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Abstract The formulation of the generalized Nash Equilibrium problem as an evolu-
tionary variational inequality problem is proved in the general setting of quasiconvex
decision functions. An existence result for the time-dependent generalized Nash equi-
librium problem is deduced, and an application to the dynamic electricity market is
also considered.
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1 Introduction

Generalized Nash equilibrium problems (GNEPs) are noncooperative games, where
the strategy of each player depends on the rival players’ strategies. This class of prob-
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lems has gained popularity in recent times because of its capacity tomodel economical
systems [1], routing problems in communication networks [2], and engineering appli-
cations [3]. A survey on GNEP with much historical information is given in [4]. Here,
we aim at studying GNEP in time-dependent context.

In order to study the GNEP and to have an efficient computational process some
reformulation of the GNEP have been given in the literature. But the best situation
corresponds to the case when the GNEP can be reformulated as a variational inequality
problem (VI), thus inheriting all the corresponding theoretical and numerical machin-
ery.

In our present work, we reformulate the time-dependent version of GNEP to a
parametricVI in particular an evolutionary variational inequality problem (EVI)where
the parameter represents physical time. For further introduction to EVI, the readers
are addressed to [5], and to see relationship between the dynamic network equilibrium
problems and EVI, please refer to [6].

Our aim in the paper is, through the reformulation of time-dependent GNEP by
EVI or evolutionary quasivariational inequalities (EQVI), to prove the existence of
a time-dependent equilibrium without assuming any differentiability and, above all,
for quasiconvex decision functions, a very classical and natural hypothesis in mathe-
matical economics. The paper is organized as follows. In Sect. 2, we precisely define
the time-dependent GNEP that we have in scope and motivate our definition by an
application to a dynamic electricity market model. Reformulation by EVI and EQVI
are obtained in Sect. 3 and, in the case of semistrictly quasiconvex cost functions, we
prove an existence result for time-dependent GNEP in Sect. 4.

2 Notation and Motivation Example

2.1 General Setting of Time-Dependent GNEP

Assume that there are p players and each player ν controls variable xν ∈
L2([0, T ],Rnν ). In fact, xν(t) ∈ R

nν is a strategy of the player ν at time t ∈ [0, T ].
The full strategy vector x is thus an element of L2([0, T ],Rn), where n =

∑p

ν=1
nν ,

and thus x(t) is the vector of strategies of all players at a given time t ∈ [0, T ].
We use the notation x−ν ∈ L2([0, T ],Rn−nν ); so that for any t ∈ [0, T ], x−ν(t) ∈
R
n−nν is the vector formed by all players’ decision variables except the player ν at

time t ∈ [0, T ]. So, we can also write

x = (xν, x−ν) ⊆ L2([0, T ],Rn),

which is a shortcut (already used in many papers on the subject; see, e.g., [7,8]), to
denote x = (x1, . . . , xν−1, xν, xν+1, . . . , x p).

Following the pioneering work of Rosen [1], the full strategy vector is chosen in
a common subset K ⊂ L2([0, T ],Rn) and thus the admissible strategy set of each
player is defined as

Kν(x
−ν) = {xν ∈ L2([0, T ],Rnν ) : x = (xν, x−ν) ∈ K }. (1)
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Definition 2.1 Let θν : L2([0, T ],Rn) → R be the cost (or loss) function for the
νth-player. A strategy x̄ ∈ K ⊆ L2([0, T ],Rn) is a time-dependent generalized Nash
Equilibrium if and only if for each player ν, we have x̄ν ∈ Kν(x̄−ν) and

θν(x̄) ≤ θν(x̄
ν, x̄−ν), ∀ xν ∈ Kν(x̄

−ν). (2)

In other words this means that x̄ ∈ K ⊆ L2([0, T ],Rn) is a time-dependent general-
ized Nash equilibrium

if for all ν, x̄ν ∈ L2([0, T ],Rnν ) solves the following optimization problem

Pν(x̄
−ν) min

xν∈Kν (x̄−ν )
θν(x

ν, x̄−ν). (3)

For any given optimal strategy x̄−ν of the rival players, the solution set of problem
Pν(x̄−ν) is denoted by Solν(x̄−ν).

Let us recall that L2([0, T ],Rn) = L2([0, T ],Rnν ) × L2([0, T ],Rn−nν ).
Finally for any subsetC , conv(C) denotes the convex hull ofC while dom f stands

for the domain of the function f .

2.2 A Motivation Example: Dynamic Electricity Market

Let us describe, by a simple example, how the above concept of time-dependent
generalized Nash equilibrium can apply to electricity markets. The deregulation and
privatization of the electricitymarket inmany countries lead to the development of new
models representing them. One classical family of economical models for electricity
markets is based on a Cournot-type formulation, a noncooperative game, in which the
generators compete only with the energy quantities; see, e.g., [9,10].

In this model, the electricity market is supposed to be centralized by an independent
system operator (ISO). Each agent bids a cost of production, which is a function of
time, to the ISO who computes the best response/dispatch in order to minimize the
general cost of production.

In order to simplify the model, we consider an electricity spot market in which the
agents in the markets are only the producers and the inelastic demand at each node
is known. Thus, consider the following electricity network composed of N nodes
(N = {1, . . . , N } being the set of nodes) and assume that at each node in the net-
work there is a unique producer, denoted by ν ∈ N. The considered time period for
production/delivery is [0, T ]. Let us define the following notation:

– Dν ∈ L2([0, T ],R+) is the demand function of electricity at node ν ∈ N.
– qν ∈ L2([0, T ],R+) represents the production function of electricity of producer

ν ∈ N.
– Aν(t)qν(t)+Bν(t)(qν(t))2 is the real cost of power generation for producer ν ∈ N
at time t ∈ [0, T ], where Aν, Bν ∈ L2([0, T ],R+) are the real cost coefficient
functions.
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Fig. 1 Market organization with four producers, i.e., p = 4

In the above notation, R+ denotes the set of nonnegative real numbers.
The spot market is regulated by an ISO. The νth agent provides to the ISO a

time-dependent quadratic bid function described by the parameters aν and bν , ele-
ments of L2([0, T ],R+), and the corresponding bid function is thus aνqν + bν(qν)2.
Then, based on the agent’s bids, the ISO computes the production function qν ∈
L2([0, T ],Rn), for each agent ν, on the period [0, T ] (see Fig. 1).

Then, for the given time t ∈ [0, T ], the ISO computes the set of admissible pro-
ductions qν ∈ L2([0, T ],R). Compare to [10], the thermal losses are neglected
and thus the total demand function on the whole network simply corresponds to
D ∈ L2([0, T ],R+) given by D(t) = ∑

ν Dν(t).
Thus, the ISO, knowing the couple of bid vectors a(t) = (aν(t))ν∈N and b(t) =

(bν(t))ν∈N at t ∈ [0, T ], announced by producers, computes a production vector
q = (qν)ν∈N to minimize the total generation cost in the period [0, T ], that is, to
solve the following optimization problem, denoted by ISO(a, b).

ISO(a, b) minq

N∑

ν=1

∫ T

0

[
aν(t) + bν(t)qν(t)

]
qν(t)dt,

s.t.

⎧
⎪⎨

⎪⎩

N∑

ν

qν(t) ≥ D(t), a.e. in [0, T ]
qν(t) ≥ 0, ∀ ν ∈ N, a.e. in [0, T ].

The solution set of the above optimization problem is denoted by Sol I SO(a, b).
Observe that if the bν are assumed to be positive functions, then the ISO’s prob-
lem is a convex program with a strictly convex objective function and admits a unique
solution. We denote by

Sν(a, b) = {
qν : ∃ q−ν with (qν, q−ν) ∈ SolISO(a, b)

}
.

Clearly the producers cannot act independently from each other in the market, at
least because of the finiteness of the demand. In time interval [0, T ], each pro-
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ducer ν aims to maximize his profit, defined as the difference between the revenue
(aν(t) + 2bν(t)qν(t))qν(t) and the real generation cost Aν(t)qν(t) + Bν(qν(t))2.
But the producer ν has to take into account that the production vector q(t) supplied
by the ISO depends on the bids of the other producers, namely of the bid vectors
a−ν(t) = (a j (t)) j 
=ν and b−ν(t) = (b j (t)) j 
=ν , t ∈ [0, T ]. Therefore, each producer
ν solves the following optimization problem, Pν(a−ν, b−ν)

maxaν ,bν ,qν

∫ T

0

[
(Aν(t) + Bν(t)(qν(t))qν(t) − (aν(t) + 2bν(t)qν(t))qν(t)

]
dt

subject to

⎧
⎨

⎩

aν(t) ∈ [Aν(t), A
ν
(t)], a.e. in [0, T ]

bν(t) ∈ [Bν(t), B
ν
(t)], a.e. in [0, T ]

qν ∈ Sν(a, b), a.e. in [0, T ],

where 0 < Aν(t) ≤ A
ν
(t) and 0 < Bν(t) ≤ B

ν
(t) define the feasible range for the

bids (aν, bν).
This leads us to use the following notation

– x = (a, b, q), xν = (aν, bν, qν), x−ν = (a−ν, b−ν, q−ν),

– θν(x) = ∫ T
0 [(Aν(t) + Bν(t)(qν(t)).qν(t) − (aν(t) + 2bν(t)qν(t))qν(t)] .dt,

– Kν = {(aν, bν) : Aν(t) ≤ aν(t) ≤ A
ν
(t) and

Bν(t) ≤ bν(t) ≤ B
ν
(t), a.e. in [0, T ]},

– Kν(x−ν) = Kν × Sν(aν, ā−ν, bν, b̄−ν).

An equilibrium of the above-described electricity market model is a time-dependent
generalized Nash equilibrium is the sense of (3).

3 Reformulation of Time-Dependent GNEP

3.1 Preliminary Results and Notation

Evolutionary variational inequalities (EVIs), that are time-dependent variational
inequalities, have been extensively used to model mechanical and transportation sys-
tems; see, e.g., [5,11] and the references therein. EVIs are also used in various models
of market equilibrium problems and financial equilibrium problems. For more details,
please see, [12–16].

In this work we will consider a new and broader class of EVI in which the function
is replaced by a set-valued map. Indeed since we will not assume differentiability of
the cost functions of the time-dependent GNEPs, set-valued operators will naturally
enter into the scope as first-order operator.

Let F : L2([0, T ],Rn) ⇒ L2([0, T ],Rn)be a set-valuedmapand K be anonempty
subset of L2([0, T ],Rn). The associated evolutionary variational inequality problem,
denoted by EV I (F, K ), consists of finding an x∗ ∈ K such that there exists a fx∗ ∈
F(x∗) for which

〈〈 fx∗ , y − x∗〉〉 ≥ 0, ∀ y ∈ K , (4)
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where for φ, ψ ∈ L2([0, T ],Rn), we use the notation

〈〈φ,ψ〉〉 =
∫ T

0
〈φ(t), ψ(t)〉 dt,

and 〈., .〉 is the inner product in Rn .

Lemma 3.1 Let C : [0, T ] ⇒ R
n be a set-valued map with nonempty values and

define the subset K of L2([0, T ],Rn) by

K = {x ∈ L2([0, T ],Rn) : x(t) ∈ C(t), a.e. in [0, T ]}. (5)

Let x∗ ∈ K.Then x∗ is a solution of EV I (F, K ) if and only if there exists fx∗ ∈ F(x∗),
with

〈 fx∗(t), y(t) − x∗(t)〉 ≥ 0, ∀ y ∈ K , a.e. in [0, T ]. (6)

Proof Clearly, (4) follows immediately from (6). Next, suppose (6) is not true. Then,
for any fx∗ ∈ F(x∗), there exist ȳ ∈ K and ameasurable set I ⊂ [0, T ]with Lebesgue
measure μ(I ) > 0 such that

〈 fx∗(t), ȳ(t) − x∗(t)〉 < 0, ∀ t ∈ I.

Define a function ŷ : [0, T ] → R
n as

ŷ(t) =
{
x∗(t), t ∈ [0, T ] \ I,
ȳ(t), t ∈ I.

Then, since, a.e. t ∈ [0, T ], x∗(t) and ȳ(t) are elements of C(t), one has ŷ ∈ K ⊆
L2([0, T ],Rn), and

〈〈 fx∗ , ŷ − x∗〉〉 =
∫

t∈[0,T ]\I
〈 fx∗(t), x∗(t) − x∗(t)〉dt

+
∫

t∈I
〈 fx∗(t), ȳ(t) − x∗(t)〉dt < 0

thus completing the proof. ��
Remark 3.1 A simple case of a subset K , defined by (5), is when for any t ∈ [0, T ],
C(t) = [x(t), x̄(t)] with x and x̄ are two given elements of L2([0, T ],Rn). This case
has been considered, e.g., in [6].

Let us end this subsection by providing some definitions and related structures
associated with quasiconvex functions, which shall play an important role in further
discussions.

– A function ψ : L2([0, T ],Rn) → R is said to be quasiconvex if and only if, for
any x, y ∈ L2([0, T ],Rn) and λ ∈ [0, 1], we have

ψ(λx + (1 − λ)y) ≤ max {ψ(x), ψ(y)}.
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– A function ψ : L2([0, T ],Rn) → R is said to be semistrictly quasiconvex if and
only if it is quasiconvex, and for any x, y ∈ L2([0, T ],Rn), such that ψ(x) 
=
ψ(y), and for any λ ∈ (0, 1), we have

ψ(λx + (1 − λ)y) < max {ψ(x), ψ(y)}.

– Given a function ψ : L2([0, T ],Rn) → R and x ∈ L2([0, T ],Rn), the sublevel
set of ψ at x is defined as

Sψ(x) = {u ∈ L2([0, T ],Rn) : ψ(u) ≤ ψ(x)},

and the strict sublevel set of ψ at x by

S<
ψ (x) = {u ∈ L2([0, T ],Rn) : ψ(u) < ψ(x)}.

It is well known that ψ is quasiconvex over L2([0, T ],Rn) if and only if Sψ(x) is
convex set for any x ∈ L2([0, T ],Rn).

3.2 Reformulation as Evolutionary Variational Inequalities

As we have already mentioned earlier, our aim is to prove the existence of time-
dependent Nash equilibrium, and this will be done, in Sect. 4, thanks to a reformulation
of the equilibrium problem in an associated evolutionary variational inequality. This
reformulation, which can be considered as a kind of first-order condition, cannot be
done with classical derivatives since no differentiability assumptions will be made.
On the other hand, since we want to obtain sufficient optimality conditions, subdiffer-
entials are not adapted since our decision functions are not supposed to be convex but
only quasiconvex. Nevertheless, as shown in [17,18], the concept of normal operator
is particularly adapted to this setting.

Given a quasiconvex function ψ : L2([0, T ],Rn) → R, the normal operator is the
set-valuedmap Nψ : L2([0, T ],Rn) ⇒ L2([0, T ],Rn) defined by simply considering
the normal cone to the sublevel set of ψ at the point, that is,

Nψ(x) = {v ∈ L2([0, T ],Rn) : 〈〈v, y − x〉〉 ≤ 0, ∀ y ∈ Sψ(x)}. (7)

As it was shown in [17,18], this normal operator has very nice properties for semi-
strictly quasiconvex functions and even for quasiconvex functions with a more general
definition of adjusted normal operator Na

ψ . See, [19], for a state of art on the normal
operator in quasiconvex optimization. Along this paper only continuous semistrictly
quasiconvex function will be considered, and in this case only the above classical
definition Nψ is needed. Additionally, the operator Nψ inherits the properties of this
adjusted normal operator Na

ψ since they coincide for continuous semistrictly quasi-
convex functions.

The following properties of the normal operatorwill play a central role in the sequel.
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Proposition 3.1 ([19]) Let X be a nonempty subset of L2([0, T ],Rn). Let ψ :
L2([0, T ],Rn) → R be any semistricly quasiconvex function on X.

(i) Nψ is quasimonotone, that is, for any x, y ∈ X and any x∗ ∈ Nψ , y∗ ∈ Nψ ,

〈〈x∗, y − x〉〉>0 ⇒ 〈〈y∗, y − x〉〉 ≥ 0.

(ii) Nψ is nontrivial (i.e., Nψ(x) does not reduce to {0}) on domψ \ argminX ψ .

In the context of generalized Nash equilibrium problems, an adaptation of the
definition of normal operator has to be considered and followed, mainly on the lines
of [20]. Let x ∈ L2([0, T ],Rn).

– Sν(x) = Sθν(·,x−ν )(x
ν) = {uν ∈ L2([0, T ],Rnν ) : θν(uν, x−ν) ≤ θν(x)},

– S<
ν (x) = S<

θν(·,x−ν )
(xν) = {uν ∈ L2([0, T ],Rnν ) : θν(uν, x−ν) < θν(x)},

– Aν(x−ν) = argminxν∈L2([0,T ],Rnν )θν(x
ν, x−ν).

– Nθν : L2([0, T ],Rnν ) ⇒ L2([0, T ],Rnν ) stands for the normal operator of the
quasiconvex function θν(·, x−ν) at xν , that is,

Nθν (x
ν) = {gν ∈ L2([0, T ],Rnν ) : 〈〈gν, uν − xν〉〉 ≤ 0, ∀ uν ∈ Sν(x)}.

– LetBν(0, 1) be the closed unit ball in L2([0, T ],Rnν ). The set-valued map Fν is
defined from L2([0, T ],Rnν ) to L2([0, T ],Rnν ) by

Fν(x
ν) =

{
Bν(0, 1) , if xν ∈ Aν(x−ν),

Nθν (x
ν) \ {0} , otherwise.

Let us observe that this map is nonempty and convex-valued.
– Define the set-valued map Nθ : L2([0, T ],Rn) ⇒ L2([0, T ],Rn) such that, for

any x ∈ L2([0, T ],Rn), (given
p∑

ν=1

nν = n), we have,

Nθ (x) =
p∏

ν=1

Fν(x
ν). (8)

Now, following the same line as in Theorem 4.1 of [20], we can obtain a sufficient
optimality condition for the GNEP (3) in terms of evolutionary variational inequality.

Theorem 3.1 Let, for any ν, the function θν be continuous and semistrict quasiconvex
with respect to the ν-th variable. Assume that K is a nonempty subset of L2([0, T ],Rn)

and that the subsets Kν(x−ν) are defined by (1).
Then every solution of EV I (Nθ , K ) is a time-dependent generalized Nash equi-

librium of (3).
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Proof Let x∗ ∈ K ⊆ L2([0, T ],Rn) be a solution of EV I (Nθ , K ). If x∗ is not a
solution of the GNEP, then there exist ν̄ and a strategy vector x̃ ν̄ ∈ K ν̄ (x∗−ν) ⊆
L2([0, T ],Rnν̄ ) such that

θν̄(x̃
ν̄ , x∗−ν̄

) < θν̄(x
∗).

Moreover, θν(·, x∗−ν) is continuous and semistrictly quasiconvex, and thus x̃ ν̄ ( 
=
x∗ν̄ ) ∈ int (S<

ν̄ (x∗)). Consequently, for any φν̄ ∈ Nθν̄
(x∗ν̄ ) \ {0}, we have

〈〈φν̄, x̃ ν̄ − x∗ν̄〉〉 < 0.

Define ŷ : [0, T ] → R
n such that

ŷ(t) =
{
ŷν(t) = x∗ν(t), ν 
= ν̄,

ŷν(t) = x̃ ν̄ (t), ν = ν̄.

Then, ŷ ∈ K ⊆ L2([0, T ],Rn), and for any φ = (φν)
p
ν=1 ∈ Nθ (x∗), we have

〈〈φ, ŷ − x∗〉〉 < 0,

which contradicts that x∗ ∈ K is the solution of EV I (Nθ , K ). The requisite result
follows. ��

3.3 Reformulation as Evolutionary Quasivariational Inequalities

A natural question is whether a time-dependent generalized Nash equilibrium is
also a solution of the associated evolutionary variational inequality problem? Such
a necessary condition is proved in this section but using the concept of evolutionary
quasivariational inequality.

Given two set-valued maps F : L2([0, T ],Rn) ⇒ L2([0, T ],Rn) and K :
L2([0, T ],Rn) ⇒ L2([0, T ],Rn), an evolutionary quasivariational inequality associ-
ated with these maps, denoted by EQV I (F,K), consists of finding an x∗ ∈ K(x∗)
such that there exists a fx∗ ∈ F(x∗) satisfying

〈〈 fx∗ , y − x∗〉〉 ≥ 0, ∀ y ∈ K(x∗), (9)

or in other words,

∫ T

0
〈 fx∗(t), y(t) − x∗(t)〉 dt ≥ 0, ∀ y ∈ K(x∗).

Theorem 3.2 Let n =
p∑

ν=1

nν . Let x∗ ∈ K ⊆ L2([0, T ],Rn) be a solution of the

time-dependent GNEP (3), and the following assumption holds
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(i) K is a nonempty and convex subset of L2([0, T ],Rn);
(ii) For any ν, the decision function θν are continuous and semistrictly quasiconvex

with respect to the ν-th variable;
(iii) the mapK : L2([0, T ],Rn) ⇒ L2([0, T ],Rn) is defined by the Rosen’s law, that

is, K(x∗) =
∏p

ν=1
Kν(x

∗−ν
), where Kν(x∗−ν) = {xν : x = (xν, x∗−ν) ∈ K }.

Then, x∗ is a solution of the EQV I (Nθ ,K).

Proof We need to show that there exists a fx∗ ∈ Nθ (x∗) such that

〈〈 fx∗ , y − x∗〉〉 ≥ 0, ∀ y ∈ K(x∗).

Now, if x∗ν ∈ Aν(x∗−ν), ∀ ν, then 0 ∈ Fν(x∗), ∀ ν. Hence, considering fx∗ = 0 ∈
Nθ (x∗). Then, x∗ will be the solution of EQV I (Nθ ,X ).

Otherwise, since x∗ is a solution of the GNEP (2), then for each ν, we have

θν(x
∗) ≤ θν(x

ν, x∗−ν
), ∀ xν ∈ Kν(x

∗−ν
). (10)

Note that under assumption (i i), for each ν, the subset Sν(x∗) is closed and convex
with a nonempty interior (since x∗ν ∈ Aν(x∗−ν) and θν(·, x−ν) is continuous) where,

int(Sν(x
∗)) = {uν ∈ L2([0, T ],Rnν ) : θν(u

ν(t), x∗−ν
) < θν(x

∗ν
, x∗−ν

)}.

Hence, since x∗ is a solution of the GNEP (2), (10) yields

int(Sν(x
∗)) ∩ Kν(x

∗−ν
) = ∅. (11)

And because of (i), Kν(x∗−ν) = {xν : (xν, x∗−ν) ∈ K } is a convex set. Therefore,
by the separation theorem in the Hilbert space L2([0, T ],Rnν ) (see, e.g., [21, Theorem
5.67]), there exists a non zero hν ∈ L2([0, T ],Rnν ) such that

inf
yν∈Kν (x∗−ν )

〈〈hν, yν〉〉 ≥ sup
xν∈ int(Sν (x∗))

〈〈hν, xν〉〉,

which implies

〈〈hν, xν − yν〉〉 ≤ 0, ∀ yν ∈ Kν(x
∗−ν

), ∀ xν ∈ int(Sν(x
∗)). (12)

Note that the sets involved in (11) depend on x∗. So, the separating function hν

also depends on x∗.
Let yν = x∗ν ∈ Kν(x∗−ν). We have,

〈〈hν, xν − x∗ν〉〉 ≤ 0, ∀ xν ∈ int(Sν(x
∗)).

Since Sν(x∗) is convex, the same inequality holds for any xν in Sν(x∗). Thus hν is an
element of Nθν (x

∗ν), and consequently it is an element of Fν(x∗).
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Again from (12), for any ν, we have

〈〈hν, yν − xν〉〉 ≥ 0, ∀ yν ∈ Kν(x
∗−ν

), ∀ xν ∈ int(Sν(x
∗)).

By continuity of inner product and the fact that x∗ν ∈ Sν(x∗), for any ν, we have

〈〈hν, yν − x∗ν〉〉 ≥ 0, ∀ yν ∈ Kν(x
∗−ν

).

Let us now construct h = (hν)
p
ν=1 ∈ Nθ (x∗). Then, for any y ∈ K(x∗), we have

〈〈h, y − x∗〉〉 =
p∑

ν=1

〈〈hν, yν − x∗ν〉〉 ≥ 0,

yielding x∗ is a solution of EQV I (Nθ ,K).

4 Existence of Time-Dependent Equilibrium

Although the decision functions θν in our electricity market example is differentiable,
it is not always the case in general. We can find time-dependent generalized Nash
equilibrium where the decision functions are not differentiable. For example, this may
happen when a single producer owns several generation units with different marginal
costs thus generating a discontinuous overall marginal cost function; this case has
been presented by Anderson and Xu in [22]. One can see some other examples on
non differentiable decision functions (e.g., the thesis of Martinez [23]) for further
references.
Note also that there is no reason for the objective functions of the players to be convex
or pseudoconvex. As shown in [10], the difference of the quadratic convex functions
can eventually be proved to be (semistrictly) quasiconvex but under quite restrictive
assumptions.

Our aim in this section is to prove the existence of a time-dependent generalized
Nash equilibrium for problem (3) under semistrictly quasiconvex hypothesis on the
decision functions θν without assuming any differentiability of the cost functions.
This will be obtained as a consequence of an existence result for quasimonotone
evolutionary variational inequality (forthcoming Theorem 4.1) combined with the
reformulation statement of Sect. 3.2 (Proposition 3.1).

Let us first recall some definitions for set-valued map. A set-valued map F :
L2([0, T ],Rn) ⇒ L2([0, T ],Rn) is said to be:

– quasimonotone if for any fx ∈ F(x)

〈〈 fx , y − x〉〉 > 0 ⇒ 〈〈 fy, y − x〉〉 ≥ 0, ∀ fy ∈ F(y).

– upper semicontinuous at the point y ∈ K ⊂ L2([0, T ],Rn) if, for any open
neighborhood W of F(y), there exists a neighborhood U of y such that, for all
x ∈ U , we have F(x) is a subset of W .
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– locally upper semicontinuous on a subset K of L2([0, T ],Rn) if, for any u ∈ K ,
there exists an open neighborhood Vu of u and a set-valued map Su : Vu ⇒
L2([0, T ],Rn) which is upper semicontinuous on Vu with nonempty convex and
w∗-compact values and satisfying Su(v) ⊂ F(v), for all v ∈ Vu .

Theorem 4.1 Let K ⊆ L2([0, T ],Rn) be a nonempty compact and convex set defined
by (5). Let the set-valued map F : L2([0, T ],Rn) ⇒ L2([0, T ],Rn) be quasi-
monotone, convex-valued, and locally upper semicontinuous on K . Then, EV I (F, K )

has a solution.

Proof The following proof is inspired from the one presented in Theorem 2.1 in [24].
Define φ : K × K → R such that

φ(x, y) = inf
f ∈F(x)

〈〈 f, x − y〉〉, ∀ x, y ∈ K .

Observe φ(x, ·) is a continuous and concave function relative to y. Moreover, for all
x ∈ K , the subset {y ∈ K : φ(x, y) ≥ 0} is compact since K is compact.
Case 1: If φ is a KKM-application on K (that is, for all x1, x2, . . . , xn ∈ K and for all
x ∈ conv{x1, x2, . . . , xn}, there exists i ∈ {1, 2, . . . , n} such that φ(xi , x) ≥ 0) then,
using a KKM Lemma, there exists x∗ ∈ K such that

φ(x, x∗) ≥ 0, ∀ x ∈ K .

Therefore, for all f ∈ F(x), we have

〈〈 f, x − x∗〉〉 ≥ 0, ∀ x ∈ K .

By Lemma 3.1, we have

〈 f (t), x(t) − x∗(t)〉 ≥ 0, ∀ x ∈ K , a.e. in [0, T ]. (13)

Case 2: Suppose φ is not a KKM-application. Then, there exist a family x1, x2, . . . , xn
∈ K and an element x∗ of conv{x1, x2, . . . , xn} such that

φ(xi , x
∗) < 0, ∀ i = 1, . . . , n,

that is, for all i = 1, . . . , n, there exists fxi ∈ F(xi ), such that

〈〈 fxi , x∗ − xi 〉〉 > 0.

By Lemma 3.1, we have 〈 fxi (t), x∗(t) − xi (t)〉 > 0 a.e. in [0, T ]. Hence, for some
ρ > 0 and for all z ∈ B(x∗, ρ) ∩ K , we have

〈 fxi (t), z(t) − xi (t)〉 > 0 a.e. in [0, T ].
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By quasimonotonicity of F(xi ), for all z ∈ B(x∗, ρ) ∩ K , and for all fz ∈ F(z), we
have

〈 fz(t), z(t) − xi (t)〉 ≥ 0, a.e. in [0, T ], ∀ i = 1, . . . , n.

Since x∗ ∈ conv{x1, x2, . . . , xn}, therefore

〈 fz(t), z(t) − x∗(t)〉 ≥ 0, a.e. in [0, T ]. (14)

Combining (13) and (14), for all z ∈ B(x∗, ρ) ∩ K and for all fz ∈ F(z),

〈 fz(t), z(t) − x∗(t)〉 ≥ 0, a.e. in [0, T ].

Let x ∈ K be such that x 
= x∗. Then, there exists a λ0 > 0 such that zλ =
x∗ + λ(x − x∗) ∈ B(x∗, ρ) ∩ K , for all λ ∈ (0, λ0), so that, for all fzλ ∈ F(zλ), we
have

〈 fzλ(t), x(t) − x∗(t)〉 ≥ 0, ∀ λ ∈ (0, λ0), a.e. in [0, T ]. (15)

Let us now define an open (convex) set

Wx = {g ∈ L2([0, T ],Rn) : 〈g(t), x(t) − x∗(t)〉 < 0, a.e. in [0, T ]}.

If F(x∗) ⊂ Wx , then by locally upper semicontinuity of F , for x∗ ∈ K , there exists an
open neighborhood Vx∗ of x∗ and a map Sx∗ : Vx∗ ⇒ L2([0, T ],Rn), which is upper
semicontinuous on Vx∗ , such that Sx∗(v) ⊂ Wx for every v ∈ Vx∗ . Consequently, for
anyλ sufficiently close to 0, we have Sx∗(zλ) ⊂ Wx , which contradicts (15). Hence, for
any x ∈ K , there exist fx∗ ∈ Sx∗(x∗) and an open interval I ⊂ [0, T ] with Lebesgue
measure μ(I ) > 0 such that

〈 fx∗(t), x(t) − x∗(t)〉 ≥ 0, ∀ t ∈ I.

Therefore, for any x ∈ K ,

sup
fx∗∈Sx∗ (x∗)

〈 fx∗(t), x(t) − x∗(t)〉 ≥ 0, ∀ t ∈ I,

which implies

min
x∈K sup

fx∗∈Sx∗ (x∗)
〈 fx∗(t), x(t) − x∗(t)〉 ≥ 0, ∀ t ∈ I.

Taking into account that K is compact and convex subset of L2([0, T ],Rn) and Sx∗(x∗)
is convex set, by the classical Sion minimax theorem

sup
fx∗∈Sx∗ (x∗)

min
x∈K 〈 fx∗(t), x(t) − x∗(t)〉 ≥ 0, ∀ t ∈ I.
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Since, Sx∗(x∗) is compact, there exists fx∗ ∈ F(x∗) (independent of the element
x ∈ K ) such that

min
x∈K〈 fx∗(t), x(t) − x∗(t)〉 ≥ 0, ∀ t ∈ I.

This yields 〈 fx∗(t), x(t)−x∗(t)〉 ≥ 0,∀x ∈ K , t ∈ I . Define a function x̄ : [0, T ] →
R
n as

x̄(t) =
{
x(t), t ∈ [0, T ] \ I,
x∗(t), t ∈ I.

Note that x̄ ∈ K ⊆ L2([0, T ],Rn). Then, for any fx̄ ∈ F(x̄), we have

〈〈 fx̄ , x − x̄〉〉 =
∫

t∈I
〈 fx∗(t), x(t) − x∗(t)〉 dt ≥ 0, ∀ x ∈ K .

Hence x̄ ∈ K ⊆ L2([0, T ],Rn) is solution of EV I (F, K ). ��

Let us now end this section with an existence result for our original problem, that
is, the time-dependent generalized Nash equilibrium problem (3). This last existence
result, the forthcoming Corollary 4.1, is actually a consequence of the combination
of the above Theorem 4.1 with the following local continuity property of the normal
operator map Nθ defined in (7) for any quasiconvex function and in (8) for a collection
of decision functions (θ1, . . . , θp) of a time-dependent GNEP.

Proposition 4.1 (i) If ψ : L2([0, T ],Rn) → R is a continuous semistrictly quasi-
convex function and K is a set of L2([0, T ],Rn) such that K ∩argminL2([0,T ],Rn)

ψ = ∅, then Nψ is locally upper semicontinuous on K .
(ii) Assume that all the decision functions θν :L2([0, T ],Rn) → R are continuous

and semistrictly quasiconvex in the ν-variable xν , that K is a nonempty convex
and compact subset of L2([0, T ],Rn) and that the constraint sets Kν are defined
by (1). If

∀ x ∈ K , ∀ ν, Kν(x
−ν) ∩ arg min

L2([0,T ],Rn)
θν(·, x−ν) = ∅.

Then, the normal operator Nθ is locally upper semicontinuous on K

Remark 4.1 Even if it is developed for static (time-independent) models of electricity
market, it is interesting to notice that the assumption (i i) (semistrict quasiconvexity of
the objective function and convexity and compactness of the constraint set) in the above
proposition has been proved to be verified for a spot market model developed in [10]
and the adjustmentmarket treated in [25,26].Moreover, the fact that the constraintmap
K defined by (1) comes, in electricity market models, from the fact that the quantity
vector q = (q1, . . . , q p) is solution of the ISO’ problem shared by all producers.
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Proof (i) Since ψ is continuous and K ∩ argminX ψ = ∅ then, for every x ∈ K
there exists y ∈ X such that ψ(y) < ψ(x) and int(Sψ(y)) 
= ∅. Again, since
K ∩ argminX ψ = ∅ and ψ is semistrictly quasiconvex, Nψ and its adjusted
operator Na

ψ coincide on K . Therefore, according to Proposition 3.5 of [17], Nψ

is norm-to-weak cone upper semicontinuous on K (see precise definition in [17]).
Nowcombiningwith Proposition 2.2 of [17], Nψ is locally upper semicontinuous
on K , since this map has nonempty cone convex values. Actually from the proof
of [17, Prop.3.5] one can choose the suboperator map Su of Nψ such that, for
any u and any v in a neighborhood of u, Su(v) is a compact base of the cone
Nψ(v).

(i i) The locally upper semicontinuity of the set-valued map Nθ on the space
L2([0, T ],Rn) = ∏p

i=1 L
2([0, T ],Rnν ) is a consequence of (i) and the cal-

culus properties of upper semicontinuous maps, see, e.g., [27].
��

Now combining Theorem 4.1, Proposition 3.1 and Proposition 4.1, we have the
following existence result for time-dependent generalized Nash equilibrium problem
(3).

Corollary 4.1 Assume that each decision functions θν : L2([0, T ],Rn) → R is
continuous and semistrictly quasiconvex in the ν-variable and that K is a nonempty
convex and compact subset of L2([0, T ],Rn) defined by (5) and that the constraint
sets Kν are defined by (1). If

∀ x ∈ K , ∀ ν, Kν(x
−ν) ∩ arg min

L2([0,T ],Rn)
θν(·, x−ν) = ∅.

Then, the time-dependent generalized Nash equilibrium problem (3) admits at least a
solution.

Let us observe that in [6] the existence result for time-dependent GNEP has been
obtained under the assumption that the cost functions θν are pseudoconvex and con-
tinuously differentiable.

5 Conclusions

In this work, we defined, in L2([0, T ],Rn), a concept of the time-dependent gener-
alized Nash equilibrium problem. Using normal operator techniques, a reformulation
in terms of an evolutionary variational inequality is proposed and an existence result
for the time-dependent GNEP is proved with quasiconvex cost functions.

Our proofs use the properties of the Hilbert space L2([0, T ],Rn) in which the
decision variables are chosen. This space allows us to consider step cost functions as
well as piecewise linear or quadratic cost functions thus covering the classical cases
for the bid functions in electricity markets. But one can also define a similar concept
as in (3) for time-dependent generalized Nash equilibrium with decision variables in
L∞([0, T ],Rn). Nevertheless, the proofs should have to be reconsidered since there is
no simple separation theorem in such a space, an important tool for our reformulation.
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