
J Optim Theory Appl (2016) 171:1008–1032
DOI 10.1007/s10957-016-0870-9

DEDICATED TO THE MEMORY OF PROFESSOR VLADIMIR FEDOROVICH DEMYANOV

Robust Optimization for the Loss-Averse Newsvendor
Problem

Hui Yu1 · Jia Zhai2 · Guang-Ya Chen3

Received: 14 July 2015 / Accepted: 4 January 2016 / Published online: 20 January 2016
© Springer Science+Business Media New York 2016

Abstract In economics and decision theory, loss aversion refers to people’s tendency
to strongly prefer avoiding losses to acquiring gains. Many studies have revealed
that losses are more powerful, psychologically, than gains. We initially introduce
loss aversion into the decision framework of the robust newsvendor model, to pro-
vide the theoretical guidance and referential decision for loss-averse decision makers
when only the mean and variance of the demand distribution are known. We obtain
the explicit expression for the optimal order policy that maximizes the loss-averse
newsvendor’s worst-case expected utility. We find that the robust optimal order pol-
icy for the loss-averse newsvendor is quite different from that for the risk-neutral
newsvendor. Furthermore, the impacts of loss aversion level on the robust optimal
order quantity and on the traditional optimal order quantity are roughly the same.
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1 Introduction

People are more averse to losses than the same amount of gains they are attracted to.
This idea, known as loss aversion, originated fromprospect theory proposed byKahne-
man and Tversky [1]. Loss aversion is both intuitively appealing and well supported in
organizational behavior, marketing, financial markets, labor supply, life savings and
consumptions, and real estate (see, e.g., [2–7]). In addition, the empirical study by
MacCrimmon and Wehrung [8] revealed that managers’ decision-making behavior
is consistent with loss aversion. The experiment designed by Duxbury and Summers
[9] also supported people’s loss-averse behavior. As stated by Brooks and Zank [10],
“The analysis and consequences of loss aversion have become an important part of
economic theories and their applications”.

The newsvendor problem is a popular problem in the operations management lit-
erature. The problem is useful for determining ordering policies for relatively short
shelf-life products in order to maximize the expected profit for a single period under
a stochastic demand environment. Because of its simple but elegant structure, the
newsvendor problem has served as a building block for numerous models in inven-
tory management, supply chain management and coordination, yield management,
scheduling, option pricing models, and many other areas.

Obviously, copingwith loss aversion in newsvendor problem is a problemworthy to
study. In contrast with the wide applications and empirical supports of loss aversion in
other fields, unfortunately, the development of loss aversion to describe the newsvendor
decision bias is still in its early stages. As far as we know, Schweitzer and Cachon
[11] andWang andWebster [12] are among the earliest pioneers who studied the loss-
averse newsvendor problem. Schweitzer and Cachon [11] showed that a loss-averse
newsvendor would order strictly less than a risk-neutral newsvendor when the shortage
cost could be ignorable, and the optimal order quantity was decreasing in loss aversion
level. Wang and Webster [12] further found that a loss-averse newsvendor may order
more than a risk-neutral newsvendor when the shortage cost is relatively high.

The existing researches have revealed that the effect of the newsvendor’s loss aver-
sion will take substantial impact on the newsvendor’s decision. In general, these works
are based on the assumption that the underlying distribution of the demand is precisely
known. However, it is often very hard or impossible to figure out the demand distrib-
ution, especially in the fast-changing markets in practice. Scarf [13] and Gallego and
Moon [14] are the first scholars who introduced the robust optimization approach as a
practical extension of the traditional newsvendor model. The robust approach allows
us to determine the optimal order quantity for the worst case when only the mean and
variance of the demand distribution are available. Scarf [13] derived a closed-form
formula for the optimal ordering rule that maximizes the expected profit against the
worst possible distribution of the demand with the given mean and variance. He also
pointed out that the worst distribution of the demand has positive mass at two points.
Gallego and Moon [14] provided a simpler proof of Scarf’s formula and extended
Scarf’s ideas to four cases. In the last 20 years since the appearance of Gallego and
Moon [14], there have been numerous results in the literature related to extensions of
Scarf’s ordering rule to different settings and applications (see, e.g., [15–24]).

So far, one intriguing question still remains:
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The newsvendor’s decision-making behavior is unclear if (i) the newsvendor has
preference of loss aversion and (ii) only partial information about the demand
distribution is available. Is there a similar closed-form expression for the robust
newsvendor problem with loss aversion to Scarf’s ordering rule [13]? In partic-
ular, whether the loss aversion makes a different effect when some information
of the demand distribution is lack?

The main contribution of this work is to answer this long-standing question in an
affirmative way. We built a theoretical model to characterize the robust newsvendor
problemwith loss aversion.We obtain the closed-form expression for the optimal order
quantity that maximizes the loss-averse newsvendor’s worst-case expected utility,
which is quite different from Scarf’s ordering rule. We find that the worst distribution
of the demand has positive mass at three or two points. The robust optimal order
quantity for our model is decreasing in loss aversion level under most parameter
settings, which is roughly the same but a little different from the result obtained by
Schweitzer andCachon [11]with the complete information of the demand distribution.

The rest of the paper is organized as follows. In Sect. 2, we formulate a robust
newsvendor model with loss aversion. In Sect. 3, we obtain the tight lower bound
of expected utility over all possible distributions with the given mean and variance,
and provide the explicit expression for the optimal order quantity that maximizes the
tight lower bound of expected utility. In Sect. 4, we conduct numerical experiments
to calculate the optimal order policy under different parameter settings and illustrate
the effect of loss aversion level, distribution variation and other parameters on the
optimal policies. In Sect. 5, we draw our conclusions and identify opportunities for
future research. The proofs of main results are given in the appendices.

2 Robust Newsvendor Model with Loss Aversion

In the newsvendor problem, a decision maker chooses an order quantity q, which
arrives before the start of a single selling period. Let D be stochastic demand during
this period, μ be its mean and σ 2 be its variance. The decision maker purchases each
unit for cost c and sells each unit at price p > c. When q > D, each unit remaining
at the end of the period can be salvaged for s < c. Let F be the distribution function
of demand and f be the density function. For simplicity, assume F is continuous,
differentiable and strictly increasing, but is uncertain. Let �(μ, σ 2) be the class of all
distribution functions withmeanμ and variance σ 2. Let�+(μ, σ 2) ⊂ �(μ, σ 2) be the
subclass of distributions F of nonnegative random variables (i.e.,

∫ +∞
0 dF(x) = 1).

The profit can be written as

π(q, D) = (p − s)min{q, D} − (c − s)q

= (p − c)q − (p − s)(q − D)+,

where (y)+ := max{y, 0}.
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We consider a simple piecewise-linear form of loss aversion utility function

u(x) =
{
x, x ≥ 0;
λx, x < 0,

with λ ≥ 1, where λ quantifies the degree of loss aversion. This piecewise-linear
form of loss aversion utility function in Fig. 1 has been widely used in the economics,
finance, and operationsmanagement literature (see, e.g., [11,12,25,26]). The rationale
behind such consideration is that typically a decision maker has a reference point in
mind, and he/she would feel the loss more acutely than the gain near the reference
point.

For a given order quantity q, the decision maker’s break-even sales is c−s
p−s q, i.e.,

π

(

q, c−s
p−s q

)

= 0.

Hence,

u(π(q, D)) =
⎧
⎨

⎩

λ[(p − s)D − (c − s)q], if 0 ≤ D < c−s
p−s q;

(p − s)D − (c − s)q, if c−s
p−s q ≤ D < q;

(p − c)q, if D ≥ q.

(1)

We define a product as a high-profit product when c−s
p−s ≤ 1

2 and a low-profit product
otherwise.

Under the setting that only the mean μ and variance σ 2 of demand are known, a
loss-averse newsvendor is interested in solving the following robust model:

max
q

min
F∈�+(μ,σ 2)

E[u(π(q, D))], (M1)

where F ∈ �+(μ, σ 2) means that the random variable D conforms to a distribution
F which belongs to �+(μ, σ 2).

Fig. 1 A piecewise-linear loss aversion utility function
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Remark 2.1 When loss aversion level λ = 1, i.e., the newsvendor without loss aver-
sion, the above model (M1) reduces to that in [13].

3 Newsvendor’s Optimal Order Policy

In this section, we are interested in solving the robust newsvendor model with loss
aversion (M1). To see this, we need a few intermediate steps. Let us first consider

U (q) := min
F∈�+(μ,σ 2)

E[u(π(q, D))] (P)

the inner problem of the model (M1), where the minimization is over the set of prob-
ability distributions, of the nonnegative random variable D satisfying the given mean
and variance requirements.

The above problem is equivalent to the following linear programming problem

min
F

∫ +∞

0
u(π(q, x))dF(x) (P)

s.t.
∫ +∞

0
dF(x) = 1,

∫ +∞

0
xdF(x) = μ,

∫ +∞

0
x2dF(x) = μ2 + σ 2,

dF(x) ≥ 0.

Motivated by the approaches used in [13] and [27], we use the duality theory to
analyze the above primal problem (P). Its dual problem is

max
y0,y1,y2

[y0 + μy1 + (μ2 + σ 2)y2] (D)

s.t. y0 + y1x + y2x
2 ≤ u(π(q, x)), ∀x ∈ R+,

where y0, y1 and y2 are the dual variables corresponding to the probability-mass, mean
and second-order moment constraints. Our approach to find U (q) is based on con-
structing a pair of primal-dual feasible solutions F∗(x) (a distribution) and (y∗

0 , y
∗
1 , y

∗
2 )

for (P) and (D), andmake sure that they satisfy the complementary slackness condition.
In the case of linear programming, this ensures optimality.

The necessary and sufficient optimality condition, for the primal feasible solution
F∗(x) to be an optimal solution for (P) and for the dual feasible solution (y∗

0 , y
∗
1 , y

∗
2 )

to be an optimal solution for (D), is the complementary slackness condition:

∫ +∞

0

(
u(π(q, x)) − y∗

0 − y∗
1 x − y∗

2 x
2)dF∗(x) = 0.
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According to the complementary slackness condition, for any point x ∈ R+ the
primal optimal solution F∗(x) has nonzero probability if and only if the dual optimal
solution (y∗

0 , y
∗
1 , y

∗
2 ) satisfies y∗

0 + y∗
1 x + y∗

2 x
2 = u(π(q, x)). In other words, the

touching points of the smooth curve g(x) := y0 + y1x + y2x2 and the three-piece
line u(π(q, x)) should be the points where the primal optimal solution places all its
masses. As illustrated by Fig. 2, the two functions g(x) and u(π(q, x))will have three
touch points at most and two at least (a total of seven cases).

On the basis of the above analysis, we provide the closed-form expression forU (q),
in the following theorem.

Theorem 3.1 Define

x0(q) := λ(c−s)−(λ−1)(p−c)
λ(p−s) q,

x1(q) := λ(c−s)+(λ−1)(p−c)
λ(p−s) q,

x2(q) := λ(c−s)+(λ+1)(p−c)
λ(p−s) q,

and

x̂0(q) := 0,

x̂1(q) := q
[
1 −

(√
(p−c)+λ(c−s)−√

(λ−1)(c−s)
)2

p−s

]
,

x̂2(q) := q
[
1 +

(√
(p−c)+λ(c−s)−√

(λ−1)(c−s)
)2

p−s

]
,

and

ν(q) := 2q (p−c)+λ(c−s)
λ(p−s) , ω(q) := 2q c−s

p−s .

The worst-case expected utility U (q) for all F ∈ �+(μ, σ 2) in problem (P) reduces
to the following seven cases:

Case 1: Three-point distribution.
(1a) If c−s

p−s ≥ λ−1
2λ−1 and

max{(x1 − μ)(μ − x0), (x2 − μ)(μ − x1)} ≤ σ 2 ≤ (x2 − μ)(μ − x0),

then

U (q) = (p−s)[λ(p−s)+(p−c)]μ
2(p−c) +

[
(p − c) − (λ(p−s)+(p−c))2

4λ(p−c)

]
q

−λ(p−s)2
(
μ2+σ 2

)

4(p−c)q .

(1b) If c−s
p−s < λ−1

2λ−1 and

max{(x̂1 − μ)(μ − x̂0), (x̂2 − μ)(μ − x̂1)} ≤ σ 2 ≤ (x̂2 − μ)(μ − x̂0),
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Fig. 2 The two functions g(x) and u(π(q, x)) will have three touch points at most and two at least (a total
of seven cases)

then

U (q) = (p−s)
[
(p−c)+λ(c−s)−√

(λ−1)(c−s)((p−c)+λ(c−s))
]
μ

[√
(p−c)+λ(c−s)−√

(λ−1)(c−s)
]2 − λ(c − s)q −

(p−s)2(μ2+σ 2)

4
[√

(p−c)+λ(c−s)−√
(λ−1)(c−s)

]2
q
.
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Fig. 3 Characterization of the different cases in Theorem 3.1

Case 2: Two-point distribution.
(2a) If c−s

p−s ≥ λ−1
2λ−1 and σ 2 < (x1 − μ)(μ − x0), or else if c−s

p−s < λ−1
2λ−1 and

σ 2 < (ω − μ)(μ − x̂0), then

U (q) = p−s
2

[
(λ + 1)(μ − c−s

p−s q) − (λ − 1)
√

(μ − c−s
p−s q)2 + σ 2

]
.

(2b) If c−s
p−s ≥ λ−1

2λ−1 and σ 2 < (x2 − μ)(μ − x1), or else if c−s
p−s < λ−1

2λ−1 and

σ 2 < (x̂2 − μ)(μ − x̂1), then

U (q) = p−s
2

[
(μ − q) −

√
(μ − q)2 + σ 2

] + (p − c)q.

(2c) If c−s
p−s ≥ λ−1

2λ−1 and (x2 − μ)(μ − x0) < σ 2 ≤ (ν − μ)(μ − x̂0), then

U (q) = λ(p−s)
2

[(
μ − (p−c)+λ(c−s)

λ(p−s) q
) −

√(
μ − (p−c)+λ(c−s)

λ(p−s) q
)2 + σ 2

]

+(p − c)q.

(2d) If c−s
p−s < λ−1

2λ−1 and (ω − μ)(μ − x̂0) ≤ σ 2 < (x̂1 − μ)(μ − x̂0), then

U (q) = (p − s)μ − (c − s)μ2+λσ 2

μ2+σ 2 q.

(2e) If c−s
p−s ≥ λ−1

2λ−1 and σ 2 > (ν − μ)(μ − x̂0), or else if c−s
p−s < λ−1

2λ−1 and

σ 2 > (x̂2 − μ)(μ − x̂0), then

U (q) = (p−c)μ2−λ(c−s)σ 2

μ2+σ 2 q.

Furthermore, the worst-case expected utility U (q) is differentiable and concave on
[0,+∞].

We shall delegate the proof of Theorem 3.1 to Appendix 1.
Figure 3 provides a graphical representation of the different cases in Theorem 3.1

in the mean-variance space. We can interpret the result in Theorem 3.1 as follows:
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If we suppose that c−s
p−s ≥ λ−1

2λ−1 and the mean μ in the interval [x0, x1], then as we

increase the variance σ 2, the extremal distribution moves from case (2a) to case (1a)
to case (2c) to case (2e). These can be interpreted as cases of lowest variance, lower
variance, higher variance, and highest variance, respectively, for the particular mean.

Secondly, we will consider max
q

U (q). The following theorem provides the explicit

expression for the robust optimal order quantity that maximizes the worst-case
expected utility U (q).

Theorem 3.2 Define

q1a = λ(p − s)

√
μ2+σ 2

(λ(c−s)+(λ+1)(p−c))2−4λ(p−c)2
,

q1b = p−s
2

√
μ2+σ 2

λ(c−s)
(√

(p−c)+λ(c−s)−√
(λ−1)(c−s)

)2 ,

q2b = μ + σ
2

(√
p−c
c−s −

√
c−s
p−c

)
,

q2c = λ(p−s)
(p−c)+λ(c−s)

[
μ + σ

2

(√
p−c

λ(c−s) −
√

λ(c−s)
p−c

)]
,

q2e = 0.

The robust optimal order quantity q∗ corresponds to the global maximum of the
worst-case expected utility U (q) reduces to the following five cases:

Case 1: The global maximum of U (q) is attained under three-point distribution.
(1a) If c−s

p−s ≥ λ−1
2λ−1 and

max{(x1(q1a) − μ)(μ − x0(q1a)), (x2(q1a) − μ)(μ − x1(q1a))}
≤ σ 2 ≤ (x2(q1a) − μ)(μ − x0(q1a)),

then q∗ = q1a .
(1b) If c−s

p−s < λ−1
2λ−1 and

max{(x̂1(q1b) − μ)(μ − x̂0(q1b)), (x̂2(q1b) − μ)(μ − x̂1(q1b))}
≤ σ 2 ≤ (x̂2(q1b) − μ)(μ − x̂0(q1b)),

then q∗ = q1b.
Case 2: The global maximum of U (q) is attained under two-point distribution.

(2b) If c−s
p−s ≥ λ−1

2λ−1 and σ 2 < (x2(q2b) − μ)(μ − x1(q2b)), or else if
c−s
p−s < λ−1

2λ−1

and σ 2 < (x̂2(q2b) − μ)(μ − x̂1(q2b)), then q∗ = q2b.
(2c) If c−s

p−s ≥ λ−1
2λ−1 and

(x2(q2c) − μ)(μ − x0(q2c)) < σ 2 ≤ (ν(q2c) − μ)(μ − x̂0(q2c)),

then q∗ = q2c.
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(2e) If
(

μ
σ

)2 ≤ λ(c−s)
p−c , then q∗ = q2e.

It is impossible to attain the global maximum of U (q) under the distributions
of cases (2a) and (2d).

We shall delegate the proof of Theorem 3.2 to Appendix 2.
The above two theorems and the following corollary are the main results of this

paper.

Corollary 3.1 When loss aversion level λ = 1, the result of Theorem 3.2 reduces to
that

q∗ =
⎧
⎨

⎩

μ + σ
2

(√
p−c
c−s −

√
c−s
p−c

)
, if

(
μ
σ

)2
> c−s

p−c ;
0, if

(
μ
σ

)2 ≤ c−s
p−c ,

which is consistent with “Scarf’s rule” [13].

We shall delegate the proof of Corollary 3.1 to Appendix 3.

4 Numerical Experiments

In contrast to the existing newsvendor models, the robust newsvendor model with
loss aversion (M1) takes both the newsvendor’s distribution-free demand and decision
bias into consideration. Therefore, it is expected that the model (M1) may behave
differently from the existing models. In the following numerical experiments, we will
compare the performance of the model (M1) with that of other two existing models:
the loss-averse newsvendor model under the known distribution proposed in [11]

max
q

E[u(π(q, D))], (M2)

where F is a known distribution belonging to �+(μ, σ 2); and the robust newsvendor
model without loss aversion proposed in [13]

max
q

min
F∈�+(μ,σ 2)

E[π(q, D)]. (M3)

We denote by q∗, qF , qR , respectively, the optimal order quantities for the models
(M1), (M2), (M3), and byU (q∗),UF (qF ),UR(qR), respectively, the optimal expected
utilities for the models (M1), (M2), (M3). Especially for the model (M2), when F is
the normal distribution, we denote the optimal order quantity by qN , and the optimal
expected utility by UN (qN ).

4.1 Optimal Order Polices

We present numerical experiments to compute the optimal order policies for the model
(M1) and illustrate their properties. Our numerical experiments are based on the
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Table 1 The parameter setting of our numerical experiments

No. References c p s μ σ

I Silver and Peterson [28] 35.1 50.3 25.0 900 122

II Gallego and Moon [14] 28.0 32.0 15.1 1200 170

Fig. 4 A plot of the worst-case expected utility U (q) with the parameter setting No. I. Loss aversion level
λ = 2

Fig. 5 A plot of the worst-case expected utility U (q) with the parameter setting No. I. Loss aversion level
λ = 5

newsvendor examples introduced in [14] and [28] as shown in Table 1. We plot the
optimal order policies for (M1) in Figs. 4, 5, 6, 7 and 8. As indicated in the figures,
the worst possible distribution of the demand with the mean μ and the variance σ 2

may be some combination of seven cases, which is consistent with Theorem 3.1. The
worst-case expected utilityU (q) is differentiable, and is either unimodal or monotone
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Fig. 6 A plot of the worst-case expected utilityU (q) with the parameter setting No. II. Loss aversion level
λ = 1.5

Fig. 7 A plot of the worst-case expected utilityU (q) with the parameter setting No. II. Loss aversion level
λ = 5

decreasing in q on [0,+∞], which is also consistent with Theorem 3.1. The optimal
expected utility, i.e., the global maximum of the worst-case expected utility, may be
attained under the three-point distribution as Figs. 5, 6 shown, and may be attained
under the two-point distribution as Figs. 4, 7, 8 shown, which is consistent with The-
orem 3.2.

4.2 Relative Expected Value of Additional Information

If we use the order quantity q∗ instead of qF , the ratio ofUF (qF ) andUF (q∗) is equal
to UF (qF )

UF (q∗) . This ratio can be regarded as the Relative Expected Value of Additional
Information (REVAI).
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Fig. 8 A plot of the worst-case expected utility U (q) as a function of order quantity q with parameters
c = 28.0, p = 32.0, s = 15.1, μ = 1200 and σ = 300. Loss aversion level λ = 10

Table 2 Distributions for
randomly generated parameter
values

Data p c s λ

Range [60,120] [30,60] [10,30] [1,5]

Table 3 Comparison of the performance of q∗ with qF

Distribution Minimum REVAI Mean REVAI Maximum REVAI

Normal 1.0000 1.0021 1.0356

Uniform 1.0000 1.0034 1.0289

To ascertain the effectiveness of our approach, we compare the performance of
q∗ with qF , in terms of the REVAI for a series of random problems under the nor-
mal/uniform distribution. We randomly generate a set of 1000 problems, where each
instance of each relevant parameter, including the loss aversion level λ, is drawn from
a uniform distribution, with limits as shown in Table 2. The normal distribution has a
mean of 800 units and a standard deviation of 150 units, whereas the uniform distrib-
ution has limits of 540 and 1060 units, i.e., a mean of 800 and a standard deviation of
150 units. The minimum, mean, and maximum of these ratios for the 1000 problems
under the two distributions examined are reported in Table 3. From this table, it is
clear that the expected utilities under the known distribution yielded by q∗ and qF are
quite close. Therefore, we can recommend the use of our robust model in those cir-
cumstances when it is almost impossible or very difficult to find the actual distribution
of the demand.
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Fig. 9 Optimal order quantities and optimal expected utilities with respect to different loss aversion level,
with unit cost c = 23. Under this setting, c−s

p−s = 1
10

Fig. 10 Optimal order quantities and optimal expected utilities with respect to different loss aversion level,
with unit cost c = 30. Under this setting, c−s

p−s = 1
3

4.3 The Effect of Loss Aversion Level

Our third numerical study aims to understand the impact of loss aversion level λ on the
optimal order policy for (M1) in comparison with that for (M2), under different values
of c−s

p−s (see Figs. 9, 10, 11 and 12). Set parameters to p = 50, s = 20, μ = 1200, and
σ = 300. It is worthwhile to note that when λ = 1, the optimal order policy for (M1)
is just the optimal order policy for (M3), i.e., q∗ = qR and U (q∗) = UR(qR) in this
case. From the figures, we find that:

(i) The optimal expected utilities for both (M1) and (M2) are decreasing in loss
aversion level λ. Furthermore, when the product profit is higher, the effect of λ is
stronger. Moreover, the effect of λ on the optimal expected utility also depends
on the type of model. Indeed, the effect of λ for (M1) is more intense than that
for (M2).

(ii) The effect of loss aversion level λ on the optimal order quantity depends on the
type of model. The optimal order quantity q∗ for (M1) is decreasing in λ under
most parameter settings, but under some parameter settings it may increase in λ
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Fig. 11 Optimal order quantities and optimal expected utilities with respect to different loss aversion level,
with unit cost c = 40. Under this setting, c−s

p−s = 2
3

Fig. 12 Optimal order quantities and optimal expected utilities with respect to different loss aversion level,
with unit cost c = 47. Under this setting, c−s

p−s = 9
10

at first and then decrease (see Fig. 11). Such an impact on q∗ by varying λ is a
little different from that on qN for (M2). Schweitzer and Cachon [11] found that
the optimal order quantity be decreasing in λ under a known demand distribution.

4.4 The Effect of Distribution Variation

In our fourth numerical experiment, we compare the effect of distribution variation
on the optimal order quantities for three types of models. The distribution variation is
quantified by mean μ and standard deviation σ . We fix μ and let σ vary. We consider
both the high-profit product and the low-profit product. Set parameters to p = 50,
s = 20, μ = 1000, and λ = 5.

Figures 13 and 14 show that q∗ is increasing in σ when c−s
p−s is small (high-profit

product), and is decreasing in σ when c−s
p−s is big (low-profit product). Such an impact

on q∗ for (M1) by varying σ is consistent with that on qN for (M2) and qR for (M3).
Moreover, nomatter high- or low-profit product,when the deviation ofσ is 10%, the

deviation of expected utility with respect to q∗ under the known normal distribution
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Fig. 13 Optimal order quantities with respect to different standard deviation, with c = 23. Under this
setting, c−s

p−s = 1
10

Fig. 14 Optimal order quantities with respect to different standard deviation, with c = 47. Under this
setting, c−s

p−s = 9
10

is only 0.2–2.66%, which is relatively small. The robust optimal ordering policy
for variance change has strong adaptability, so the accuracy requirement of variance
estimation for the loss-averse newsvendor is not high.
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Fig. 15 Optimal order quantities with respect to different values of unit cost, with p = 50 and s = 20

Fig. 16 Optimal order quantities with respect to different values of unit selling price, with c = 35 and
s = 20

4.5 The Effect of Other Parameters

To gain more insights, in our fifth numerical experiment we study the effect of other
parameters (include unit cost, selling price and salvage) on the optimal order quantities
for three models. Set the benchmark values of parameters to μ = 1000, σ = 100 and
λ = 5.

Figures 15, 16 and 17 demonstrate that q∗ is decreasing in unit cost c and is increas-
ing in unit selling price p and in unit salvage s, respectively. The monotonicity of q∗
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Fig. 17 Optimal order quantities with respect to different values of unit salvage, with c = 35 and p = 50

for (M1) with respect to c, p and s, respectively, is consistent with that of qN for (M2)
and qR for (M3).

5 Conclusions

Loss aversion is the human tendency to strongly prefer avoiding a loss to receiving a
gain. This particular cognitive bias consistently explains why so many of us make the
same irrational decisions over and over, in the area of economics and elsewhere. Some
scholars have studied the loss-averse newsvendor problemwith a knowndemanddistri-
bution and found that the effect of the newsvendor’s loss aversionwill take influence on
the newsvendor’s decision. Nevertheless, it is often difficult to completely characterize
the demand distribution in real life. To fill in this research gap, we initially investigate
a newsvendor model that takes both the decision maker’s decision bias and the lack
of distributional information of demand into consideration. We use a piecewise-linear
loss aversion utility function to describe the decision maker’s decision bias, and apply
the robust optimization approach to overcome the lack of information. Our solution is
tractable, which makes it attractive for practical application. Our analysis also gener-
ates insights into the choice of the demand distribution as an input to the newsvendor
model. We summarize our important findings as follows:

1. Weobtain the closed-formexpression for the optimal order quantity thatmaximizes
the loss-averse newsvendor’s worst-case expected utility, which is quite different
from Scarf’s ordering rule. The robust optimal order quantity with loss aversion
for our model has five different cases, but Scarf’s ordering rule only has two cases.
In addition, we find that the worst distribution of the demand has positive mass at
three or two points.
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2. The robust optimal order quantity with loss aversion is decreasing in loss aversion
level λ under most parameter settings, but may increase in λ at first and then
decrease under some other parameter settings. This finding is roughly the same,
but a little different from the finding by Schweitzer and Cachon [11], which shows
that the optimal order quantity with loss aversion is always decreasing in λ under
a known demand distribution.

3. The robust optimal order quantity with loss aversion is increasing in standard
deviation σ for high-profit product and is decreasing in σ for low-profit product.
The robust optimal ordering policy for variance change has strong adaptability.
Moreover, the robust optimal order quantity is decreasing in unit cost c and is
increasing in unit selling price p and in unit salvage s, respectively. Clearly, with
respect to σ , c, p and s, respectively, the tendency of optimal order quantity for
our model is consistent with those by Schweitzer and Cachon [11] and Scarf [13].

There are many questions that need to be further explored. For example, other exten-
sions of our model include back ordering, supplying option, lead time, etc. In addition,
the robust newsvendormodel with other patterns of decision bias by the bounded ratio-
nality is worth investigating. Finally, it is hoped that the results obtained in this work
will be helpful for both practitioners and researchers and provide some insights for
developing related robust newsvendor models.

Acknowledgements This research was partially supported by the Fundamental Research Funds for the
Central Universities of China (Grant No. CDJSK100211) and by the Scientific Research Foundation and
the Project Spark of the Chongqing University of Technology.

Appendix 1

Proof of Theorem 3.1 Firstly, we prove the closed-form expression for U (q). Our
proof is based on constructing a pair of primal-dual feasible solutions for (P) and (D),
andmake sure that they satisfy the complementary slackness condition. The optimality
will then follow.

Case 1: Three-point distribution. The remaining two bounds correspond to different
three-point distribution.

(1a): Suppose that the smooth curve g(x) tangents the lines l0 : y = λ[(p − s)x −
(c − s)q], l1 : y = (p − s)x − (c − s)q and l2 : y = (p − c)q. Let us denote
these points as x0, x1 and x2, where 0 ≤ x0 < c−s

p−s q,
c−s
p−s q ≤ x1 < q and

x2 ≥ q. Due to the tangency condition, they must satisfy the following system
of equations:

g(x0) − u(π(q, x0)) = 0, g′(x0) − u′(π(q, x0)) = 0,

g(x1) − u(π(q, x1)) = 0, g′(x1) − u′(π(q, x1)) = 0,

g(x2) − u(π(q, x2)) = 0, g′(x2) − u′(π(q, x2)) = 0.
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From the above system of equations, it is easy to get

x0 = λ(c−s)−(λ−1)(p−c)
λ(p−s) q,

x1 = λ(c−s)+(λ−1)(p−c)
λ(p−s) q,

x2 = λ(c−s)+(λ+1)(p−c)
λ(p−s) q.

It is easy to see that x0 < c−s
p−s q ≤ x1 < q ≤ x2. And x0 ≥ 0 is ensured if

c−s
p−s ≥ λ−1

2λ−1 .
Note that the three-point distribution has to satisfy the mean and variance
constraints. This can be obtained using the probabilities of these three points
constructed explicitly as:

px0 = σ 2+(μ−x1)(μ−x2)
(x0−x1)(x0−x2)

,

px2 = σ 2+(μ−x0)(μ−x1)
(x2−x0)(x2−x1)

,

px1 = 1 − px0 − px2 .

For the solution F∗(x) ((xi , pxi ), i = 1, 2, 3 construct the three-point distrib-
ution F∗(x)) to be primal feasible, we need to ensure that the values of pxi are
nonnegative. This is ensured if max{(x1 − μ)(μ − x0), (x2 − μ)(μ − x1)} ≤
σ 2 ≤ (x2 − μ)(μ − x0).
With the values of x0, x1 and x2, it is easy to check that

y∗
0 = (p − c)q + y∗

2 x
2
2 = [3(p−c)+λ(p−s)][(p−c)−λ(p−s)]q

4(p−c) ,

y∗
1 = −2y∗

2 x2 = (p−s)[(p−c)+λ(p−s)]
2(p−c) ,

y∗
2 = p−s

2(x1−x2)
= −λ(p−s)2

4(p−c)q ,

is a dual feasible solution and satisfies the complementarity slackness condition
with the primal feasible solution F∗(x) thatwe had identified before. Therefore
(P) and (D) have the same optimal objective value, which is equal to

U (q) = λ[(p − s)x0 − (c − s)q]px0 + [(p − s)x1 − (c − s)q]px1
+ (p − c)qpx2

= y∗
0 + μy∗

1 + (μ2 + σ 2)y∗
2

= (p−s)[λ(p−s)+(p−c)]μ
2(p−c) + [

(p − c) − (λ(p−s)+(p−c))2

4λ(p−c)

]
q

−λ(p−s)2
(
μ2+σ 2

)

4(p−c)q .

(1b): Suppose that g(x) intersects l0 at the origin and tangents l1 and l2. The following
proof is similar to that of (1a).

Case 2: Two-point distribution. The remaining five bounds correspond to different
two-point distributions.
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(2a): Suppose that g(x) tangents the lines l0 and l1 only. Let these tangent points be
x̄0 and x̄1, respectively. Due to the tangency condition, we can get

x̄0 + x̄1 = 2 c−s
p−s q. (2)

For the solution to be primal feasible, we need to construct the two-point distribution
F∗(x) as follows by using a positive variable τ :

x̄0 = μ − στ, with probability px̄0 = 1

τ 2 + 1
;

x̄1 = μ + σ/τ, with probability px̄1 = τ 2

τ 2 + 1
. (3)

Substituting (3) into the above Eq. (2), we deduce that

τ = (μ− c−s
p−s q)+

√
(μ− c−s

p−s q)2+σ 2

σ
.

It is easy to see that x̄0 < c−s
p−s q < x̄1 and prove the following results:

1. c−s
p−s ≥ λ−1

2λ−1 and σ 2 < (x1 − μ)(μ − x0) ⇒ σ 2 < (ω − μ)(μ − x̂0);

2. c−s
p−s < λ−1

2λ−1 and σ 2 < (ω − μ)(μ − x̂0) ⇒ σ 2 < (x1 − μ)(μ − x0);

3. σ 2 < (ω − μ)(μ − x̂0) ⇔ x̄0 > 0;

4. σ 2 < (x1 − μ)(μ − x0) ⇔
√

(μ − c−s
p−s q)2 + σ 2 < λ−1

λ
· p−c
p−s q ⇒ x̄1 < q.

The corresponding dual solution which satisfies the complementarity slackness
condition with the primal feasible solution F∗(x) is

y∗
0 = −(c − s)q + y∗

2 x̄
2
1 = −(c − s)q − (λ−1)(p−s)

[
c−s
p−s q+

√
(μ− c−s

p−s q)2+σ 2
]2

4
√

(μ− c−s
p−s q)2+σ 2

,

y∗
1 = (p − s) − 2y∗

2 x̄1 = (λ+1)(p−s)
2 + (λ−1)(c−s)q

2
√

(μ− c−s
p−s q)2+σ 2

,

y∗
2 = (λ−1)(p−s)

2(x̄0−x̄1)
= −(λ−1)(p−s)

4
√

(μ− c−s
p−s q)2+σ 2

.

In this case, we still need to guarantee that the solution (y∗
0 , y

∗
1 , y

∗
2 ) also satisfies the

dual feasibility condition by checking y∗
0 + y∗

1 x + y∗
2 x

2 < (p− c)q for all x ≥ q. Let
Δ be the discriminant of the quadratic function y∗

2 x
2+ y∗

1 x+[y∗
0 −(p−c)q]. If c−s

p−s ≥
λ−1
2λ−1 and σ 2 < (x1 − μ)(μ − x0), or else if c−s

p−s < λ−1
2λ−1 and σ 2 < (ω − μ)(μ − x̂0),

then we have

Δ = (y∗
1 )

2 − 4y∗
2 [y∗

0 − (p − c)q] = λ(p − s)2 − (λ−1)(p−s)(p−c)q√
(μ− c−s

p−s q)2+σ 2

< λ(p − s)2 − (λ−1)(p−s)(p−c)q
λ−1
λ

· p−c
p−s q

(from the results 2, 4) = 0.

123



J Optim Theory Appl (2016) 171:1008–1032 1029

SinceΔ < 0 and y∗
2 < 0, the dual feasibility condition is satisfied. Thus the optimality

holds by this pair of solutions.

(2b): Suppose that g(x) tangents the lines l1 and l2. The following proof is similar to
that of (2a).

(2c): Suppose that g(x) tangents l0 and l2. The following proof is similar to that of
(2a).

(2d): Suppose that g(x) intersects l0 at the origin and tangents l1. The following proof
is similar to that of (2a).

(2e): Suppose that g(x) intersects l0 at the origin and g(x) tangents l2. The following
proof is similar to that of (2a).

Secondly, we prove the differentiability of U (q) on [0,+∞]. We denote by U1a(q),
U1b(q), U2a(q), U2b(q), U2c(q), U2d(q), U2e(q), respectively, the tight lower bound
U (q) of cases (1a), (1b), (2a), (2b), (2c), (2d), (2e) in Theorem 3.1.

Since U (q) is a piecewise function made up of seven differentiable cases, we just
need to show the differentiability of adjoining points. We indicate the proof for the
differentiability of the adjoining point between case (1b) and case (2e) only, and the
other proof is similar. From σ 2 = (x̂2(q)−μ)(μ− x̂0(q)), we can get that the adjoining
point between case (1b) and case (2e) is

q̂ = (p−s)(μ2+σ 2)

2μ
[
(p−c)+(λ−1)(c−s)−√

(λ−1)(c−s)((p−c)+λ(c−s))
] .

It is easy to verify that

U1b(q̂) = lim
q→q̂−

U2e(q) = (p−c)μ2−λ(c−s)σ 2

μ2+σ 2 q̂,

and

U
′
1b(q̂) = lim

q→q̂−
U

′
2e(q) = (p−c)μ2−λ(c−s)σ 2

μ2+σ 2 .

Finally, we prove the concavity of U (q) on [0,+∞].
(1a): For any q ≥ 0, we can calculate that

U
′′
1a(q) = −λ(p−s)2(μ2+σ 2)

2(p−c)q3
< 0.

So, U1a(q) is concave on [0,+∞].
(1b), (2a), (2b), (2c): These proofs are similar to that of (1a).
(2d): It is obvious that U2d(q) is a linear function, so U2d(q) is a concave function.
(2e): This proof is similar to that of (2d).

Since the differentiable functionU (q) is a piecewise function made up of seven
concave cases, U (q) is concave on [0,+∞]. ��
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Appendix 2

Proof of Theorem 3.2

(1a): Setting

U
′
1a(q) = (p − c) − [λ(c−s)+(λ+1)(p−c)]2

4λ(p−c) + λ(p−s)2(μ2+σ 2)

4(p−c)q2
= 0,

we can get a positive stationary point

q1a = λ(p − s)

√
μ2+σ 2

(λ(c−s)+(λ+1)(p−c))2−4λ(p−c)2

SinceU1a(q) is concave, argmax
q

U1a(q) = q1a . Thus, if q1a satisfies conditions

(1a), then q∗ = q1a .
(1b): This proof is similar to that of (1a).
(2a): For any q ≥ 0,

U
′
2a(q) = − (λ+1)(c−s)

2

[
1 − (λ−1)(μ− c−s

p−s q)

(λ+1)
√

(μ− c−s
p−s q)2+σ 2

]
< 0.

Obviously,U2a(q) ismonotone decreasing inq on [0,+∞], and argmax
q

U2a(q)

= 0. But q = 0 does not satisfy condition (2a), so q∗ can not be attained under
this case.

(2b): Setting

U
′
2b(q) = (p−c)−(c−s)

2 + (p−s)(μ−q)

2
√

(μ−q)2+σ 2
= 0,

we can get a unique stationary point

q2b = μ + σ
2

(√
p−c
c−s −

√
c−s
p−c

)
.

If μ
σ

<
(c−s)−(p−c)
2(p−c)(c−s) , then q2b < 0. Since U2b(q) is concave, argmax

q
U2b(q) =

0. But q = 0 does not satisfy condition (2b).
If μ

σ
≥ (c−s)−(p−c)

2(p−c)(c−s) , then q2b ≥ 0. Since U2b(q) is concave, argmax
q

U2b(q) =
q2b.
To sum up, if q2b satisfies conditions (2b), then q∗ = q2b.

(2c): This proof is similar to that of (2b).
(2d): It is easy to verify that ifU2d(q) is monotone decreasing in q, argmax

q
U2d(q) =

0. But q = 0 does not satisfy condition (2d), so q∗ can not be attained under
this case.
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(2e): It is obvious that

U2e(q) is monotone increasing in q, if
(

μ
σ

)2
>

λ(c − s)

p − c
,

U2e(q) is monotone decreasing in q, if
(

μ
σ

)2 ≤ λ(c − s)

p − c
.

If
(

μ
σ

)2
>

λ(c−s)
p−c , q∗ can not be attained under this case.

If
(

μ
σ

)2 ≤ λ(c−s)
p−c , then arg max

q∈[0,+∞]U2e(q) = q2e = 0. It is obvious that q2e

satisfies condition (2e), so q∗ = q2e. �

Appendix 3

Proof of Corollary 3.1 Let λ = 1, then c−s
p−s ≥ λ−1

2λ−1 = 0, x0(q) = x1(q) = c−s
p−s q,

x2(q) = (c−s)+2(p−c)
p−s q and q2b = q2c = μ + σ

2

(√
p−c
c−s −

√
c−s
p−c

)
. Furthermore, the

five cases of the robust optimal order quantity q∗ in Theorem 3.2 can reduce to the
following three cases:

(1a): If σ 2 = (x2(q1a) − μ)(μ − x0(q1b)), then q∗ = q1a .
(2b), (2c): If σ 2 < (x2(q2b) − μ)(μ − x1(q2b)), or else if (x2(q2b) − μ)(μ −

x0(q2b)) < σ 2 ≤ (ν(q2b) − μ)(μ − x̂0(q2b)), then q∗ = q2b.
(2e): If

(
μ
σ

)2 ≤ c−s
p−c , then q

∗ = q2e = 0.

Moreover, it is easy to verify that

1.
(

μ
σ

)2
> c−s

p−c ⇒ σ 2 ≤ (ν(q2b) − μ)(μ − x̂0(q2b)).
2. From the result 2 in the proof of Theorem 3.1 (2b), we can get

σ 2 = (x2(q2b) − μ)(μ − x1(q2b)) ⇔ μ = [3(p−c)+(c−s)]σ
2(p−c)

√
c−s
p−c .

3. Substitute μ = [3(p−c)+(c−s)]σ
2(p−c)

√
c−s
p−c into q1a and q2b, we can obtain that

q1a = q2b = (p−s)2σ
2(p−c)

√
(p−c)(c−s)

.

To sum up, from the results 1, 2, 3, we can obtain that

q∗ =
⎧
⎨

⎩

μ + σ
2

(√
p−c
c−s −

√
c−s
p−c

)
, if

(
μ
σ

)2
> c−s

p−c ;
0, if

(
μ
σ

)2 ≤ c−s
p−c .

��
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