that A is a P tensor. Furthermore,
it follows from [3, Corollary 3.3] that TCP(q,A ) has a solution for every q ∈ R

n .
Moreover, since A is a strong P tensor, it follows that A xm−1 + q is a P-function;
and hence, from Lemma 4.1 it follows that TCP(q,A ) has no more than one solution.
Therefore, TCP(q,A ) has a unique solution for every q ∈ R

n , i.e., TCP(q,A ) has
the GUS-property. ��

Corollary 4.1 Given A ∈ Tm,n and q ∈ R
n. Suppose that F(x) = A xm−1 + q is a

P-function; then, the corresponding CP(F) has the GUS-property; and m must be an
even number.

In the theory of nonlinear complementarity problems, when the involved function
F is a P-function, one can only obtain that the corresponding CP(F) has no more
than one solution (see Lemma 4.1); when the involved function F is a uniform P-
function, one can obtain that the corresponding CP(F) has the GUS-property (see
[28, Corollary 3.2]). From the first result of Corollary 4.1, we see that CP(F) has the
GUS-property when F(x) = A xm−1+q is a P-function. In addition, from the second
result of Corollary 4.1, we obtain that a class of functions (i.e., F(x) = A xm−1 + q
with m being odd) cannot be in the class of the P-functions.

In the following, we investigate the relationship between the P tensor and the
strong P tensor. Recall that every strong P tensor is a P tensor. The following example
demonstrates that the converse does not hold.

Example 4.2 Suppose A = (ai1i2i3i4) ∈ T4,2, where a1111 = 1, a1222 = −1, a1122 =
1, a2222 = 1, a2111 = −1, a2211 = 1 and all other ai1i2i3i4 = 0. Obviously,

A x3 =
(
x31 − x32 + x1x22
x32 − x31 + x2x21

)
;

then, x1(A x3)1 = x41 −x1x32 +x21 x
2
2 and x2(A x3)2 = x42 −x2x31 +x21 x

2
2 .We consider

the following several cases:

– when x1 = x2 �= 0, we have x1(A x3)1 = x41 − x41 + x41 = x41 > 0;
– when only one xi = 0 for any i ∈ {1, 2}, we have x j (A x3) j = x4j > 0 for j �= i ;

– when x1 > x2 > 0, we have x1(A x3)1 = x1(x31 − x32) + x21 x
2
2 > 0;

– when x2 > x1 > 0, we have x2(A x3)2 = x2(x32 − x31) + x21 x
2
2 > 0;

– when 0 > x1 > x2, we have x2(A x3)2 = x2(x32 − x31) + x21 x
2
2 > 0;

– when 0 > x2 > x1, we have x1(A x3)1 = x1(x31 − x32) + x21 x
2
2 > 0;

– when x1 > 0 > x2, we have −x2x31 > 0, and so x2(A x3)2 > 0;
– when x2 > 0 > x1, we have −x1x32 > 0, and so x1(A x3)1 > 0.

Thus, for any x ∈ R
2 \{0}, there exists an index i ∈ {1, 2} such that xi (A x3)i > 0.

So A is a P tensor. However, A is not a strong P tensor. In fact, if we take x =
(2.1,−1.9)T and y = (2,−2)T , then we have

(x1 − y1)((A x3)1 − (A y3)1) = −0.0299 < 0
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and

(x2 − y2)((A x3)2 − (A y3)2) = −0.0499 < 0.

Thus, by Definition 4.1 we obtain that A is not a strong P tensor.

Many properties of the P tensor have been obtained in the literature. Since every
strong P tensor is a P tensor, we may easily obtain the following properties of strong
P tensor:

Proposition 4.1 If A ∈ Tm,n is a strong P tensor; then,

(1) A must be strictly semi-positive;
(2) A must be an R-tensor;
(3) all of its H-eigenvalues and Z-eigenvalues are positive;
(4) all the diagonal entries of A are positive;
(5) every principal sub-tensor of A is still a strong P tensor.

Proof Since we already know that a strong P tensor is a P tensor, the first four results
can be easily obtained from [2,3]. Now we prove the result (5). Let an arbitrary
principal sub-tensor A J

r ∈ Tm,r of the strong P tensor A ∈ Tm,n be given. We
choose any x = (x j1 , x j2 , . . . , x jr ) ∈ R

r \ {0} and y = (y j1 , y j2 , . . . , y jr ) ∈ R
r \ {0}

with x �= y. Then, let x̄ = (x̄1, x̄2, . . . , x̄n) ∈ R
n , where x̄i = x ji for i ∈ J and x̄i = 0

for i /∈ J . In a similar way, let ȳ = (ȳ1, ȳ2, . . . , ȳn) ∈ R
n , where ȳi = y ji for i ∈ J

and ȳi = 0 for i /∈ J . SinceA is a strong P tensor, there exists an index k ∈ [n] such
that

0 < max
k∈[n] (x̄k − ȳk)((A x̄m−1)k − (A ȳm−1)k)

= max
k∈J

(xk − yk)((A
J
r xm−1)k − (A J

r ym−1)k).

Thus, A J
r is a strong P tensor. ��

5 Conclusions

By constructing two counterexamples, we proved that it is possible that TCP(q,A )

has no the GUS-property when A is a P tensor; and that it is also possible that A is
not a P tensor when TCP(q,A ) has the GUS-property. These gave a negative answer
to Question 6.3 proposed in [2]. We also showed that the solution set of TCP(q,A )

is nonempty and compact when A is a P tensor.
In order to investigate that for which kind of tensor, the tensor complementarity

problem has the GUS-property, we introduced the concept of the strong P tensor, and
showed that TCP(q,A ) has the GUS-property when A is a strong P tensor. Since
every strong P tensor is a P tensor, many known results associated with the P tensor
are still satisfied for the strong P tensor.

Note that the strong P tensor is defined by using the P-function, we believe that
more properties related to the strong P tensor can be further studied with the help of
known methods and results for the P-function.
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