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Abstract In this paper, we derive conditions for best uniform approximation by fixed
knots polynomial splines with weighting functions. The theory of Chebyshev approx-
imation for fixed knots polynomial functions is very elegant and complete. Necessary
and sufficient optimality conditions have been developed leading to efficient algo-
rithms for constructing optimal spline approximations. The optimality conditions are
based on the notion of alternance (maximal deviation points with alternating deviation
signs). In this paper, we extend these results to the case when the model function is
a product of fixed knots polynomial splines (whose parameters are subject to opti-
mization) and other functions (whose parameters are predefined). This problem is
nonsmooth, and therefore, we make use of convex and nonsmooth analysis to solve it.
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1 Introduction

In this paper, we obtain optimality conditions for the problems of approximating a
function by linear combinations of fixed knots polynomial splines (whose parameters
have to be optimized) and other continuous functions with predefined parameters. This
problem is an extension of the theory of polynomial and polynomial spline approxi-
mation developed throughout the second half of the twentieth century.

The theory of Chebyshev approximation appeared in the mid-nineteenth century
(Chebyshev) andwas further developed in the twentieth century [1–8].Most optimality
conditions are based on the notion of alternating extreme deviation point (that is,
maximal deviation points with alternating deviation signs). In the first part of this
paper, we extend this theory to the approximation by weighted functions to obtain
similar alternance conditions.

The objective functions appearing in optimization problems modelling Cheby-
shev approximation (that is, minimization of the maximal absolute deviation) are
typically nonsmooth. In this paper, we propose an approach based on the notion of
convex subdifferentials, developed in [9]. Another powerful nonsmooth analysis tool,
quasidifferentiability [10,11], has been successfully applied to improve the existing
optimality conditions in the case of free knot polynomial spline approximation [6].
Quasidifferentiability is one of themodern nonsmooth optimization techniques, which
can be considered as a generalization of subdifferentials to the case of nonconvex
functions (the corresponding objective functions in [6] are nonconvex, and therefore,
convex functions subdifferentials are not very efficient). Note also that the problem
of best polynomial (and fixed knots polynomial spline) approximation (in its discrete
version) can be reduced to a linear programming problem [7] and solved using linear
optimization methods.

In general, there are many interesting interconnections between approximation
and optimization. It has been pointed out in [12] that the development of powerful
optimization techniques is essential for approximation, since it is heavily relying on
optimization.

In the second part of this paper, we consider two applications of the theory of
approximation by weighted functions, based on two different weighting functions.
The first problem arises in the area of signal processing [13–15] and the other in the
area of optimal tax modelling.

The paper is organized as follows. In Sect. 2, we introduce necessary definitions
and provide existing results from the theory of fixed knot polynomial spline approxi-
mation, in particular, alternance-based necessary and sufficient optimality conditions.
Then, in Sect. 3, we demonstrate how these conditions can be generalized to the
case when polynomial splines combined with other functions. In Sect. 4, we develop
alternance-based necessary optimality conditions for the case when more than one
spline is involved in approximation. Section 5 provides examples of relevant real-life
applications in signal processing and taxation modelling. Finally, in Sect. 6, we give
conclusions and further research directions.
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2 Preliminaries

2.1 Polynomial Splines

We start with a number of definitions.

Definition 2.1 (Polynomial Spline) A polynomial spline is a piecewise polynomial.
Each polynomial piece lies on an interval

[ξi , ξi+1], i = 0, . . . , N − 1.

The points ξ0 and ξN are the external knots, and ξi , i = 1, . . . , N − 1 are the internal
knots of the polynomial spline.

Generally, the spline is not infinitely differentiable at its knots; moreover, it can be
discontinuous [1]. In this paper, only continuity of the spline is required.

Definition 2.2 A function that is used to approximate (model) the original function
or data is called the modelling function.

Polynomials and polynomial splines as well as trigonometric polynomials are very
common modelling functions. The choice of modelling functions is based on the
nature of the problem and the goals of approximation.

Definition 2.3 The difference between the modelling function and the function to
approximate is called the deviation.

Our aim is to minimize the maximal absolute deviation.

Definition 2.4 Points in the interval [ξ0, ξN ], where maximal absolute deviation
occurs, are called maximal deviation points or extreme points.

Polynomial splines can be constructed in different ways. The most common one is
through the truncated power function [1, Appendix, p. 191]:

(t − τ)
j
+ =

{
0, if t < τ ;
(t − τ) j , if t ≥ τ.

Let X = (a00, x0, ξ1, x1, . . . , ξN−1, xN−1) ∈ R(m+1)N , where

xi = (ai1, . . . , aim) ∈ Rm, i = 0, . . . , N − 1

and
a = ξ0 ≤ ξ1 ≤ · · · ≤ ξN−1 ≤ ξN = b, (1)

then

s(t) = s[X ](t) = a00 +
N−1∑
i=0

m∑
j=1

ai j (t − ξi )
m+1− j
+ . (2)
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In this paper, we use an alternative formulation, proposed in [16], which is more
flexible and enables one to have different degrees for different intervals:

s(t) = s[X ](t) = a00 +
N−1∑
i=0

mi∑
j=1

ai j (min{t, ξi+1} − ξi )
mi+1− j
+ , (3)

where mi is the polynomial degree at the i th interval. This formulation also allows
one to work with arbitrary knot multiplicities, that is, the difference between the
polynomial degree and the order of the highest continuous derivative of the spline at
a given knot (see also [8] where a different formulation has been used).

2.2 Fixed Knots Polynomial Spline Approximation

In [1], the authors developed necessary and sufficient optimality conditions for fixed
knots polynomial splines with the same degree at every subinterval. Then in [16], these
conditions have been generalized to the case when each subinterval can have different
degree mi , i = 1, . . . , N . This result can be reformulated as follows:

Theorem 2.1 ([16]) A polynomial spline s with knots ξ0, . . . , ξN and degree mi on
the subinterval [ξi−1, ξi ] is a best approximation to a function f if and only if there
exists a subinterval

[ξp−1, ξq ], 0 ≤ p ≤ q ≤ N

with 2+∑q
i=p mi maximal deviation points, such that the sign of the deviation function

sign(s − f ) is alternating at these points.

The proof is based on reformulating the necessary condition for a minimum for a
convex problem as a linear system involving a matrix whose diagonal blocks are
Vandermonde-typematrices and onCramer’s rules of solving linear systems. Note that
in case of free knots spline approximation the corresponding optimization problems
are much more complicated. In particular, they are nonconvex [1,6,12]. This type of
problems are out of scope of this paper.

3 Optimality Conditions

3.1 Objective Function

In this paper,we develop optimality conditions for the following optimization problem:

min f (X) = max
t∈[a,b]

∣∣y(t) − (w(t)s[X ](t) + h(t))
∣∣, s.t X ∈ Rγ+1, (4)

where

mi , i = 1, . . . , N is the highest possible degree of the corresponding polynomials
at the i th subinterval;
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N is the number of subintervals (knots are fixed);
[a, b] is the approximation interval;
γ = ∑N

i=1 mi ;
y(t) is the function to approximate;
s[X ](t) is a polynomial spline of degree M = (m1, . . . ,mN ), whose parame-
ters (X ) are subject to optimization and knots (ξi , i = 0, . . . , N ) are fixed;
w(t) and h(t) are the weighting functions defined on [a, b];
z(t) = w(t)s[X ](t) + h(t)) is the modelling function.

Definition 3.1 Function s[X ](t) whose parameters X are subject to optimization is
also called core approximation function, while w(t) and h(t) are given weighting
functions.

Note that the additional term h(t) can be omitted by replacing y(t) by y(t) − h(t),
and therefore, it is enough to study a simpler problem:

minimize f (X) = max
t∈[a,b]

∣∣y(t) − w(t)s[X ](t)∣∣, s.t X ∈ Rγ+1. (5)

Since y(t) − (w(t)s[X ](t)) is linear with respect to X , one can conclude that q(X) =
|y(t) − w(t)s[X ](t)| is convex in X . Therefore, the objective function (5) is convex
as supremum of convex functions.

When the function w ≡ 1, Problem (5) is a classical polynomial spline approxi-
mation problem and Theorem 2.1 applies.

Therefore, one can apply convex analysis from [9] to solve this problem or refor-
mulate this problem as a linear programming problem [7,17,18] and solve it using a
linear optimization method. The linear programming approach may be preferable if
the available convex optimization method is not adapted to this problem. In Sect. 3.2,
we apply these techniques to develop necessary and sufficient optimality conditions
for the optimization problem (5).

Definition 3.2 We denote the deviation function at point t by

ψt (s) = ψ(s, t) = y(t) − w(t)s[X ](t).
Definition 3.3 The function w(t)ψ(X, t) for a chosen X is called the weighted devi-
ation function. The function w is the weighting function.

3.2 Optimality Conditions

Consider a convex function f : Rγ+1 → R. A point x∗ is a minimizer of f if and
only if

0γ+1 ∈ ∂ f (x∗), (6)

where ∂ f (x∗) is the subdifferential of the convex function f at point x∗ [9].
The subdifferential of the objective function (5) at point X can be constructed as

follows (using subdifferential calculus, see [9]):

co{w(τ)sign(ψ(X, τ ))T (τ ), τ ∈ τi i = 1, . . . , N }, (7)
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where τi ∈ Ii , i = 1, . . . , N are the sets of maximal deviation points that belong to
the subinterval [ξi−1, ξi ] and T (τ ) are as follows:

(1,Δ(τ,m1, ξ0), 0)T ∈ Rγ+1, τ ∈ [ξ0, ξ1];
(1,Δ(ξ1,m1, ξ0),Δ(τ,m2, ξ1), 0)T ∈ Rγ+1 τ ∈ [ξ1, ξ2];
...

...

(1,Δ(ξ1,m1, ξ0),Δ(ξ2,m2, ξ1), . . . , Δ(τ,mN , ξN−1))
T ∈ Rγ+1, τ ∈ [ξN−1, ξN ],

where

Δ(α, β, λ) = ((α − λ), (α − λ)2, . . . (α − λ)β) ∈ Rβ.

In general, each Ii , i = 1, . . . , n can be infinite. However, due to Carathédory’s
theorem [19], if (6) holds, it is possible to construct 0γ+1 using at most γ + 2 points
from the subdifferential ∂ f (X∗). Therefore, there exists a set of at most γ +2maximal
deviation points τ1, . . . , τσ and a set of corresponding positive coefficientsλ1, . . . , λσ ,
such that

[w(τ1)sign(ψ(X, τ1))T (τ1), . . . , τσ sign(ψ(X, τσ ))T (τσ )]Λ = 0σ , (8)

where Λ = (λ1, . . . , λσ ) ∈ Rσ and σ ≤ γ + 2.
A similar system has been considered in [16], where w(t) ≡ 1 for any t ∈ [a, b]

(approximation by spline functions). One additional difficulty here is that w(t) may
take zero values at maximal deviation points.

Theorem 3.1 A spline s[X ] provides a best weighted approximation to y in (4) if and
only if at least one of the following conditions are satisfied.

1. w(t) is zero at one or more maximal deviation points, or
2. there exists a subinterval

[ξp−1, ξq ], 0 ≤ p ≤ q ≤ N

with 2 + ∑q
i=p mi maximal deviation points, such that the sign of the weighted

deviation function

w(t)sign(ψ(X, t))

is alternating at these points.

Proof First assume that

w(τi ) �= 0, i = 1, . . . , σ.

Follow the same procedure as in [16]. The columns of the system in (8) are the same
as in system (11) from [16]. Therefore, the study of the existence of a strictly positive
solution is very similar, since the magnitude of the corresponding components of
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Λ ∈ Rσ can be changed (providing that they remain nonzero). Similar to [16], obtain
that

– there exists a sequence of 2+∑q
i=p mi maximal deviation points located at [ξp, ξq ]

and
– the sign of w(t)ψ(X, t) is alternating at these points.

Now assume that there exists a maximal deviation point t∗ and w(t∗) = 0. In
this case, the optimality condition (8) is automatically satisfied. Another way to see
it is based on the fact that the deviation cannot be changed at the point t where
w vanishes, and therefore, it cannot be improved at this points. Hence, the current
maximal deviation cannot be improved, and therefore, the current solution is optimal.

	

Note that

– the same result can be obtained in the case of discrete (data) approximation, where
only discrete values of t from [a, b] are considered;

– the obtained results resemble the classical alternance-based optimization condi-
tions developed for polynomials and fixed knots polynomial splines.

4 Generalization to Linear Combinations with More Than One Spline

Since the sets of polynomials and polynomial splines are closed under the sum, in
classical approximation theory it is not necessary to consider approximating a func-
tion by a sum of polynomials or polynomial splines. In our case, however, it makes
sense to consider several weighting functions. In this section, we extend the results of
Section 3 to the case of linear combinations with more than one spline. We start with
the corresponding optimization problem introduction.

min f (X) = max
t∈[a,b]

∣∣∣y(t) −
l∑

j=1

w j (t)s j [X ](t)
∣∣∣, s.t. X ∈ Rγ+1 (9)

where, similar to Sect. 3,

γ = ∑N
i=1 mi ;

l is the number of components in the sum of the modelling function;
N is the number of subintervals (knots are fixed);
mi , i = 1, . . . , N is the highest possible degree of the corresponding polynomials
at the i th subinterval;
y(t) is the function to approximate;
z(t) = ∑l

j=1 w j (t)s j [X ](t) is the modelling function;
s j [X ](t), j = 1, . . . , l are polynomial spline of degree M = (m1, . . . ,mN ),
whose parameters are subject to optimization and knots are fixed;
[a, b] is approximation interval;
w j (t), j = 1, . . . , l are continuous functions defined on [a, b].
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The objective function (9) is convex as a supremum of convex functions, and there-
fore, one can formulate necessary and sufficient conditions for such a function using
subdifferential calculus. The coordinates of the points from the corresponding subd-
ifferential consist of l blocks (one block per spline), and each block is similar to the
subdifferential in the case of one spline linear combination.

Again, similar to Sect. 3, one can write a necessary and sufficient optimality con-
dition

0l(γ+1) ∈ ∂ f (X), (10)

where f (X) is defined in (9). Essentially, this means that nowwe need to solve l linear
systems simultaneously, seeking a nonzero nonnegative solution. Since each system is
similar to one spline combination studied in Sect. 3, one can formulate the following
necessary optimality condition.

Theorem 4.1 If the splines s1[X ], . . . , sl [X ] provide a best weighted approxima-
tion to the function y in (9), then for each j = 1, . . . , l there exists a subinterval
[ξp−1, ξq ], 0 ≤ p ≤ q ≤ N with 2 + ∑q

i=p mi maximal deviation points, such that
the sign of the deviation function w j (t)sign(ψ(X, t)) is alternating at these points.

For sufficiency, one needs to ensure that all the sub-systems are solved simultane-
ously and, clearly, this is not always the case. The investigation of how this topic can be
elaborated is one of our future research directions. The main obstacle for progressing
in this direction is the fact that the behaviour of the deviation function depends on the
properties of the weighting functions. Therefore, it is very hard to develop any suffi-
cient condition that would hold for any type of weighting functionw j j = 1, . . . , l. In
some cases, however, it is easy to formulate optimality conditions that are necessary
and sufficient.

1. Assume that all the weighting functions w j , j = 1, . . . , l vanish at one or more
maximal deviation points. In this case, the current spline is optimal, since the
current maximal deviation can not be improved.

2. Assume that none of the weighting functions vanishes at the maximal deviation
points and

w j (t)/w1(t), j = 2, . . . , l (11)

is constant at any maximal deviation point, then the condition of Theorem 4.1 is a
necessary and sufficient optimality condition, since it guarantees that the systems
are satisfied simultaneously. Note that the condition (11) can be relaxed; namely,
it is enough if it is satisfied in the 2 + ∑q

i=p mi maximal deviation points, where
the sign of the deviation function w j (t)sign(ψ(X, t)) is alternating.

3. In general, the number of sequences to consider in Theorem 4.1 is at most the rank
of the matrix W = (w j (ti )).

In general, the choice of core and weighting approximation functions are applica-
tion driven. Therefore, it is essential to develop optimality conditions to various
types of functions.
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5 Applications

In this section, we consider two real-life applications where linear combinations of
polynomial splines with other functions are used.

5.1 Taxation Modelling

Optimal tax theory [20,21] is concerned with obtaining a function which represents
the optimal average taxation rate for achieving certain goals (typically redistribution of
wealth). This function represents the ratio of the total tax to the total (taxable) income.
It is not practical, however, to use this function for personal tax calculation, and most
systems are based on a tax-free threshold and a number of tax income intervals with
the corresponding tax rates (positive numbers between zero and one), while a00 = 0.
To obtain the taxation system that approximates best the optimal tax function, we can
solve the following optimization problem:

min
X

max
t∈[a,b]

∣∣y(t) − s[X ](t)
t

∣∣,
where variable t is the total taxable income, a > 0 is the tax- free threshold and s[X ]
is a linear spline, whose parameters are the taxation rates (one per subinterval) and the
knots are the taxation subintervals borders. This problem is a weighted approximation
problem, where the weighting function is

w(x) = 1

t
.

Definition 5.1 A table that connects the taxation intervals and the corresponding tax-
ation rates is called the taxation table.

Consider linear splines in detail (see also Fig. 1)

s[X ](t) = a00 +
N∑
j=1

x j (min{t, ξ j+1} − ξ j )+, (12)

where a00 = 0, ξ0 = a is the tax-free threshold, ξN = b is the highest possible
income considered in this problem, ξ j , j = 1, . . . , N , ξ0 = a are the borders of the
tax intervals and x j are the corresponding rates (for simplicity, we remove the index
that corresponds to the spline degree, since the degree is always one). Therefore, if
t < a, the income is below the tax-free threshold and there is no tax to pay. For an
income in the first interval, that is a = ξ0 ≤ t ≤ ξ1, then the first a dollars are untaxed,
and the rest of the income ((t − a) dollars) is taxed at the rate x1. For an income in the
second interval, that is ξ1 ≤ t ≤ ξ2, then again the first a dollars of income is untaxed,
the next (ξ1 − ξ0) dollars of income are taxed at the rate x1, and finally, the rest of the
income ((t − ξ1) dollars) is taxed at the rate x2. Continuing this process through all
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Fig. 1 Average taxation rates function with thresholds a (tax-free threshold), ξ1 and ξ2

income thresholds, it can be seen that indeed the total tax is calculated using a linear
spline whose knots are the borders of the taxation subintervals and the coefficients are
the rates. Therefore, if the knots (taxation subintervals) are known, then the total tax
amount as a function of income t can be modelled by optimizing the corresponding
spline coefficients (taxation rates).

In most taxation systems, there are a number of requirements on spline coefficients.
For example, for progressive taxation systems the rates that corresponds to higher
income are higher, namely,

0 < x1 < · · · < xN .

Nonstrict inequalities are also possible, in this case two or more taxation subintervals
are joined together as a single subinterval. Therefore, the optimization problems are
constrained optimization problems and require some additional care to solve them.
In [22], the author develops an algorithm that can take into account the fact that the
corresponding spline coefficients are increasing. However, this algorithm has to be
adjusted, since our modelling function is not a polynomial spline (w(t) = 1

t �= 1).
Note also that the following variable substitution:

ξ̄1 = ξ1, ξ̄2 = ξ2 − ξ1, . . . , ξ̄N = ξN − ξN−1

leads to an equivalent constraint optimization problem, where the variables are posi-
tive (or nonnegative and some of the intervals can be joined together). This variable
substitution is equivalent to spline presentation (2). In this case, the knots are still
interpreted as the borders of the taxation subintervals, but the spline coefficients are
not interpreted as the taxation rates anymore. Then the optimization problems remain
convex and we still can apply convex analysis to deal with this problem. In particular,
if a minimum occurs at a point from the interior of the feasible set (that is X∗ ∈ RN+
for taxation problem,RN+ is the positive quadrant inR, where all the coordinates are
strictly positive), then a necessary and sufficient optimality conditions is
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0N ∈ ∂ f (X̄), (13)

where f (X̄) is the maximal deviation function and the corresponding variables are

ξ̄1, . . . , ξ̄N .

These variables are strictly positive if none of the adjusted subintervals has the same
taxation rate. Also note that the dimension of the problem is N , since the value of
the corresponding linear spline is fixed at a and equal to zero at this point (tax-free
threshold). Such kind of splines is also called fixed tails splines. In the case of fixed
tail polynomial spline approximation, similar to the results with free tails, the number
of alternance points is 2 + ∑q

j=p m j if ξp > a or 1 + ∑q
j=p m j if ξp = a (see [16]

for details). Therefore, the following theorem holds.

Theorem 5.1 Assume that there exists an optimal taxation table for a given number
of taxation subintervals N . Then the corresponding taxation table is optimal if and
only if there exists a subinterval

[ξp, ξq ], a = ξ0 ≤ ξp < ξq ≤ ξN = b,

that contains

q − p + 2 maximal deviation points if ξp > a;
q − p + 1 maximal deviation points if ξp = a

of the modelling function from the approximation function and the signs of deviation
are alternating.

Proof Note that our assumption on the existence of the optimal taxation table implies
that the solution lies in the interior of the feasible set of Problem (12), where the
same optimality condition on convex functions applies. Theweighting approximations
function is 1

t > 0, since a > 0. Therefore, the sign of the deviation function and the
sign of the deviation function multiplied by the weighting function is the same. Then,
since it is assumed that global minima achieved in the interior of the feasible region,
one can follow the same steps as in Theorem 3.1. To take into account that y(a) = 0,
we use fixed tails results from [16]. 	


5.2 Signal Processing

In these problems, the original signal is modelled as a sine wave and the amplitude is
chosen to be a polynomial spline whose parameters are subject to optimization [13–
15]. The optimization problem is

min
X

max
t∈[a,b] |y(t) − s[X ](t) sin(ωt + τ)|, (14)
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Fig. 2 Signal processing: brain wave signal (blue) and approximating weighted spline (red)

where ω (frequency) and τ (phase) are known parameters. Therefore, the correspond-
ing weighting approximation function is

w(x) = sin(ωt + τ).

In most practical applications, the parameters frequency and phase are not known.
One way to obtain them is to include them as additional variables in (14). However,
it is not easy to solve such problems, due to its nonconvexity and a high number
of local minima. To overcome this problem, there are a number of ways to estimate
the frequency and phase. In some applications, where, for example, the frequency is
restricted to integers and the phase does not have to be identified very precisely (sleep
scoring [14]). In this case, it is possible (and efficient) to establish a fine grid for these
two parameters and consider all the possible combinations, selecting the one that gives
the smallest maximal deviation to (14).

In some applications, one needs to approximate the original signal by a sum of two
ormorewaves (similar to Sect. 4). In some cases, one of thewaves represents the actual
signal, while the second one is the noise and has to be removed (or ignored). In this
case, the problem remains convex and therefore can be solved relatively inexpensively
(providing that frequencies and phases are known and the convex optimization tech-
nique can find local minima to nonsmooth functions), but the optimality conditions
are not so easy to verify.

On Fig. 2, the blue curve is the original signal (brain wave, also known as EEG)
and the red is the approximation. A K-complex is a special sleep event, characterized
by a prominent increase in the amplitude, which then immediately returns back to the
original value. The identification of such events is essential for sleep scoring. There
is a clear K-complex appearing two seconds after the recording started.

In this application, the computer is attempting to “mimic” doctor’s decision on
whether a K-complex occurred or not. This decision is based on a number of rules that
the doctor has to apply, in particular, the signal’s frequency and amplitude that describe
the “shape” of the wave (phase is not very important, since it does not contribute
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to the shape of the wave). While the amplitude can be clearly identified through
the scales appearing on the computer screen, the frequency identification is much
harder: it is based on visual recognition between wave patterns that correspond to
different frequencies. These patterns are normally learnt by the scorer at the time of
training. Therefore, the frequency identification (when it is done by a medical doctor)
is imprecise and limited to just a few possibilities (normally integers, not exceeding
15 Hz).

6 Conclusions

In this paper, we have developed necessary and sufficient optimality conditions for
approximation by a model function, that is, constructed as a linear combination of a
fixed knot polynomial spline and continuous functions. These conditions are gener-
alizations of alternance type optimality conditions developed for polynomial spline
approximation.

In future research, we are planning to extend this study to other types of core
approximation functions, in particular, trigonometric functions. Also, it is important
to address additional requirements appearing in constrained problems.

Another important research direction is to investigate free knots spline approxima-
tion. This additional flexibility will increase the quality of approximation. However,
the corresponding optimization problem is muchmore complicated; in particular, they
are nonconvex. This research direction is extremely challenging.

It is also important to develop computational methods for constructing optimal
approximations. In particular, it is interesting to see whether the famous Remez algo-
rithm [1,23], developed for polynomial and polynomial spline approximation, can be
extended to the case of linear combinations where the core approximation function is
a polynomial spline (or another important class of functions).

Finally, we are planning to elaborate our results for approximating by linear combi-
nations with more than one splines. Currently, we have developed an alternance-based
necessary optimality condition and we will work towards developing a necessary and
sufficient alternance-based optimality condition.
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