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Abstract The firefly algorithm is a swarm-based search algorithm, in which fireflies
cooperate with each other to look for the optimal solution to a given optimization
problem in a provided search space. Even though the firefly algorithm has exhibited
good performance, researchers have not adequately explained how it works and what
effects of its control coefficients in terms of theory. Further, classical variants of the
algorithm have unexpected parameter settings and limited update laws, notably the
homogeneous rule is necessary to be improved in order to efficiently search the whole
space as accurate as possible for the optimal solutions to various problems. This
study analyzes the trajectory of a single firefly in both the traditional algorithm and
an adaptive variant based on our previous study. Accordingly, these analyses lead to
general models of the algorithm ? including a set of boundary conditions for selection
of the control parameters, which can guarantee the convergence tendencies of all
individuals. The numerical experiments on twelve well-suited benchmark functions

Communicated by Dario Izzo.

Electronic supplementary material The online version of this article (doi:10.1007/s10957-016-0875-4)
contains supplementary material, which is available to authorized users.

B Ngaam J. Cheung
ngaam.ch@gmail.com; ngaam@uchicago.edu

1 Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University,
Shanghai 200240, China

2 James Franck Institute, The University of Chicago, Chicago, IL 60637, USA

3 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and
Technology, 516 Jungong Road, Shanghai 200093, China

4 Key Laboratory of System Control and Information Processing, Ministry of Education of China,
800 Dongchuan Road, Shanghai 200240, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-016-0875-4&domain=pdf
http://dx.doi.org/10.1007/s10957-016-0875-4


J Optim Theory Appl (2016) 170:616–628 617

show the implementation of the proposed adaptive algorithm,which is derived from the
analyses, can enhance the search ability of each individual in looking for the optima.

Keywords Convergence analysis · Parameter selection · Adaptive firefly algorithm ·
NAdaFa

Mathematics Subject Classification 93B40

1 Introduction

Recently, swarm-based meta-heuristic algorithms have attracted a lot of attentions and
become useful techniques to solve many real-world optimization problems [1–3]. The
recently developed firefly algorithm (FA) is one of swarm-based search algorithms,
whichmimics the social behavior of fireflies [4], and it consists of two important issues
involving variation of light intensity and formulation of attractiveness [4]. Similar to
other heuristic algorithms, FA also has several control parameters to be tuned, for
instance, light absorption coefficient, randomization control factor, and population
size, for good performance on different problems. These parameters are either set to
constants or fixed empirically in the traditional variants [4–7], which always make the
algorithm inefficiency on the problems with rugged landscapes [8]. Researchers have
made numerous contributions to the improvement of FA considering the alteration of
the control parameters. For example, a variant of FA based on Lévy flights moving
strategy was developed in Ref. [9] to enhance the search ability of the classical firefly
algorithm. In Ref. [5], the authors analyzed the performance of FA on five standard
benchmark functions, and, accordingly, they derived guidelines of parameter selection
to guarantee convergence of FA. For further details on firefly algorithm, see Ref. [10].

Although numerous improved variants of FA have been developed, FA is still easily
trapped in local regions when it is used to handle complex problems with numerous
local optima [8]. The standard FA employs several parameters for solving the opti-
mizations, and the parameters may result in significantly different performances of
FA. Proper selections of these parameters can be a useful way to improve the search
ability of FA. However, as to different problems of distinguished features, it is not an
easy task to manually tune the parameters.

In FA algorithm, flash of a firefly is a signal to attract other fireflies, which is
considered as attractiveness determined by its brightness. Apparently, its brightness
is important to attract other fireflies with less bright. Mathematically, this biological
phenomenon is defined as bio-inspired search algorithm based on three rules [4,8,19]
as follows:

– All fireflies are attracted by each other without respect to their sex;
– Attractiveness is proportional to its brightness, that is, the less bright onewill move
toward the brighter one;

– If there are no brighter fireflies than a particular firefly, it will move randomly in
the space.
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For mathematical simplicity, intensity of the brightness is proportional to mutual dis-
tance between any two fireflies, and, accordingly, variation of the intensity is defined
as light absorption coefficient γ .

It is obvious that there are two main drawbacks in using a constant light absorption
coefficient γ [11], which can be concluded as follows:

1. The attractiveness of other fireflies will be a constant when γ approaches 0. That
is, a firefly can be seen by all the other ones. In this case, FA is the same as a
classical PSO [17].

2. If γ → ∞, the attractiveness will be equal to 0. All the fireflies cannot take their
bearings to move but will be in random flight. In this case, FA becomes a pure
random search algorithm.

As can be seen, the parameter γ is crucially important in characterizing the variation
of the attractiveness, and the speed of convergence is also dependent on γ [12]. In our
previous study [8], we developed an adaptive variant of FA termed AdaFa, which is
featured by: (1) two adaptive coefficient strategies for altering the attractiveness and
sharing information;0 (2) five different designs for the randomization parameter, to
efficiently deal with selections of either γ or other control parameters for enhancing
performances of FA-based algorithms. Although much progress has been achieved in
the proposed AdaFa [8] as well as other FA-based algorithms since 2008, significant
efforts are required to further improve the performance of FA:

– Theoretical analysis for convergence trajectory;
– Deriving the sufficient and necessary conditions for the selections of control coef-
ficients;

– Non-homogeneous update rules for enhancing search ability [8].

In this paper, we develop a new different strategy for the control parameter in ran-
domization term and provide theoretical analyses, respectively, for the standard FA and
the improved AdaFa (termed NAdaFa). As an important contribution, we theoretically
explain why the developed NAdaFa enhances the balance between exploitation (local
search) and exploration (global search), and, rooting in the theoretical analysis, we
suggest several promising boundary conditions for choosing the control parameters
of both FA and NAdaFa.

The remainder of this paper is organized as follows. Section 2 presents descriptions
of firefly algorithm and its variant—AdaFa. Section 3 presents convergence analyses
of a single firefly’s behavior in both FA and NAdaFa. In Sect. 4, numerical studies and
discussion are presented. Conclusions are given in Sect. 5.

2 Firefly Algorithms

The firefly algorithm (FA) is a swarm-based search method [4], in which the fireflies
are attracted by more bright ones without respect to their sex. Let xi and x j be the
i th and the j th fireflies, respectively, and ri j be Euclidean distance between them.
Accordingly, an attractiveness of any two fireflies being proportional to their distance
is defined as follows,

β(r) = β0e
−γ r2 , (1)
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where β0 is a constant of attractiveness at r = 0. γ is light absorption coefficient,
which is set to 1.0 in FA.

The step of the i th firefly attracted to move to another more attractive (brighter)
firefly j is determined by

�xti = β ·
(
xtj − xti

)
+ α(rc − c), (2)

where rc is a vector of random numbers subjecting to standard normal distribution,
which are randomly drawn from N (0, 1), and c consists of 0.5 with the same size as
that of rc. α is a constant in the range of (0, 1) in FA. Accordingly, the update law of
the i th firefly is formulated as follows,

xt+1
i = xti + �xti . (3)

During search process, the traditional FA does not alter the control parameters or
only uses constant parameters throughout the whole process. Moreover, information
of the search or knowledge achieved by the fireflies is not taken into account in the
selections of parameters. All these static designs may be optimal for one problem, but
not efficient or even fail to guarantee convergence for another one [8]. Proper selections
of these parameters highly determine quality of solution and search efficiency of FA.

As an improved variant of FA, AdaFa [8] concerned the developments of new
strategies for parameter selections. In AdaFa, two mechanisms involving distance-
based light absorption coefficient and gray factor are developed for adaptively altering
the attractiveness and enhancing the ability of sharing difference information, respec-
tively. The constant light absorption coefficient γ in FA is replaced by an adaptive
coefficient Ac for efficient search. The new attractiveness τ is defined in Eq. (4).

τ = Dr · e−Acr2 , (4)

where Dr and r are the distance ratio and the distance between pair of fireflies, respec-
tively.

Gray relational analysis [13] is used to measure the similarity of the fireflies in
Ref. [8]. A gray factor η, which depends on the information of population distribution
computed by the gray relational grade, is defined in Eq. (5) to satisfy the requirement
of diversity.

η = (ηmin − ηmax)Fi + ηmaxFmax − ηminFmin

(Fmax − Fmin)
, (5)

where ηmax and ηmin are upper and lower boundaries, respectively, which ensure the
population can converge in finite time. Fi is the gray relational coefficient between
the i th firefly and the best one. Additionally, Fmax = max{Fi |i=1,2...,N } and Fmin =
min{Fi |i=1,2...,N }.

In search process, the differences among the fireflies are used to enhance their
cooperation and search abilities in a given search space. However, if these differences
are not decreased, the fireflies will never converge in finite number of generations. To
deal with this problem, we design a new strategy for controlling the randomization
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Fig. 1 The comparison of
randomization parameters α.
The variations of α are drawn
from the equations of α in Refs.
[8,19]
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parameter α in Eq. (2), which is better than the classical design in FA [19], and it is
also simpler than the five strategies for α in AdaFa [8], since there is no parameter
needing to be tuned. The new strategy for α is defined as follows,

αt+1 = αt · 0.95 t
NG . (6)

In Fig. 1, comparison of the strategies for α is illustrated. In FA, α decreases
smoothly depending on the generation number (α is defined as α(t) = α(t − 1)(
10−4

0.9

)1/NG
in Ref. [19]), while other five strategies in AdaFa (details can be found

in Ref. [8]) exhibit similar performances—slowly decreasing at initial stage, but later
they are shaper than α in FA. As shown in Fig. 1, the design in Eq. (6) can enlarge
scope ofα.Moreover, the developed strategy,which contributes to exploration in initial
search while working for smooth exploitation in the later stage, provides NAdaFa with
potential search ability in search process.

Another important issue in FA and most of its variants is that fireflies obey the
same search law and share similar information throughout the search process. Due to
the same search characteristics, the fireflies cannot always exhibit diverse and useful
information for promising search. As a non-homogeneous algorithm, AdaFa employs
two update rules for efficient search, one of which is to learn from the global best—
global search given in Eq. (7a)—-while the other one is dependent on the neighbor of
each firefly—local search as shown in Eq. (7b).

xt+1
i =

⎧
⎪⎨
⎪⎩

NG − t

NG
(1 − η)xti + ηxopt , ra < 0.5,

(1 − τ)xti + τxtj + xt+1
r , else,

(7a)

(7b)

where NG is maximum number of generations. xr is randomization term defined as
follows,

xt+1
r = αt+1 · (r0 − c) · |Ub − Lb|, (8)

where r0 is a vector of random numbers generated from standard normal distribution
N (0, 1). Ub and Lb are upper and lower boundaries, respectively.
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Algorithm 1. The NAdaFa algorithm
begin
Generate initial population of fireflies xi |i=1,2,...,N .
Compute light intensity Ii at xi .
Calculate attractiveness (Eq. (4)) from the i th firefly to all the others.
Determine adaptive coefficient (Eq. (5)).
while the termination condition is not met do
Update α using proposed strategy in Eq. (6).
for i = 1, . . . , N do
for j = 1, . . . , N do
Calculate attractiveness (Eq. (4)) between i th and j th fireflies.
Update gray factor (Eq. (5)).
if (I j > Ii )
if rand < 0.5
Move firefly i using gray update rule (Eq. (7a)).

else
Move firefly i using distance-based flight (Eq. (7b)).

end
end
evaluate new solutions and update light intensity.

end
end
rank the fireflies and find the current best.

end
end

Based on the framework ofAdaFa [8] and combiningwith the newdesigned strategy
for the randomization parameterα, we theoretically explainwhy the proposedNAdaFa
(as described inAlgorithm 1) can balance the exploration and exploitation in following
sections.

3 Convergence Analyses

This section provides the theoretical analyses of a single firefly’s behavior in one-
dimension of both FA and the developed NAdaFa. In the analyses, we show NAdaFa
can keep balance between the local best position (averaged position of the attractive
neighbors) and the global one according to the non-homogeneous update rules, while
the standard FA can only converge to the local best position (the attractive neighbor).

Lemma 3.1 If 〈un〉 is a sequence of independent identically distributed random vari-
ables subjecting to the uniform distribution U on [0, 1], that is 〈un〉 ∼ U (0, 1) for all
n > 0, then

lim
n→+∞

1

n

n∑
i=1

ui =
∫ 1

0
sds. (9)

Lemma 3.2 Let 〈�n〉 be a sequence of constants or random variables on a bounded
interval. If 〈un〉 is a sequence of independent identically distributed random variables,
that is 〈un〉 ∼ U (0, 1) for all n > 0, then

lim
n→+∞

n∑
i=1

�i (ui − 0.5) = 0. (10)

Proof Proof of Lemma 3.2 can be found in Supplementary Material. ��
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Theorem 3.1 (Squeeze theorem [14]) Let 	 be an interval containing a point o as the
point approaching to the limit O, and f (x), g(x), and h(x) be defined on 	. Suppose
that for every point x in 	, we have that

g(x) � f (x) � h(x), (11)

and that
lim
x→o

g(x) = lim
x→o

h(x) = O, (12)

then
lim
x→o

f (x) = O. (13)

Theorem 3.2 Let 〈θn〉 be a sequence or random variables, the sufficient and necessary
condition for the exist of the limit

lim
n→+∞

n∏
j=1

θ j = 0 (14)

and

lim
n→+∞

n∏
j=1

(1 − θ j ) = 0 (15)

is θ ∈ (0, 1).

Proof Proof of Theorem 3.2 can be found in Supplementary Material. ��
Theorem 3.3 Let 〈ρn〉 be a sequence of constants or random variables on a bounded
interval and 〈υn〉 be a sequence of constants or random variables. If 〈un〉 is a sequence
of independent identically distributed random variables, that is 〈un〉 ∼ U (0, 1) for
all n > 0, the sufficient and necessary condition for

lim
n→+∞(1 − υn)

−1
n∑

i=1

ρi (ui − 0.5)
n∏
j=i

(
1 − υ j

) = 0 (16)

is ∀υ ∈ (0, 1).

Proof Proof of Theorem 3.3 can be found in Supplementary Material. ��
Theorem 3.4 The sufficient and necessary condition for the position sequence 〈Xn〉
of a firefly in FA converging to the averaged position p̄ of its attractive neighbors is
β0 ∈ (0, 1).

Proof Proof of Theorem 3.4 can be found in Supplementary Material. ��
Theorem 3.5 Given ∀ρ ∈ IR

+ and ∀σ ∈ IR
+, the sufficient and necessary condition

for the position sequence 〈Xn〉 of a firefly in NAdaFa converging to the averaged
position p̄ of its attractive neighbors and the global position g is τ ∈ (0, 1) and
η ∈ (0, 1).
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Proof Proof of Theorem 3.5 can be found in Supplementary Material. ��
Based on the converge analyses, it can be concluded that the standard FA can only

converge to the local position (the attractive neighbor) if only if (0 < β0 < 1) while
the developed NAdaFa can not only converge to the local regions but also achieve
at the global best position if it satisfies τ ∈ (0, 1) and η ∈ (0, 1), where η can
be enlarged as the total number of iterations increasing. In following sections, we
show the significantly improved performance of the proposed NAdaFa on benchmark
problems.

4 Experimental Study

In this section, we demonstrate good performance of NAdaFa on twelve benchmark
functions F1–F12 summarized in Table S1 of Supplementary Material (more details
can be referred to the studies [15,16]), and we also compare NAdaFa with other five
swarm-based algorithms involving standard particle swarm optimization (SPSO) [17],
adaptive particle swarm optimization (APSO) [16], gray particle swarm optimization
(GPSO) [15], intelligent firefly algorithm (IFA) [18] and FA [19].

4.1 Parameters Settings

Experiments were conducted to compare different algorithms on 12 benchmark func-
tions with 30-dimension. In these experiments, for sake of fair comparison, the
population was set to 40, and the total number of fitness evolutions (FEs) was 40,000
for each compared algorithm. The parameters in NAdaFa are determined according
to the results on design of experiment (DOE) on six benchmark functions. These
parameters of NAdaFa and the other five algorithms are listed as follows:

– SPSO: ω = 1
2log(2) , c1 = c2 = 0.5 + log(2).

– APSO: ωstart = 0.9, c1 = c2 = 2.0.
– GPSO: ξ = 1, ωmin = 0.4, ωmax = 0.9, cmin = 1.5, cmax = cfinal = 2.5
– FA: α0 = 0.25, β0 = 1.0, βmin = 0.2, γ = 1.0.
– IFA: φ = 0.05, α0 = 0.5, β0 = 1.0, βmin = 0.2, γ = 1.0.
– NAdaFa: α0 = 0.9, σ = 1.5, ρ = 2.5, ηmin = 0.05, ηmax = 0.8.

4.2 Numerical Results

The experimental results on the twelve benchmark functions are presented in this
section. Table 1 shows the mean values and standard deviation on 30 independent
trials of each algorithm, and the mean values are also illustrated in Fig. 2 to compare
the convergence of each algorithm.

As illustrated in Table 1, the proposedNAdaFa achieved better results than the other
five algorithms on ten benchmark functions (F1–F3 and F5–F11), which can be also
observed from Fig. 2. On all problems except F12, NAdaFa was superior to FA and
IFA. Moreover, NAdaFa performed better than three PSO-based algorithms on these
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Table 1 The results achieved by different algorithms on the benchmark functions

Algorithm Function

F1 F2 F3

SPSO 5.55E−023 1.23E−022 2.97E−025 4.84E−025 1.02E+000 8.01E−001

APSO 8.67E−017 1.48E−016 4.96E−018 2.10E−017 8.81E+001 4.20E+001

GPSO 1.22E−005 1.53E−005 1.45E−007 2.50E−007 1.80E+003 6.34E+002

FA 3.53E+000 4.19E−001 7.97E−002 1.53E−002 2.01E+002 9.50E+001

IFA 4.45E+000 6.02E−001 2.87E−002 3.53E−003 2.29E+001 7.91E+000

NAdaFa 2.53E−065 6.07E−065 1.68E−067 3.78E−067 1.66E−065 2.46E−065

F4 F5 F6

SPSO 2.94E+001 1.15E+001 9.00E−001 1.06E+000 5.85E−003 1.97E−003

APSO 4.13E+001 2.91E+001 6.67E−002 2.54E−001 1.96E−002 6.16E−003

GPSO 6.91E+001 5.27E+001 1.00E−001 3.05E−001 4.49E−002 1.27E−002

FA 3.52E+001 1.27E+000 4.13E+000 9.73E−001 3.96E−002 1.74E−002

IFA 3.81E+001 2.91E+001 6.00E+000 1.62E+000 4.19E−001 1.52E−001

NAdaFa 2.87E+001 1.84E−002 0.00E+000 0.00E+000 1.93E−005 2.35E−005

F7 F8 F9

SPSO −6.43E+003 8.63E+002 6.54E+001 4.74E+001 8.34E+001 2.96E+001

APSO −9.45E+003 7.79E+002 4.62E+001 1.25E+001 2.98E+001 9.98E+000

GPSO −2.71E+004 2.68E+003 3.93E+001 7.33E+000 4.51E+001 1.41E+001

FA −7.31E+003 5.89E+002 3.50E+001 9.63E+000 4.86E+001 2.09E+001

IFA −7.61E+003 7.06E+002 6.95E+001 1.97E+001 8.86E+001 2.28E+001

NAdaFa −1.54E+004 2.54E+003 3.41E−014 4.63E−014 2.27E−014 3.84E−014

F10 F11 F12

SPSO 9.14E−001 7.69E−001 8.54E−003 9.38E−003 3.13E−002 6.23E−002

APSO 3.27E−001 5.66E−001 1.73E−002 1.89E−002 1.38E−001 2.72E−001

GPSO 3.70E−003 1.19E−002 1.56E−002 1.31E−002 2.85E−002 9.25E−002

FA 7.96E−001 6.60E−002 1.03E+000 7.51E−003 1.14E−002 2.11E−003

IFA 7.27E−001 6.31E−002 1.04E+000 4.30E−003 1.75E−002 4.04E−002

NAdaFa 6.57E−015 4.02E−015 1.48E−017 3.84E−017 1.80E−001 1.54E−001

problems. As the results on function F3 shown, NAdaFa seemed to outperform the
other five methods at a level of statistical significance. All the algorithms were trapped
into local regions on function F4, and there was no significant difference among the
experimental results, as illustrated in Fig. 2d, but they were of similar convergent
characteristics. Figure 2e shows that NAdaFa converged faster than FA in terms of
average results, and it is the only one achieving the target solution to the problem F5.
On function F6, NAdaFa got the best quality solution among all compared algorithms.
It was far better than FA shown in Fig. 2f, which got lost in the search process. Since
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Table 2 Average rankings of all compared algorithms on all benchmark functions

Average Friedman Aligned Friedman Quade

Rank Algorithm Ranking Algorithm Ranking Algorithm Ranking

1 NAdaFa 1.6667 NAdaFa 21.4167 NAdaFa 1.3718

2 APSO 3.25 GPSO 32.9167 APSO 3.2692

3 SPSO 3.5 APSO 36.5 GPSO 3.5385

4 GPSO 3.5833 SPSO 39.0833 SPSO 3.7821

5 FA 4.1667 FA 40 FA 4.1923

6 IFA 4.8333 IFA 49.0833 IFA 4.8462

Statistic 19.380952 9.942946 6.652245

p value 0.001632 0.076868 0.000066

the landscape of function F7 is highly rugged, most of the compared methods were
trapped in local regions. As shown, compared with other algorithms, NAdaFa was able
to find better solution approaching to the target (−418.9829×30 = −1.2569E +04).
In Fig. 2h–k (F8–F11), NAdaFa got the best place in these four test functions, and its
yielded results were sharply better than those of SPSO, APSO, GPSO, FA, and IFA,
which were all trapped on functions F8 and F9. For function F10, GPSO was better
than SPSO, APSO, which were prematurely convergent, FA and IFA. As shown in
Fig. 2j, FA and IFA were slightly better than SPSO and APSO. It can be observed
from Table 1 and Fig. 2k that three PSO-based and two FA-based algorithms obtained
similar mean and standard deviation with each other, but they were all inferior to those
of NAdaFa. FA was good for the function F12, on which it was superior to others, and
the rest possessed similar convergent characteristics as illustrated in Fig. 2l.

Generally, it is necessary to use nonparametric tests to analyze the experimental
results. In this section, Friedman, Aligned Friedman and Quade tests [20] were used
to validate the performances of all the algorithms, and the average rankings calculated
from these tests are listed in Table 2. Each algorithm and its rankings are listed in
ascending order (the lower the better). The statistics and the corresponding p values
are shown at the bottomof the table. It revels that the performance ofNAdaFa is as good
as or significantly better than those of the other five algorithms. According to Aligned
Friedman test, the rankings show that NAdaFa is not significantly different from other
algorithms with p values 0.077, but they can support the low presumption against
neutral hypothesis in the comparison among the performances of all algorithms. The
difference between the performance of NAdaFa and those of the other five algorithms
is statistically significant at the 5% significance level in Friedman and Quade tests.

5 Conclusions

In this study, according to our AdaFa [8], we propose more efficient strategy for an
important control parameter—the randomization coefficient for smoothly balancing
the search process. Moreover, we theoretically explain the superiority of the proposed
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NAdaFa, compared with the standard FA, in terms of convergence. Based on the
investigations of the search mechanism of an individual firefly, it can be concluded
that NAdaFa can keep a statistical balance between the exploration and the exploita-
tion, since the update rules are randomly selected dependent on the Gaussian random
number in (0, 1). Several promising conditions for guaranteeing the convergence of a
single firefly in both FA and NAdaFa are also provided in this paper. In the numeri-
cal experiments, we compared the performance of the proposed NAdaFa variant with
FA- and PSO-based algorithms, and, although Aligned Friedman test provides weak
evidence (p value > 0.05) to determine the significance of NAdaFa, the statistical
results demonstrate it is significantly better than the other four algorithms with the
5% significance level on Friedman and Quade tests. Although NAdaFa exhibits good
performance on the numerical experiments, it is still a challenging problem to deal
with the cooperation among the fireflies for further improving the performances of FA
and NAdaFa. It is also important to design heterogeneous update rules in solving real-
world problems, because these problems are not of homogeneous properties, which
are our future efforts. The source code of NAdaFa is available upon request at: http://
godzilla.uchicago.edu/pages/ngaam/NAdaFa/.
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