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Abstract In this paper, we develop an output diffusion model in which a monopoly
firm faces a cost of adjusting output over time and across geographic regions. First, we
investigate a dynamic monopoly model and a simple spatial model with only regional
adjustment costs. Then, we explore how the firm maximizes profits over time and
space, a calculus of variation problem. The Euler equation yields a partial differential
equation which forms our output diffusion model. It extends the traditional inter-
temporal output path into output diffusion over time and space. As long as regional
adjustment costs exist, steady-state output in the diffusion model is less than the static
monopoly output level. This model suggests that a policy designed to lower regional
adjustment costs can increase supply in all geographic regions.
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1 Introduction

When demand or cost conditions are interconnected over time, a firm will take a
dynamic approach to identify its optimal level of production. Dynamic models with
these characteristics are well known and are reviewed in Tirole [1] and Tremblay and
Tremblay [2].

A dynamic environment can result from inertia, which arises when a firm is unable
to instantaneously adjust output to a change in market conditions. Inertia can occur for
technological reasons. For example, an increase in production may require additional
capacity that takes time to put into place. Several papers have addressed dynamic
settings that are caused by inertia. Examples include those by Fisher [3], Driskill
and McCafferty [4], and Dockner [5], who consider deterministic versions of output
determination over time. Youn and Tremblay [6] extend these models to consider a
dynamic model with a stochastic component that is described by Brownian motion.

In this paper, we propose that if a firm supplies output to different locations of the
country, then there can be geographic inertia as well as inertia over time. Geographic
inertia can arise because of logistical problems that make it costly to adjust output
across locations. We develop a dynamic monopoly model where the firm faces a cost
of adjusting output spatially as well as inter-temporally. In this setting, the firm’s goal
is to choose the optimal level of output over time for each geographic region.

In Sect. 2, we review the dynamic monopoly model. This model is well known
in the literature and is used as a building block for our ultimate model, but ignores
geography. Then, we develop a static spatial model. To our knowledge, this is the first
monopoly model with this type of spatial component. In Sect. 3, we reach our ultimate
goal of synthesizing the two previous models into one that has both time and spatial
dimensions. We call this a diffusion model. In Sect. 4, we provide a brief conclusion
and discussion of policy implications.

2 Dynamic and Spatial Models

First, we consider a dynamic monopoly model that derives from Driskill and McCaf-
ferty [4] and Dockner [5]. The firm’s inverse demand is p (t) = 1

4 −q (t), where p (t)
is price and q (t) is output in period t . Production costs are normalized to zero for
convenience.

There is an adjustment cost of changing output over time. This cost increases
quadratically with the change in output and is defined as A (t) = k (qt )2, where

qt = dq(t)
dt and k is the time adjustment cost parameter, 0 < k < ∞.

At t = 0, the firm starts with q (0) = 0. The firms’ goal is to choose a production
plan that maximizes the economic value of the firm, the present value of its stream of
profits:

maxq(t) ∫∞
0 e−r t

{[
1

4
− q (t)

]
q (t) − k (qt )

2
}
dt, (1)
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where r(> 0) is the interest rate.
This is a calculus of variation problem in q (t). According to Kaimen and

Schwartz [7], the solution must satisfy Euler’s equation:

∂F

∂q
= d

dt

(
∂F

∂qt

)
,

where F (t, q (t) , qt ) = e−r t
{[ 1

4 − q (t)
]
q (t) − kq2t

}
, or

qtt − rqt − 1

k
q (t) = − 1

8k
. (2)

The equation has the solution of q∗ (t, k) = 1
8 (1− eαt ) where α = 1

2

(
r −

√
r2 + 4

k

)

< 0.
The dynamic output path increases gradually over time from 0 to the steady-state

value 1
8 , the static monopoly output level. It is the adjustment cost that prevents the

firm from reaching the static monopoly output in finite time.
Next, we develop a spatial monopoly model that ignores time. Each consumer’s

geographic location is identified by x ∈ [0, 1]. The density of consumers at location
x is described by g (x). Consumers have unit demands, so that the demand at location
x is identified by the number of consumers at that location. The demand is assumed
to be greatest at the center and diminish in more outlying areas. The inverse demand
function is p (x) = g (x)−q (x), where p (x) is price and q (x) is output at location x .
It implies that the firm may charge a different price in each location due to differences
in demand. We assume that consumers cannot relocate despite differences in prices
across regions. Migration frictions or strong location preferences prevent consumers
from moving from one location to another.

The firm faces a logistical cost of adjusting output from one neighboring location
to another. This spatial adjustment cost is assumed to grow with the size of the change

in output. This adjustment cost is A (x) = ν (qx )2 , where qx = dq(t)
dx and ν is the

spatial adjustment cost parameter, 0 < ν < ∞.
The firm’s problem is to maximize its profits with respect to the output it sells in

each location:

maxq(x) ∫10
{
[g (x) − q (x)] q (x) − ν (qx )

2
}
dx, (3)

subject to the assumption that q (0) = q (1) = 0. As before, according to Kaimen and
Schwartz [7], the solution must satisfy Euler’s equation:

∂F

∂q
= d

dx

(
∂F

∂qx

)
,
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where F (q (x) , qx ) = [g (x) − q (x)] q (x) − ν(qx )2, or

qxx + q (x) = 1

2
g (x) , q (0) = q (1) = 0. (4)

Equation (4) describes a boundary value problem with a forcing term, g (x) which is
the geographic demand function. For simplicity, we take g (x) = x − x2, a concave
function in [0, 1] that reaches amaximum at x = 1

2 . This specification is in accordance
with our earlier assumptions about demand and satisfies the boundary value constraint
with g (0) = g (1) = 0.

Theorem 2.1 Let g (x) = x − x2 and m = 1√
ν
. The optimal output q∗ (x,m) by

region is the solution of Eq. (4) which is given by:

q∗ (x,m) = 1

m2

⎡
⎣cosh

(
m(1−2x)

2

)
cosh

(m
2

) − 1

⎤
⎦+ 1

2
g (x) . (5)

Proof The solution equation of (4) can be expressed as q∗ (x,m) = a1 cosh (mx) +
a2 sinh (mx) − 1

2 x
2 + 1

2 x − 1
m2 , and the boundary condition of q (0) = q (1) = 0

shows thata1 = 1
m2 anda2 = 1

m2
(1−cosh(m))

sinh(m)
.Using hyperbolic trigonometric identities

(Table 6.12 on p. 522 in Finny et al. [8]), q∗ (x,m) can be simplified further, yielding

q∗ (x,m) = 1
m2

{
cosh

(
m(1−2x)

2

)
cosh(m

2 )
− 1

}
+ 1

2g (x). ��

Note that as long as m is finite (or equivalently ν > 0), q∗ (x,m) is less than
the simple static monopoly level of output, 1

2g (x), which follows from the fact that

cosh
(
m(1−2x)

2

)
< cosh

(m
2

)
when 0 < x < 1. The properties of the spatial equilib-

rium output q∗ (x,m) are listed next.

Theorem 2.2 Assume that the conditions of Theorem 2.1 hold. Then,

(a) 0 < q∗ (x,m) < 1
2g (x) for all 0 < x < 1 and q∗ (x,m) is symmetric with

respect to x = 1
2 ,

(b) q∗ (x,m) → 1
2g (x) when m → ∞ (or equivalently ν → 0),

(c) q∗ (x,m) → 0 when m → 0 (or equivalently ν → ∞),

(d) ∂
∂x q

∗ ( 1
2 ,m

) = 0 and ∂2

∂x2
q∗ (x,m) < 0 for all m > 0 and 0 < x < 1,

(e) ∂
∂m q

∗ (x,m) > 0 for all 0 < x < 1 and for all m > 0.

Proof The upper bound and symmetry of q∗ (x,m) in (a) are obvious. To prove pos-
itivity of (a), we replace q∗ (x,m) by q∗ (x) and argue by contradiction. If there is
some interior point where q∗ (x) is negative or zero, then there is also an interior point
x̄ at which q∗ achieves its nonpositive minimum:

q∗ (x̄) = minx∈(0,1) q∗ (x) for some 0 < x̄ < 1. By the StrongMaximum Principle
(Theorem 4 on p. 333 in Evans [9]), q∗ must be constant in (0, 1). If q∗ (x̄) < 0, this
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contradicts that q∗ (0) = q∗ (1) = 0. If q∗ (x̄) = 0, then q∗ (x) = 0 for all x , but this
leads to a contradiction as well.

The proof of (b) and (d) is obvious, and (c) follows from a repeated application
of l’Hospital’s rule in (5). Again we use the Strong Maximum Principle to prove (e).

Recall thatm = 1√
ν
, and therefore, Q∗ (x, ν) = q∗

(
x, 1√

ν

)
solves (4). Consequently,

the partial derivative Q∗
ν solves the following boundary value problem:

− ν
(
Q∗

ν

)
xx + Q∗

ν = Q∗
xx , Q∗

ν (0) = Q∗
ν (1) = 0. (6)

We claim that Q∗
ν (x) < 0 for all 0 < x < 1. First, Q∗

xx = q∗
xx < 0 if 0 <

x < 1 by (d), making the right-hand side of (6) negative in (0, 1). If the claim were
false, then there would be some interior point where Q∗

ν is positive or zero. But then
there is also an interior point x̄ at which Q∗

ν achieves its nonnegative maximum:
Q∗

ν (x̄) = maxx∈(0,1) Q∗
ν (x) for 0 < x < 1. By the Strong Maximum Principle, Q∗

ν

must be constant in (0, 1). If Q∗
ν (x̄) > 0, this contradicts Q∗

ν (0) = Q∗
ν (1) = 0. If

Q∗
ν (x̄) = 0, then Q∗

ν (x) = 0 for all x , but this leads to a contradiction. The claim
finally implies ∂

∂m q
∗ (x,m) > 0 because m is related inversely with ν. ��

The spatial equilibriumq∗ (x,m) is symmetric, positive, concave in x for anym > 0
and achieves a unique maximum at x = 1

2 . In this case, at each location q∗ (x,m) is
proportional to the competitive or efficient level of output, g (x) = x − x2.

When m → ∞ (or equivalently ν → 0), the optimal output approaches the simple
static monopoly output level, 1

2g (x). Without regional adjustment costs, the sim-
ple static monopoly level of output is profit maximizing. On the other hand, when
m → 0 (or equivalently ν → ∞), the optimal output collapses to 0 everywhere. It

is found that ∂
∂ν
q∗
(
x, 1√

ν

)
< 0 when 0 < x < 1, which implies that optimal output

decreases monotonically everywhere from 1
2g (x) to zero when regional adjustment

costs increase from zero to infinity.

3 The Output Diffusion Model Over Time and Space

We synthesize the previous models to create a monopoly model with both time and
spatial components. We call this a diffusion model. In this case, price, output, and
inverse demand depend upon both time and geographic location: p (t, x) = g (x) −
q (t, x).As before, output is always 0 at the extremevalues of x ,q (t, 0) = q (t, 1) = 0.
In addition, output is zero initially,q (0, x) = 0 for all x . The total adjustment cost is the
sum of the time and spatial adjustment cost components, A (t, x) = k (qt )2+ν (qx )2 ,

where k and ν are positive and represent the respective adjustment cost parameters
over time and location.

At t = 0, the monopolist’s goal is to choose an output plan for each period and
geographic location that maximizes total discounted profits:

maxq(t,x) ∫∞
0 ∫10 e−r t

[
{g (x) − q (t, x)} q (t, x) − k (qt )

2 − ν (qx )
2
]
dxdt, (7)

given that 0 < r, k < ∞ and 0 < ν < ∞, and q (0, x) = q (t, 0) = q (t, 1) = 0.
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According to Kaimen and Schwartz [7], the solution must satisfy Euler’s equation:

∂F

∂q
= d

dt

(
∂F

∂qt

)
+ d

dx

(
∂F

∂qx

)
,

where F (t, q (t, x) , qt , qx ) = e−r t
[{g (x) − q (t, x)} q (t, x) − k (qt )2 − ν(qx )2

]
,

or

− νqxx − kqtt + rkqt +q (x, t) = 1

2
g (x) , q (0, x) = q (t, 0) = q (t, 1) = 0. (8)

This partial differential equation identifies how output evolves over time and across
regions when there are inter-temporal and spatial adjustment costs.

Theorem 3.1 Again, let g (x) = x−x2 andm = 1√
ν
. The solution of Eq. (8) identifies

optimal output over time for each location:

q∗ (t, x, k,m) =
∞∑
n=1

cne
αn t sinnπx + q∗ (x,m) , (9)

where the steady-state level of output is q∗ (x,m) from Theorem 2.1, cn = 0 when

n is even, and cn = −4
[

1
(nπ)3

− 1
m2nπ+(nπ)3

]
< 0 when n is odd, and αn = 1

2(
r −

√
r2 + 41+n2π2m2

k

)
< 0, n = 1, 2, 3, . . ..

Proof A particular solution of (8) which depends only on space but not time satisfies
the following equation:

− νqxx + q (x) = 1

2

(
−x2 + x

)
, q (0) = q (1) = 0. (10)

The solution of Eq. (10) is q∗ (x,m); see (5) in Theorem 2.1. Now, we look for the
solution of the homogeneous equation associated with (8):

− νqxx − kqtt + rkqt + q (t, x) = 0, q (0, x) = q (t, 0) = q (t, 1) = 0. (11)

This problem can be solved using the method of separation of variables, yielding:

q (t, x) =
∞∑
n=1

cnqn (t, x) =
∞∑
n=1

cne
αn t sinnπx,

where

αn = 1

2

⎛
⎝r −

√
r2 + 4

1 + n2π2m2

k

⎞
⎠ for all n = 1, 2, 3, .... (12)
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Putting together the particular solution and the homogeneous solution, we obtain
the solution of (8):

q∗ (t, x, k,m) =
∞∑
n=1

cne
αn t sinnπx + q∗ (x,m) . (13)

To find the cn , we invoke the initial condition in (8):

q∗ (0, x, k,m) =
∞∑
n=1

cnsinnπx + q∗ (x,m) = 0, or
∞∑
n=1

cnsinnπx = −q∗ (x,m) .

(14)

Using Fourier series, we obtain:

cn = 2 ∫10 −q∗ (x,m) sinnπxdx, n = 1, 2, 3, . . . . (15)

We substitute (5) in (15) and compute cn by integration by parts to see:

cn = 0 when n is even, and cn = −4

[
1

(nπ)3
− 1

m2nπ + (nπ)3

]
when n is odd.

(16)

This concludes the proof. ��
From (9), we note that q∗ (t, x, k,m) contains an inter-temporal term,∑∞
n=1 cne

αn t sinnπx and a spatial term, q∗ (x,m). Also, q∗ (t, x, k,m) in (9) is sym-
metric at x = 1

2 since both of the following are symmetric at x = 1
2 : q

∗ (x,m) and
sinnπx when n is an odd number. We can now prove that q∗ (t, k, x,m) converges
to q∗ (x,m) in the spatial model as time goes to infinity and is nonnegative for all
periods in the interval [0, 1].

Theorem 3.2 Assume that the conditions of Theorem 3.1 hold. Then, q∗ (t, x, k,m)

converges to q∗ (x,m) as t → ∞ for all 0 ≤ x ≤ 1, and all k,m > 0.

Proof For convergence, it is sufficient to show that the time component of∑∞
n=1 cne

αn t sinnπx converges to 0. We derive the following inequalities using the
properties of the sequences, {an} in (12) and {cn} in (16):

|
∞∑
n=1

cne
αn t sinnπx

∣∣∣∣∣≤
∞∑
n=1

|cn
∣∣∣∣∣ eαn t

≤
∞∑
n=1

|cn| eα1t since αn < α1 for every n > 1

≤ eα1t
∞∑
n=1

|cn| ≤ eα1t M for some finite M since cn = O

(
1

n3

)
.
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Hence,
∑∞

n=1 cne
αn t sinnπx → 0 as t → ∞ since eα1t → 0 given the negativity

of α1. ��
Theorem 3.3 Assume that the conditions of Theorem3.1 hold. Then, q∗ (t, x, k,m) ≥
0 for all t ≥ 0, all 0 ≤ x ≤ 1, and all k,m > 0.

To prove this nonnegativity, we need the following Lemma.

Lemma 3.1 There exists T > 0 such that q∗ (t, k, x,m) ≥ 0 for all t ≥ T and for
all 0 ≤ x ≤ 1.

Proof To simplify notation, we replace q∗ (t, x, k,m) by q∗ (t, x). Suppose that there
is no such T . Then, there is a sequence (tn, xn)with 0 ≤ xn ≤ 1 for all n, and tn → ∞
and n → ∞ such that q∗ (tn, xn) < 0 for all n. By passing to a subsequence, we may
assume that xn → x̄ as n → ∞. If 0 < x̄ < 1, then by taking limits, we get that
limn→∞ q∗ (tn, xn) = q∗ (x̄) ≤ 0, which contradicts (a) of Theorem 2.2. Therefore,
x̄ = 0 or 1. We treat the case of x̄ = 0 first. Then, we have:

dq∗

dx
(0) = limn→∞

q∗ (tn, xn) − q∗ (tn, 0)

xn
≤ 0

because q∗ (tn, xn) < 0 and q∗ (tn, 0) = 0 for all n. However, we find dq∗
dx (0) > 0 by

taking the derivative of (5) with respect to x , which leads to a contradiction. A similar
argument holds in case of x̄ = 1. We have proven the nonnegativity for all t ≥ T . ��
Proof of Theorem 3.3 Suppose that there exists

(
t̄, x̄
)
with q∗ (t̄, x̄) < 0. By

Lemma 3.1, it must hold that t̄ < T . Define the open rectangle U = (0, 1) × (0, T ).
Note that on the boundary of this rectangle, i.e., on ∂U , q∗ (t, x) only takes nonnega-
tive values because of Lemma 3.1. Thus, q∗ (t.x) achieves a negative minimum over
Ū for some interior point, say

(
t̂, x̂
)
. But then the Strong Maximum Principle implies

that q∗ is equal to a negative constant inU and in Ū as well by continuity of q∗ (t, x).
But this contradicts that q∗ (t, x) is nonnegative on ∂U . ��

We note that q∗ (t, x, k,m) of the diffusion model converges to the steady-state
output q∗ (x,m), which is the optimal solution of the purely spatial equilibrium in
Theorem 2.1 and has all the properties listed in Theorem 2.2.

4 Conclusions

In this paper, we develop an output diffusion model where a monopoly firm faces both
inter-temporal and spatial inertia. The diffusionmodel has two important results. First,
optimal output evolves from zero to its steady state, and during the transition inter-
temporal adjustment costs keep supply from instantaneously reaching its steady-state
level. Second, as long as there are regional adjustment costs, steady-state output is
lower than the simple static monopoly output that neglects these costs. Furthermore,
as regional adjustment costs get larger, steady-state output shrinks at all locations.
This model suggests a public policy aimed at lowering regional adjustment costs in
order to increase supply in all geographic regions. To achieve this goal, one approach
would be to invest in infrastructure to lower transportation costs.
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