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Abstract In this paper,we design a class of infeasible interior-pointmethods for linear
optimization based on large neighborhood. The algorithm is inspired by a full-Newton
step infeasible algorithmwith a linear convergence rate in problem dimension that was
recently proposed by the second author. Unfortunately, despite its good numerical
behavior, the theoretical convergence rate of our algorithm is worse up to square root
of problem dimension.

Keywords Linear optimization · Primal-dual infeasible interior-point methods ·
Polynomial algorithms

Mathematics Subject Classification 90C05 · 90C51

1 Introduction

We consider the linear optimization (LO) problem in standard format, given by (P),
and its dual problem given by (D) (see Sect. 3). We assume that the problems (P)
and (D) are feasible. As is well known, this implies that both problems have optimal
solutions and the same optimal value. In Sect. 8, we discuss how infeasibility and/or
unboundedness of (P) and (D) can be detected.
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Interior-point methods (IPMs) for LO are divided into two classes: feasible interior-
point methods (FIPMs) and infeasible interior-point methods (IIPMs). FIPMs assume
that a primal-dual strictly feasible point is available from which the algorithm can
immediately start. In order to get such a solution several initialization methods have
been presented, e.g., by Megiddo [1] and Anstreicher [2]. The so-called big M method
of Megiddo has not been received well due to the numerical instabilities caused by
the use of huge coefficients. A disadvantage of the so-called combined phase-I and
phase-II method of Anstreicher is that the feasible region must be nonempty and a
lower bound on the optimal objective value must be known.

IIPMs have the advantage that they can start with an arbitrary point and try to
achieve feasibility and optimality, simultaneously. It is worth to mention that the best-
known iteration bound for IIPMs is due to Mizuno [3]. We refer to, e.g., [4] for a
survey of IIPMs.

Recently, the second author proposed an IIPM with full-Newton steps [4]. Each
main iteration of the algorithm improves optimality and feasibility simultaneously, by
a constant factor until a solution with a given accuracy is obtained. The amount of
reduction is too small for practical purposes. The aim of this paper is to design a more
aggressive variant of the algorithm which improves optimality and feasibility faster.
We emphasize that this is our aim and also what happens in practice. As we will see,
however, our algorithm suffers the same irony that occurs for FIPMs, namely that the
theoretical convergence rate of large-update methods is worse than for full-Newton
methods.

In the analysis of our algorithm, we use so-called kernel function-based barrier
function. Any such barrier function is based on a univariate function, named its kernel
function.1 Such functions can be found in [5] and are closely related to the so-called
self-regular functions introduced in [6]. In these references only FIPMs are considered,
and it is shown that these functions are much more efficient for the process of re-
centering, which is a crucial part in every FIPM, especially when an iterate is far from
the central path. Not surprising, it turned out that these functions are also useful in our
algorithm, where re-centering is also a crucial ingredient.

The paper is organized as follows. In Sect. 2, we describe the notationswhichwe use
throughout the paper. In Sect. 3, we explain the properties of a kernel function-based
barrier function. In Sect. 4, as a preparation to our large neighborhood-based IIPM,
we briefly recall the use of kernel-based barrier functions in large-update FIPMs, as
presented in [5]. It will become clear in this section that the convergence rate highly
depends on the underlying kernel function.

In Sect. 5, we describe our algorithm in detail. In our description we use a search
direction based on a general kernel function. The algorithm uses two types of damped
Newton steps: a so-called feasibility step and some centering steps. The feasibility
step serves to reduce the infeasibility, whereas the centering steps keep the infeasibil-
ity fixed, but improve the optimality. This procedure is repeated until a solution with
enough feasibility and optimality is obtained. Though many parts of our analysis are
valid for general kernel function, at some places we restrict ourselves to a specific

1 Throughout this paper, by a kernel function, we refer to the kernel functions introduced and discussed in
[5].
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kernel function. We show that the complexity of our algorithm based on this kernel
function is slightly worse than the complexity of the algorithm introduced and dis-
cussed by Salahi et al. [7], who used another variant of this function. Note that the
best-known iteration bound for the IIPMs that use a large neighborhood of the central
path is due to Potra and Stoer [8] for a class of superlinearly convergent IIPMs for
sufficient linear complementarity problems (LCP).

2 Notations

We use the following notational conventions. If x, s ∈ Rn , then xs denotes the coor-
dinatewise (or Hadamard) product of the vectors x and s. The nonnegative orthant
and positive orthant are denoted as Rn+ and Rn++, respectively. If z ∈ Rn+ and
f : R+ → R+, then f (z) denotes the vector in Rn+ whose i-th component is
f (zi ), with 1 ≤ i ≤ n. We write f (x) = O(g(x)), if for any x in the domain
of f , f (x) ≤ cg(x) for some positive constant c. For z ∈ Rn , we denote the l1-norm
by ‖z‖1, and the Euclidean norm by ‖z‖.

3 Barrier Functions Based on Kernel Functions

Let the primal LO problem be defined as

min
{
cT x : Ax = b, x ≥ 0

}
, (P)

and its dual problem as

max
{
bT y : AT y + s = c, s ≥ 0

}
. (D)

Here, A is a full row rank matrix in Rm×n, b, y ∈ Rm , c, x, s ∈ Rn ; x, y and s are
vectors of variables.

It is well known that the triple (x, y, s) is optimal for (P) and (D) if and only if

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = 0. (1)

The first two equations require primal and dual feasibility, respectively, and xs = 0
is the so-called complementarity condition. Note that since x and s are nonnegative,
xs = 0 holds if and only if xT s = 0. Therefore, since the feasibility conditions imply
xT s = cT x−bT y, the complementarity condition resembles the fact that at optimality
the primal and dual objective values coincide.
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Interior-point methods (IPMs) replace the complementarity condition by xs = μe,
where μ > 0. This gives rise to the following system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = μe, (2)

where xs = μe is called the centering condition. It has been established (see, e.g.,
[9, Theorem II.4]) that the system (2) has a solution for some μ > 0 if and only if
it has a solution for every μ > 0. Moreover, this holds if and only if (P) and (D)
satisfy the interior-point condition (IPC), i.e., there exist a feasible x > 0 for (P) and a
feasible (y, s) with s > 0 for (D). If the matrix A has full row rank, then this solution
is unique. It is denoted by (x(μ), y(μ), s(μ)) and called the μ-center of (P) and (D).
The μ-centers form a virtual path inside the feasibility region leading to an optimal
solution of (P) and (D). This path is called the central path of (P) and (D). When
driving μ to zero, the central path converges to an optimal triple (x, y, s) for (P) and
(D).

We proceed by showing that the μ-center can be characterized as the minimizer
of a suitably chosen primal-dual barrier function. In fact we will define a wide class
of such barrier functions, each of which is determined by a kernel function. A kernel
function is just a univariate nonnegative function ψ(t), where t > 0, which is strictly
convex, minimal at t = 1 and such that ψ(1) = 0, whereas ψ(t) goes to infinity both
when t goes to zero and when t goes to infinity.

Now let (x, y, s) be a feasible triple with x > 0 and s > 0. We call such a triple
strictly feasible. We define the variance vector for this triple with respect to μ as
follows:

v :=
√
xs

μ
.

Observe that v = e holds if and only if (x, y, s) is the μ-center of (P) and (D). Given
any kernel function ψ we extend its definition to Rn++ according to

Ψ (v) :=
n∑

i=1

ψ(vi ). (3)

It is obvious that Ψ (v) is nonnegative everywhere, and Ψ (e) = 0. Yet we can define
a barrier function Φ(x, s, μ) as follows:

Φ(x, s, μ) := Ψ (v), (4)

where v is the variance vector of (x, y, s) with respect to μ. It is now obvious that
Φ(x, s, μ) is well-defined, nonnegative for every strictly feasible triple, andmoreover,

Φ(x, s, μ) = 0 ⇔ Ψ (v) = 0 ⇔ v = e ⇔ (x, y, s) = (x(μ), y(μ), s(μ)).
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This implies that (x(μ), y(μ), s(μ)) is the (unique) minimizer of Φ(x, s, μ).
As in [5], we call the kernel functionψ eligible iff it satisfies the following technical

conditions.

tψ ′′(t) + ψ ′(t) > 0, t < 1,

tψ ′′(t) − ψ ′(t) > 0, t > 1,

ψ ′′′(t) < 0, t > 0,

2ψ ′′(t)2 − ψ ′(t)ψ ′′′(t) > 0, t < 1.

In the sequel it is always assumed that ψ is an eligible kernel function. Properties of
eligible kernel functions will be recalled from [5] without repeating their proofs.

We would like to mention that a kernel functionψ , introduced and discussed in [5],
has the following format

ψ(t) = t2−1
2 + ψb(t), t > 0.

The term t2−1
2 is called the growth term which goes to infinity as t goes to infinity.

ψb has the property that it goes to infinity as t tends to zero. This term is called the
barrier term of ψ .

4 A Class of Large-update FIPMs for LO

In this section we recall from [5] some results for a large-update FIPM for solving (P)
and (D) using a kernel function-based barrier function.

Let us start with a definition. We call a triple (x, y, s), with x > 0, s > 0,
an ε-solution of (P) and (D) iff the duality gap xT s and the norms of the residual
vectors rb := b − Ax, and rc := c − AT y − s, do not exceed ε. In other words,
defining ε(x, y, s) := max{xT s, ‖rb‖, ‖rc‖}, we say that (x, y, s) is an ε-solution if
ε(x, y, s) ≤ ε.

We assume, without any loss of generality, that the triple

(x0, y0, s0) = (e, 0, e), (5)

is a primal-dual feasible solution.2 We then have x0s0 = μ0e for μ0 = 1. This means
that (x0, y0, s0) is the 1-center, and hence Φ(x0, s0, μ0) = 0. We use this triple to
initialize our algorithm.

Each main (or outer) iteration of the algorithm starts with a strictly feasible triple
(x, y, s) that satisfies Φ(x, s, μ) ≤ τ for some μ ∈]0, 1], where τ is a fixed positive
constant. It then constructs a new triple (x+, y+, s+) such that Φ(x+, s+, μ+) ≤ τ

with μ+ < μ. When taking τ small enough, we obtain in this way a sequence of
strictly feasible triples that belong to small neighborhoods of a sequence ofμ-centers,

2 The problems (P) and (D) can be embedded into a self-dual problem for which the given triple is a feasible
solution and that has an optimal solution that induces optimal solutions for (P) and (D).
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for a decreasing sequence ofμ’s. As a consequence, the sequence of constructed triples
(x, y, s) converges to an optimal solution of (P) and (D).

We will assume that μ+ = (1 − θ)μ, where θ ∈]0, 1[ is a fixed constant, e.g.,
θ = 0.5 or θ = 0.99. The larger the θ , the more aggressive the algorithm is. In
particular when θ is large, each outer iteration will require several so-called inner
iterations.

It is easy to compute the number the outer iterations. Using μ0 = 1 one has the
following result.

Lemma 4.1 (cf. [9, Lemma II.17]) The algorithm needs at most

⌈
1

θ
log

n

ε

⌉
,

outer iterations to generate a strictly feasible ε-solution.

The main task is therefore to get a sharp upper estimate for the number of inner
iterations during an outer iteration.We now describe how such an estimate is obtained.
We go into some detail, though without repeating proofs, because the results that we
recall below are relevant for the IIPM that we discuss in the next section.

As said before, at the start of each outer iteration we have a strictly feasible triple
(x, y, s) and μ > 0 such that Φ(x, s, μ) ≤ τ . We first need to estimate the increase
in Φ when μ is updated to μ+ = (1 − θ)μ. For this we need the following Lemma.

Lemma 4.2 (cf. [5, Theorem 3.2]) Let ρ : [0,∞[→ [1,∞[ be the inverse function
of ψ(t) for t ≥ 1. Then we have for any positive vector v and any β ≥ 1:

Ψ (βv) ≤ nψ

(
βρ

(
Ψ (v)

n

))
.

Now let v be the variance vector of (x, y, s) with respect to μ. Then one easily
understands that the variance vector v+ of (x, y, s) with respect to μ+ is given by
v+ := v/

√
1 − θ . Hence, using Lemma 4.2 with β = 1/

√
1 − θ we may write

Φ(x, s, μ+) = Ψ (v+) = Ψ

(
v√
1 − θ

)
≤ nψ

⎛
⎝ρ

(
Ψ (v)
n

)
√
1 − θ

⎞
⎠ ≤ nψ

(
ρ

(
τ
n

)
√
1 − θ

)
,

where the last inequality holds because ρ is monotonically increasing and Ψ (v) :=
Φ(x, s, μ) ≤ τ . Hence the number τ̄ , defined by

τ̄ := nψ

(
ρ

(
τ
n

)
√
1 − θ

)
, (6)

is an upper bound for the value of Ψ after a μ-update. Note that this bound depends
not on the triple (x, y, s), but only on the kernel function ψ and the parameters n, τ

and θ .
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To simplify the notation we redefineμ according toμ := μ+. Thus we need to deal
with the following question: given a triple (x, y, s) such that Φ(x, s, μ) ≤ τ̄ , how
many inner iterations are needed to generate a triple (x, y, s) such thatΦ(x, s, μ) ≤ τ .
To answer this question we have to describe an inner iteration. It has been argued in
Section 2.2. of [5] that it is natural to define search directions (Δx,Δy,Δs) by the
system

AΔx = 0,

ATΔy + Δs = 0,

sΔx + xΔs = −μv∇Ψ (v).

This system has a unique solution. It may be worth pointing out that if ψ(t) = ψ1(t),
then −μv∇Ψ (v) = μe − xs, and hence the resulting direction is the primal-dual
Newton direction that is used in all primal-dual FIPMs. By doing a line search in this
direction with respect to Ψ we get new iterates

(x, y, s) := (x, y, s) + α(Δx,Δy,Δs),

where α is the step size. According to [5, Lemma 4.4], we use below the following
default step size:

α = 1

ψ ′′(ρ(2δ(v)))
,

where ρ is the inverse function of − 1
2ψ

′(t), and

δ(v) := 1

2
‖∇Ψ (v)‖ .

Fig. 1 shows a formal description of the algorithm.
The closeness of (x, y, s) to the μ-center is measured by Ψ (v), where v is the

variance vector of (x, y, s) with respect to the current value of μ. The initial triple
(x, y, s) is as given by (5) and μ = 1. So we then have Ψ (v) = 0 ≤ τ . After a

Fig. 1 Large-update FIPM Input:
a threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ , 0< θ < 1;

begin
x := e; y := 0; s := e; μ := 1;
while nμ ≥ ε ,

μ := (1−θ )μ ;
while Ψ (v)> τ ,

(x,y,s) := (x,y,s)+α(Δx,Δy,Δ s);
v := xs

μ ;
endwhile

endwhile
end
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μ-update we have Ψ (v) ≤ τ̄ . Then a sequence of inner iterations is performed to
restore the inequality Ψ (v) ≤ τ . Then μ is updated again and so on. This process is
repeated until nμ falls below the accuracy parameter ε after which we have obtained
an ε-solution.

To estimate the number of inner iterations we proceed as follows. Denoting the
decrease in the value of Ψ as ΔΨ , it was shown in [5, Theorem 4.6] that

ΔΨ ≥ αδ(v)2 = δ(v)2

ψ ′′(ρ(2δ(v)))
. (7)

Since the kernel function ψ is eligible, the last expression is increasing in δ(v) [5,
Lemma 4.7]. Besides, by [5, Theorem 4.9], δ(v) is bounded from below as follows:

δ(v) ≥ 1
2ψ

′ (ρ (Ψ (v))) . (8)

Combining (7) and (8), we arrive at

ΔΨ ≥ (ψ ′ (ρ (Ψ (v))))2

4ψ ′′ (ρ (ψ ′ (ρ (Ψ (v)))))
. (9)

Following [5], let γ be the smallest number such that

Ψ (v)γ−1 (ψ ′ (ρ (Ψ (v))))2

4ψ ′′ (ρ (ψ ′ (ρ (Ψ (v)))))
≥ κ (10)

for some positive constant κ , whenever Ψ (v) ≥ τ . In [10], it is established that such
constants κ and γ exist for each kernel functions. When denoting the value of the
barrier function after the μ-update as Ψ0 and the value after the k-th inner iteration as
Ψk , it follows from (9) and (10) that

Ψ0 ≤ τ̄ , Ψk ≤ Ψk−1 − κΨ
1−γ

k−1 , k = 1, 2 . . . , (11)

with τ̄ as in (6). At this stage we may point out why the use of kernel functions other
than the logarithmic kernel function may be advantageous. The reason is that if ψ

is the logarithmic kernel function, then γ = 1, whence we obtain Ψk ≤ Ψk−1 − κ

for each k ≥ 1, provided that Ψk−1 ≥ τ . This resembles the well-known fact that
the best lower bound for the decrease in the logarithmic barrier function is a fixed
constant, no matter what the value of Ψ (v) is. As we will see, smaller values of γ can
be obtained for other kernel functions, which leads to larger reductions in the barrier
function value, and hence lower iteration numbers.

By [5, Lemma 5.1], (11) implies that the number of inner iterations will not exceed

τ̄ γ

κγ
= 1

κγ

(
nψ

(
ρ

(
τ
n

)
√
1 − θ

))γ

. (12)
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Multiplying this number by the number of outer iterations, as given by Lemma 4.1,
we obtain the following upper bound for the total number of iterations:

1

θκγ

(
nψ

(
ρ

(
τ
n

)
√
1 − θ

))γ

log
n

ε
.

Given a kernel function ψ , it is now straightforward to compute the resulting iteration
bound from this expression.

Let now ψ(t) = ψq(t), where

ψq(t) := t2 − 1

2
+ t1−q − 1

q − 1
, with q > 1.

This function is introduced anddiscussed in [11]whereby it is established thatγ = q+1
2q

and κ = 1
124 q . As a result, the iteration number turns out to be

O

(
qn

q+1
2q log n

ε

)
.

The expression qn
q+1
2q is minimal at q = 1

2 log n and then it is equal to 1
2e log n

√
n.

Hence we obtain the iteration bound

O
(√

n log n log n
ε

)
,

for the algorithm, which is the best-known iteration bound for large-update FIPMs
based on kernel functions. It should be mentioned that the best-known iteration bound
for the FIPMs that use a large neighborhood of the central path is due to Potra [12] who
designed a superlinearly convergent predictor–corrector algorithm for linear comple-
mentarity problems that has an O(

√
nL) iteration bound, with L denoting the length

of a binary string encoding the problem data.
In this paper, we consider a IIPM based on the use of a kernel function. Although

many of the results below hold for any eligible kernel function, we will concentrate
of the kernel ψq .

5 A Class of Large-Update IIPMs for LO

As usual in the theoretical analysis of IIPMs, we take the initial iterates as follows:

(
x0, y0, s0

)
= ζ(e, 0, e), (13)

where e denotes the all-one vector in Rn , and ζ is a number such that

∥∥x∗ + s∗∥∥∞ ≤ ζ, (14)
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for some optimal solutions (x∗, y∗, s∗) of (P) and (D). It is worth noting that if the
data A, b, c are integral and L denotes the length of a binary string encoding the triple
(A, b, c), then it is well known that there exist optimal solutions x∗ of (P) and (y∗, s∗)
of (D) that satisfy (14) with ζ = 2L [4, Section 4.7].

Following [4], for any 0 < ν ≤ 1 we consider the primal-dual perturbed pair (Pν)
and (Dν), defined as follows:

min

{(
c − νr0c

)T
x : Ax = b − νr0b , x ≥ 0

}
, (Pν)

and

max

{(
b − νr0b

)T
y : AT y + s = c − νr0c , s ≥ 0

}
, (Dν)

where r0b and r0c denote the initial primal and dual residual vectors, respectively. Note
that, if ν = 0, then the perturbed pair (Pν) and (Dν) coincides with the original pair (P)
and (D). Moreover, (x0, y0, s0) is strictly feasible for the perturbed problems (Pν) and
(Dν) if ν = 1. In other words, if ν = 1, then (Pν) and (Dν) satisfy the IPC and since
x0s0 = μ0e, with μ0 = ζ 2, the μ0-center of (P1) and (D1) is given by

(
x0, y0, s0

)
.

The following Lemma is crucial.

Lemma 5.1 (cf. [13, Theorem 5.13]) The original problems (P) and (D) are feasible
if and only if for each ν satisfying 0 < ν ≤ 1 the perturbed problems (Pν) and (Dν)
satisfy the IPC.

Hence, for any ν ∈]0, 1], the problems (Pν) and (Dν) satisfy the IPC. This implies
that the central path of (Pν) and (Dν) exists. The μ-center of (Pν) and (Dν) is uniquely
determined by the system

b − Ax = νr0b , x ≥ 0,

c − AT y − s = νr0c , s ≥ 0,

xs = μe.

In the sequel, the parameters ν and μ will always satisfy μ = νζ 2. Therefore, we
feel free to denote μ-center of (Pν) and (Dν) as (x(ν), y(ν), s(ν)). The set of these
μ-centers, as ν runs through the interval ]0, 1], is called the homotopy path of (P) and
(D) with respect to ζ . By driving ν to zero, the homotopy path converges to an optimal
solution of (P) and (D) [14]. Our algorithm starts at the μ-center for ν = 1 and then
follows this homotopy path to obtain an ε-solution of (P) and (D). Note that along the
homotopy path the residual vectors are given by νr0b and νr0c , whereas the duality gap
by νnζ 2. So these quantities converge to zero with the same speed. As a consequence
we have

ε (x(ν), y(ν), s(ν)) = νε (x(1), y(1), s(1)) = νε (ζe, 0, ζe) , ν ∈]0, 1].
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5.1 An Outer Iteration of the Algorithm

Just as in the case of large-update FIPMs we use a primal-dual barrier function to
measure closeness of the iterates to the μ-center of (Pν) and (Dν). So, just as in Sect.
4, Ψ (v) will denote the barrier function based on the kernel function ψ(t), as given
in (3). Here, v denotes the variance vector of a triple (x, y, s) with respect to μ > 0,
and we define Φ(x, s, μ) as in (4). The algorithm is designed in such a way that at the
start of each outer iteration we have Ψ (v) ≤ τ for some threshold value τ = O(1).
As Ψ (v) = 0 at the starting points (13), the condition Ψ (v) ≤ τ is certainly satisfied
at the start of the first outer iteration.

Each outer iteration of the algorithm consists of a feasibility step and some centering
steps. At the start of the outer iteration we have a triple (x, y, s) that is strictly feasible
for (Pν) and (Dν), for some ν ∈]0, 1], and that belongs to the τ -neighborhood of the
μ-center of (Pν) and (Dν), where μ = νζ 2. We first perform a feasibility step during
which we generate a triple

(
x f , y f , s f

)
which is strictly feasible for the perturbed

problems (Pν+ ) and (Dν+ ), where ν+ = (1− θ)ν with θ ∈]0, 1[, and moreover, close
enough to theμ+-center of (Pν+ ) and (Dν+ ), withμ+ = ν+ζ 2, i.e.,Φ

(
x f , s f ;μ+) ≤

τ f , for some suitable value of τ f .
After the feasibility step, we perform some centering steps to get a strictly feasible

triple
(
x+, y+, s+)

of (Pν+ ) and (Dν+ ) in the τ -neighborhood of the μ+-center of
(Pν+ ) and (Dν+ ), where μ+ = (1 − θ)μ = ν+ζ 2. During the centering steps the
iterates stay feasible for (Pν+ ) and (Dν+ ). Hence for the analysis of the centering steps
we can use the analysis for FIPMs, presented in Sect. 4. From this analysis we derive
that the number of centering steps will not exceed(

Φ
(
x f , s f , μ+))γ

κγ
,

where the parameters γ and κ depend on the kernel function ψ . Hence we are
left with the problem of defining a suitable search direction

(
Δ f x,Δ f y,Δ f s

)
for

the feasibility step and to determine θ such that after the feasibility step we have
Φ

(
x f , s f , μ+) ≤ τ f for some suitable value of τ f . The number of outer iterations

will be 1
θ
log

(
ε(ζe,0,ζe)

ε

)
. Thus, the total number of iterations will not exceed

(τ f )γ

θκγ
log ε(ζe,0,ζe)

ε
. (15)

5.2 Feasibility Step

For the search direction in the feasibility step, we use the triple
(
Δ f x,Δ f y,Δ f s

)
that is (uniquely) defined by the following system:

AΔ f x = νr0b , (16a)

ATΔ f y + Δ f s = νr0c , (16b)

sΔ f x + xΔ f s = 0. (16c)
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Fig. 2 Algorithm Input:
accuracy parameter ε > 0;
barrier update parameter θ ∈]0,1[;
initialization parameter ζ > 0;
threshold parameter τ =O(1).

begin
x := ζe; y := 0; s := ζe; ν := 1; μ := ζ 2;
while ε(x,y,s) ≥ ε

feasibility step:
(x, y, s) := (x, y, s)+θ (Δ f x, Δ f y, Δ f s) ;

update of μ and ν :
ν := (1−θ )ν ;
μ := νζ 2;

centering steps:
while Φ(x,s;μ) > τ

(x, y, s) := (x, y, s)+α(Δx, Δy, Δ s) ;
endwhile

endwhile
end

Then, defining the new iterates according to

x f = x + θΔ f x, y f = y + θΔ f y, s f = s + θΔ f s,

we have, due to (16a),

b − Ax f =b−A
(
x+θΔ f x

)
=b−Ax−θνr0b =νr0b − θνr0b = (1 − θ)νr0b = ν+r0b .

In the same way one shows that c − AT y f − s f = ν+r0c . Hence it remains to find θ

such that x f and s f are positive and Φ(x f , s f , μ+) ≤ τ f . This is the hard part of the
analysis of our algorithm, which we leave to the subsection below. We conclude this
part with a formal description of the algorithm, in Fig. 2, and a graphical illustration
in Fig. 3.

The straight lines in Fig. 3 depict the central paths of the pair (Pν) and (Dν) and
the pair (Pν+ ) and (Dν+ ). The τ -neighborhoods of the μ- and μ+-centers are shown
by the dark gray circles. The light gray region specifies the τ f -neighborhood of the
μ+-center of (Pν+ ) and (Dν+ ). The feasibility step is depicted by the first arrow at the
right-hand side. The rest of the arrows stand for the centering steps. The iterates are
shown by the circlets.

5.3 Analysis of the Feasibility Step

The feasibility step starts with some strictly feasible triple (x, y, s) for (Pν) and (Dν)
and μ = νζ 2 such that

Ψ (v) ≤ τ with v :=
√
xs

μ
.

Our goal is to find θ such that after the feasibility step, with step size θ , the iterates(
x f , y f , s f

)
lie in the τ f -neighborhood of the μ+-center of the new perturbed pair

(Pν+ ) and (Dν+ ), with τ f = O(n). This means that
(
x f , y f , s f

)
are such that
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Φ(x f ,s f ;μ+) ≤ τ f

Fig. 3 An illustration of an iteration of the algorithm presented in Fig. 2

Ψ (v f ) ≤ τ f where v f :=
√
x f s f

μ+ , μ+ = (1 − θ)μ.

To proceed, we define scaled feasibility directions d f
x and d f

s as follows:

d f
x := vΔ f x

x
and d f

s := vΔ f s

s
. (17)

Using these notations, we may write

x f = x + θΔ f x = x

(
e + θ

Δ f x

x

)
= x

(
e + θ

d f
x

v

)
= x

v

(
v + θd f

x

)
, (18)

s f = s + θΔ f s = s

(
e + θ

Δ f s

s

)
= s

(
e + θ

d f
s

v

)
= s

v

(
v + θd f

s

)
. (19)

This shows that x f and s f are positive if and only if v+θd f
x and v+θd f

s are positive.
On the other hand, using (17), we can reformulate (16c) as follows:

xΔ f s+sΔ f x=0 ⇔ Δ f s

s
+ Δ f x

x
=0 ⇔ vΔ f s

s
+ vΔ f x

x
=0 ⇔ d f

x + d f
s =0.

Therefore, d f
s = −d f

x . As a consequence, x f and s f are positive if and only if
v ± θd f

x > 0. Since v > 0, this is equivalent to v2 − θ2(d f
x )2 > 0. We conclude that

x f and s f are positive if and only if 0 ≤ θ < θmax, where
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θmax = 1∥∥∥∥ d f
x
v

∥∥∥∥∞

.

Yet we turn to the requirement that Ψ (v f ) ≤ τ f . Using (18), (19) and xs = μv2, we
write

(
v f

)2 = x f s f

μ+ =
(
v + θd f

x

) (
v − θd f

x

)

1 − θ
= v2 − θ2(d f

x )2

1 − θ
.

Hence, if θ < θmax then we may write

v f = v̂√
1 − θ

, where v̂ =
√

v2 − θ2(d f
x )2.

Lemma 5.2 Let θ be such that 1/
√
1 − θ = O(1). Then Ψ (v̂) = O(n) implies

Ψ (v f ) = O(n).

Proof By Lemma 4.2, we have

Ψ (v f ) ≤ nψ

⎛
⎝ρ

(
Ψ (v̂)
n

)
√
1 − θ

⎞
⎠ .

Let Ψ (v̂) = O(n). Then Ψ (v̂) ≤ Cn for some positive constant C . Hence
Ψ (v̂)/n ≤ C . Recall that ρ(s) ≥ 1 for all s ≥ 0 and ρ(s) is monotonically
increasing. Furthermore,ψ(t) is monotonically increasing for t ≥ 1. Hence we obtain
Ψ (v f ) ≤ nψ

(
ρ (C)/

√
1 − θ

)
. Since 1/

√
1 − θ = O(1), the coefficient of n in the

above upper bound for Ψ (v f ) does not depend on n. Hence the Lemma follows. 
�
Due to Lemma 5.2 it suffices for our goal to find θ such that Ψ (v̂) ≤ τ̂ where

τ̂ = O(n). In the sequel, we consider Ψ (v̂) as a function of θ , denoted as f1(θ). So
we have

f1(θ) := Ψ (v̂) = Ψ

(√
v2 − θ2(d f

x )2
)

.

We proceed by deriving a tight upper bound for f1(θ), thereby using similar argu-
ments as in [5]. Since the kernel function ψ(t) is eligible, Ψ (v) is e-convex (cf. [5,
Lemma 2.1]), whence we have

f1(θ) ≤ f (θ) := 1

2

[
Ψ

(
v + θd f

x

)
+ Ψ

(
v − θd f

x

)]
.

The first and the second derivatives of f (θ) are as follows:

f ′(θ) = 1

2

n∑
i=1

[
ψ ′ (vi + θd f

x i

)
− ψ ′ (vi − θd f

x i

)]
d f
x i , (20)
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f ′′(θ) = 1

2

n∑
i=1

[
ψ ′′ (vi + θd f

x i

)
+ ψ ′′ (vi − θd f

x i

)] (
d f
x i

)2
. (21)

Since ψ ′′′(t) < 0, ∀t > 0, it follows that ψ ′′(t) is monotonically decreasing. From
this we deduce that

ψ ′′ (vi + θd f
x i

)
+ ψ ′′ (vi − θd f

x i

)
≤ 2ψ ′′ (vi − θ

∣∣∣d f
x i

∣∣∣
)

≤ 2ψ ′′ (vmin − θ‖d f
x ‖

)
,

where vmin := min(v) and θ small enough, i.e., such that vmin − θ‖d f
x ‖ > 0. Substi-

tution into (21) gives

f ′′(θ) ≤ ‖d f
x ‖2ψ ′′ (vmin − θ‖d f

x ‖
)

.

By integrating both sides of this inequality with respect to θ , while using that f ′(0) =
0, as follows from (20), we obtain

f ′(θ) = f ′(0) +
∫ θ

0
f ′′(ξ) dξ ≤ ‖d f

x ‖2
∫ θ

0
ψ ′′ (vmin − ξ‖d f

x ‖
)
dξ

= −‖d f
x ‖

∫ θ

0
ψ ′′ (vmin − ξ‖d f

x ‖
)
d

(
vmin − ξ‖d f

x ‖
)

= ‖d f
x ‖

[
ψ ′ (vmin) − ψ ′ (vmin − θ‖d f

x ‖
)]

.

Integrating once more, we get

f (θ) − f (0) =
∫ θ

0
f ′(ξ) dξ ≤ ‖d f

x ‖
∫ θ

0

[
ψ ′ (vmin) − ψ ′ (vmin − ξ‖d f

x ‖
)]

dξ

= ψ ′(vmin)θ‖d f
x ‖ + ψ

(
vmin − θ‖d f

x ‖
)

− ψ(vmin)

≤
[
ψ ′(vmin) − ψ ′ (vmin − θ‖d f

x ‖
)]

θ‖d f
x ‖, (22)

where the last inequality holds because ψ is convex.3

The first derivative with respect to vmin of the right-hand side expression in this
inequality is given by (ψ ′′(vmin) − ψ ′′(vmin − θ‖d f

x ‖))θ‖d f
x ‖. Since ψ ′′ is (strictly)

decreasing, this derivative is negative.Hence it follows that the expression is decreasing
in vmin. Therefore, when θ and ‖d f

x ‖ are fixed, the less the vmin is, the larger the
expression will be. Below we establish how small vmin can be when δ(v) is given.

3 We use that if f is convex and differentiable, then

(b − a) f ′(a) ≤ f (b) − f (a) ≤ (b − a) f ′(b).
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For each coordinate vi of v we have |ψ ′(vmin)|/2 ≤ ‖∇Ψ (v)‖/2 = δ(v), which
means that

−δ(v) ≤ − 1
2ψ

′(vi ) ≤ δ(v), 1 ≤ i ≤ n.

Since the inverse function ρ of −ψ ′/2 is monotonically decreasing, this is equivalent
to

ρ(δ(v)) ≤ vi ≤ ρ(−δ(v)), 1 ≤ i ≤ n. (23)

Hence the smallest possible value of vmin is ρ(δ(v)), and this value is attained in the
(exceptional) case where vmin is the only coordinate of the vector v that differs from
1. So we may assume that vmin = ρ(δ(v)). This implies −ψ ′(vmin)/2 = δ(v) and
hence ψ ′(vmin) ≤ 0, whence vmin ≤ 1.

In the sequel, we denote δ(v) simply as δ. Substitution into (22) gives that

f (θ) − f (0) ≤
[
−2δ − ψ ′ (ρ(δ) − θ‖d f

x ‖
)]

θ‖d f
x ‖.

Hence we certainly have f (θ) ≤ τ̂ if

f (0) +
[
−2δ − ψ ′ (ρ(δ) − θ‖d f

x ‖
)]

θ‖d f
x ‖ ≤ τ̂ .

Since f (0) = Ψ (v) ≤ τ , it can be verified that the last inequality holds if

− 1
2ψ

′ (ρ(δ) − θ‖d f
x ‖

)
≤ δ + τ̂ − τ

2θ‖d f
x ‖

.

Since ρ is decreasing, this is equivalent to

ρ(δ) − θ‖d f
x ‖ ≥ ρ

(
δ + τ̂ − τ

2θ‖d f
x ‖

)
. (24)

Note that if θ approaches zero, then the left-hand side expression converges to ρ(δ) and
the right-hand side expression to zero. The left-hand side is decreasing in θ , whereas
the right-hand side is increasing. The largest possible θ makes both sides equal. In
order to get a tight approximation for this value, we first need to estimate ‖d f

x ‖. This
is done in the next section, where we follow a similar approach as in [15].

5.3.1 Upper Bound for ‖d f
x ‖

One may easily check that the system (16), which defines the search directions Δ f x ,
Δ f y, and Δ f s, can be expressed in terms of the scaled search directions d f

x and d f
s

as follows:
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Ād f
x = νr0b , (25)

ĀT Δ f y

μ
+ d f

s = νvs−1r0c , (26)

d f
x + d f

s = 0, (27)

where

Ā = AV−1X, V = diag(v), X = diag(x).

At this stage we use that the initial iterates are given by (13) and (14), so we have

x0 = s0 = ζe, y0 = 0, μ0 = ζ 2, (28)

where ζ > 0 is such that
‖x∗ + s∗‖∞ ≤ ζ (29)

for some optimal solutions x∗ of (P) and (y∗, s∗) of (D).
Using a similar argument as given in [15, Section 4.3], it can be proven that

‖d f
x ‖ ≤ eT (x + s)

ζvmin
. (30)

In [15, Lemma 4.3], it is shown that

νζeT (x + s) ≤ xT s + nνζ 2. (31)

Using xs = μv2 and (23) we may write

xT s = μeT v2 ≤ μnρ(−δ)2 = nνζ 2ρ(−δ)2.

Substitution in (31) yields that

ζeT (x + s) ≤ nζ 2(1 + ρ(−δ)2).

Substitution in (30), also using that vmin ≥ ρ(δ), we obtain

‖d f
x ‖ ≤ n(1 + ρ(−δ)2)

ρ(δ)
. (32)

5.3.2 Condition for θ

Yet we return to the condition (24) on θ :

ρ(δ) ≥ θ‖d f
x ‖ + ρ

(
δ + τ̂ − τ

2θ‖d f
x ‖

)
.
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The right-hand side is increasing in ‖d f
x ‖. Therefore, due to (32), it suffices if

ρ(δ) ≥ θn(1 + ρ(−δ)2)

ρ(δ)
+ ρ

(
δ + ρ(δ)

(
τ̂ − τ

)

2θn(1 + ρ(−δ)2)

)
. (33)

Obviously, this implies that θn(1+ρ(−δ)2) < ρ(δ)2. Therefore, there existsα ∈]0, 1[,
independent of n, such that

θ = αρ(δ)2

n(1 + ρ(−δ)2)
. (34)

Clearly, using this θ , the expression (33) can be restated as

ρ(δ) ≥ αρ(δ) + ρ

(
δ + τ̂ − τ

2αρ(δ)

)
. (35)

Our objective is to find the largest possible α satisfying this inequality. In order to
proceed we need bounds for δ = δ(v) and ρ(δ). The next section deals with some
technical lemmas which are useful in deriving these bounds.

6 Some Technical Lemmas

Recall that ρ is defined as the inverse function of− 1
2ψ

′(t) and ρ as the inverse function
of ψ(t) for t ≥ 1. We also need the inverse function of ψ(t) for t ∈]0, 1], which we
denote as χ . To get tight estimates for these inverse functions, we need the inverse
functions χ̄ and ρ̄ of ψb(t) and −ψ ′

b(t), respectively. Recall that, as it was shown in
[5], one has

ψ ′
b(t) < 0, ψ ′′

b (t) > 0, ψ ′′′
b (t) < 0, t > 0.

Henceψb(t) is monotonically decreasing andψ ′
b(t) is monotonically increasing. This

implies thatψb(t) and−ψ ′
b(t) have inverse functions and these function are monoton-

ically decreasing. We denote these inverse functions as χ̄ and ρ̄, respectively.

Lemma 6.1 With χ̄ denoting the inverse function of ψb(t), one has

χ̄

(
s + 1

2

)
≤ χ(s) ≤ χ̄ (s) , s ≥ 0.

Proof Let t ∈]0, 1]. Then one has

t = χ(s) ⇔ ψ(t) = s ⇔ ψb(t) = s + 1−t2
2 ⇔ χ(s) = χ̄

(
s + 1−χ(s)2

2

)
.

Since χ(s) ∈]0, 1], this implies the inequalities in the lemma. 
�
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Lemma 6.2 With ρ̄ denoting the inverse function of −ψ ′
b(t) for t > 0, one has

ρ̄(1 + 2s) ≤ ρ(s) ≤ ρ̄(2s), s ≥ 0.

Proof Since ψ ′(t) = t + ψ ′
b(t), one has

t = ρ(s) ⇔ −1

2
ψ ′(t) = s

⇔ −ψ ′(t) = 2s ⇔ −ψ ′
b(t) = 2s + t ⇔ ρ(s) = ρ̄(2s + ρ(s)).

If s ≥ 0, then ρ(s) = t ∈]0, 1], and hence ρ̄ (2s) ≥ ρ(s) ≥ ρ̄ (2s + 1), proving the
lemma. 
�

Recall that ρ is the inverse function of ψ(t) for t ≥ 1. The following two results
are less trivial than the preceding two lemmas.

Lemma 6.3 (cf. [5, Lemma 6.2]) For s ≥ 0, one has

√
1 + 2s ≤ ρ(s) ≤ 1 + √

2s.

Lemma 6.4 One has, for any v ∈ Rn++,

1
2ψ

′ (ρ (Ψ (v))) ≤ δ(v) ≤ − 1
2ψ

′ (χ (Ψ (v))) .

Proof The left-hand side inequality in the lemma is due to [5, Theorem 4.9]. The proof
of the right-hand side inequality can be obtained by slightly changing the proof of [5,
Theorem 4.9] and is therefore omitted. 
�

7 Iteration Bound of the IIPM Based on ψq

Since the kernel function ψq led to the best-known iteration bound for large-update
FIPMs based on kernel functions, from now on we restrict ourselves to the case where
ψ = ψq . Thus, we have

ψb(t)= t1−q − 1

q − 1
, ψ ′

b(t)=−t−q , ψ ′′
b (t)=qt−q−1, ψ ′′′

b (t)=−q(q + 1)t−q−2.

In the current case the inverse functions χ̄ and ρ̄ are defined as follows:

χ̄ (s) = 1

[1 + (q − 1)s] 1
q−1

, s >
−1

q − 1
, (36)

ρ̄(s) = 1

s
1
q

, s > 0. (37)
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Since χ and − 1
2ψ

′ are decreasing, − 1
2ψ

′χ is increasing. Hence, letting Ψ (v) ≤ τ ,
Lemma 6.4 implies that

δ = δ(v) ≤ − 1
2ψ

′ (χ(τ)) . (38)

By Lemma 6.1 we have χ(τ) ≥ χ̄
(
τ + 1

2

)
. Using once more that − 1

2ψ
′ is decreasing

we obtain

2δ ≤ −ψ ′ (χ̄ (
τ + 1

2

))
.

Since −ψ ′(t) = t−q − t ≤ t−q , and due to (36), it follows that

2δ ≤ χ̄
(
τ + 1

2

)−q

= [
1 + (q − 1)

(
τ + 1

2

)] q
q−1

= [
1 + (q − 1)

(
τ + 1

2

)] [
1 + (q − 1)

(
τ + 1

2

)] 1
q−1

≤ [
1 + (q − 1)

(
τ + 1

2

)]
eτ+ 1

2 ,

where the last inequality is due to (1+ax)1/x ≤ ea for x > 0 and 1+ax > 0. Hence,
when taking τ ≤ 1/2, we have

δ ≤ 1
2qe. (39)

Since ρ is decreasing, by applying ρ to both sides of (38), and using Lemma 6.1 and
(36) we obtain

ρ(δ) ≥ χ(τ) ≥ χ̄
(
τ + 1

2

) = 1

[1 + (q − 1)
(
τ + 1

2

)] 1
q−1

.

If τ ≤ 1/2 this implies

ρ(δ) ≥ 1

q
1

q−1

= 1

e
log q
q−1

≥ 1

e
. (40)

Using that ρ is decreasing and also Lemma 6.2 and (37) we have

ρ

(
δ + τ̂ − τ

2αρ(δ)

)
≤ ρ

(
τ̂ − τ

2αρ(δ)

)
≤ ρ̄

(
τ̂ − τ

ρ(δ)

)
=

(
ρ(δ)

τ̂ − τ

) 1
q ≤ 1

(
τ̂ − τ

) 1
q

.

Furthermore, using ρ ≥ 1/e we conclude that (35) certainly will hold if

1 − α

e
≥ 1

(
τ̂ − τ

) 1
q

.

Now taking α = 1/2 it follows that (35) will be satisfied if

q ≤ log(τ̂ − τ)

log(2e)
. (41)
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Substitution of α = 1/2 into (34) yields

θ = ρ(δ)2

2n
(
1 + ρ(−δ)2

) .

Due to (40) we have ρ(δ) ≥ 1/e. In order to find an upper bound for ρ(δ) we do as
follows. For s ≥ 0,

t = ρ(−s) ⇔ −1

2
ψ ′(t) = −s ⇔ 2s = t − t−q ⇔ t = 2s + t−q , t ≥ 1.

Since t ≥ 1 we have t−q ∈]0, 1]. Hence t = ρ(−s) implies 2s ≤ ρ(−s) ≤ 2s + 1.
Thus, ρ(−δ) ≤ 2δ +1. By (39), one has ρ(−δ) ≤ 1+qe. We therefore may conclude
that (33) certainly holds if we take

θ = 1

2e2n
(
1 + (1 + qe)2

) . (42)

This is the value that will be used in the sequel.

7.1 Complexity Analysis

As we established in (15), the total number of iterations is at most

(
τ f

)γ

θκγ
log

nζ 2

ε
.

We assume that τ̂ = O(n). Due to Lemma 5.2 we then also have τ f = O(n), provided
that 1/

√
1 − θ = O(1). Due to (42) the latter condition is satisfied. To simplify the

presentation we use τ f = n in the analysis below, but our results can easily be adapted
to the case where τ̂ = O(n). When choosing θ maximal such that (42) holds, we have

θ = 1

2e2n
(
1 + (1 + qe)2

) .

Hence, substitution of γ = q+1
2q and κ = 1

124 q yields that the total number of iterations
does not exceed

248e2qn
(
1 + (1 + qe)2

)
n

q+1
2q log

nζ 2

ε
= O

(
q3n

√
n n

1
2q log

nζ 2

ε

)
. (43)

The expression q3n
1
2q is minimal if q = log n/6, and then it is equal to e4(log n)3/512.

This value of q satisfies (41), since log(2e) ≤ 6. Hence we obtain the following
iteration bound:

O

(
n
√
n (log n)3 log

nζ 2

ε

)
. (44)
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It is worthmentioning that ifψ1 were used, then the iteration bound of our algorithm

would be O
(
n2 log nζ 2

ε

)
, which is a factor

√
n/(log n)3 worse than (44).

8 Detecting Infeasibility or Unboundedness

As indicated in the introduction, the algorithmwill detect infeasibility or/and unbound-
edness of (P) and (D) if no optimal solutions exist. In that case Lemma 5.1 implies the
existence of ν̄ > 0 such that the perturbed pair (Pν) and (Dν) satisfy the IPC if and
only if ν ∈]ν̄, 1]. As long as ν+ = (1 − θ)ν > ν̄ the algorithm will run as it should,
with θ given by (42). However, if ε is small enough, at some stage it will happen that
ν > ν̄ ≥ ν+. At this stage the new perturbed pair does not satisfy the IPC. This will
reveal itself since at that time we necessarily have θmax < θ̃ . If this happens we may
conclude that there is no optimal pair (x∗, s∗) satisfying ‖x∗ + s∗‖∞ ≤ ζ . We refer
to [4] for a more detailed discussion.

9 Computational Results

In this section, we present the numerical results for a practical variant of the algorithm
described in Sect. 5. Theoretically, the barrier parameterμ is updated by a factor (1−θ)

with θ given by (42), and the iterates are kept very close to the μ-centers, namely the
τ -neighborhood of the μ-centers, with τ = 1

8 . In practice, it is not efficient to do in
this way and not even necessary either. We present a variant of the algorithm which
uses a predictor–corrector step in the feasibility step. Moreover, for the parameter
τ , defined in Sect. 5.1, we allow some larger value than 1

8 , e.g., τ = O(n). We set
τ = τ̂ = O(n)with τ̂ defined as in Sect. 5.1. As a consequence, the algorithm does not
need centering steps. We choose τ̂ according to the following heuristics: if n ≤ 500,
then τ̂ = 100n, for 500 ≤ n ≤ 5000, we choose τ̂ = 10n and for n ≥ 5000, we set
τ̂ = 3n. We compare the performance of the algorithm with the well-known LIPSOL
package [16].

9.1 Starting Point and Stopping Criterion

A critical issue when implementing a primal-dual method is to find a suitable starting
point. It seems sensible to obtain a starting point which is well centered and as close
to a feasible primal-dual point as possible. The one suggested by theory, i.e., given by
(13), being nicely centered, it may be quite far from the feasibility region. Moreover,
to find a suitable ζ is another issue.

In our implementation, we use a starting point
(
x0, y0, s0

)
which is proposed by

Lustig et al. [17] and inspired by the starting point used by Mehrtora [18]. Since
we are interested in a point which is in the τ -neighborhood of the μ0-center. If
Φ(x0; s0;μ0) > τ , we increase μ0 until Φ(x0; s0;μ0) ≤ τ .
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As in LIPSOL, our algorithm terminates if, for ε = 10−6, either

E(x, y, s) := ‖rb‖
max(1, ‖b‖) + ‖rc‖

max(1, ‖c‖) + |cT x − bT y|
max(1, |cT x |, |bT y|) ≤ ε, (45)

or |xT s − (x+)T s+| < ε occurs. The condition (45) measures the total relative errors
in the optimality conditions (1), while the later criterion terminates the program if
only a tiny improvement is obtained on the optimality. In fact, it prevents the program
from stalling. We include this criterion following Lustig [19].

9.2 Feasibility Step Size

As in other efficient numerical experiments, e.g., [16,17], regardless of the theoret-
ical result, we apply different step sizes along the primal step Δx and the dual step
(Δy,Δs). This implies that the feasibility improves much faster than when identical
step sizes are used. Letting (x, y, s) be the current iterates and (Δx,Δy,Δs) the New-
ton step, we obtain the maximum step sizes θ

p
max and θdmax in, respectively, the primal

and the dual spaces as follows:

θ p
max = min

Δxi<0

{
1,− xi

Δxi

}
, θdmax = min

Δsi<0

{
1,− si

Δsi

}
.

The goal is to keep the iterates close to the μ-center, i.e., in its τ̂ -neighborhood where
τ̂ is defined in Sect. 5.3. Thus, letting θ̄ be such that

Φ(x + θ̄ θ p
maxΔx, s + θ̄ θdmaxΔs, μ) ≤ τ̂ ,

the primal and the dual step sizes θp and θd are defined as follows:

θp = θ̄ θ p
max and θd = θ̄ θdmax.

9.3 Solving the Linear System

We apply the backslash command of MATLAB (’\’) to solve the normal equations

AD2ATΔy = b̂, (46)

where b̂ is some right-hand side and D, in LO case, has the form

D := diag

(√
x

s

)
.
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Denoting M := AD2AT in (46), whenever the matrix M is ill-conditioned, we could
obtain some more accurate solution by perturbing M as

M = M + 10−9 I,

where I is the identity matrix with size of M .

9.4 A Rule for Updating μ

Motivated by the numerical results, and considering the fact that the Mehrotra’s PC
method has become themost efficient in practice and used inmost IPM-based software
packages, e.g., [16,20–22], we present the numerical results of the variant of our
algorithm which uses Mehrotra’s PC direction at the feasibility step.

At the feasibility step, we apply the system

AΔa
x = rb,

ATΔa
y + Δa

s = rc,

sΔa
x + xΔa

s = −xs,

to obtain the affine-scaling directions (Δa
x ,Δ

a
y,Δ

a
s ). Then, the maximum step sizes

θ
p
max and θdmax in, respectively, primal and dual spaces are calculated as described in
Sect. 9.2. Then, defining

μa := (x + θ
p
maxΔ

a
x )

T (s + θdmaxΔ
a
s )

n
,

we let

σ =
(

σ̄
μa

μ

)3

, σ̄ ∈]0, 1[.

We use σ̄ = 0.3, as the default value of σ̄ . If σ < 1, we calculate the new barrier
update parameter μ as follows:

μnew = σμa .

Then, if necessary, by increasing μnew by a constant factor, say 1.1, we derive some
μnew for which

Φ(x, s, μnew) ≤ τ̂ .

Note that μnew is acceptable only if μnew < μ.
In the case whereμnew ≥ μ or σ ≥ 1, we do not perform anyμ-update and proceed

with the following corrector step which attempts to center toward the currentμ-center:
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AΔc
s = 0,

ATΔc
y + Δc

s = 0,

sΔc
s + xΔc

s = μe − Δa
xΔ

a
s . (47)

Recall that if σ ≥ 1, then we have an increase in the duality gap and hence the use
of μnew is no longer sensible. If σ < 1 and μnew < μ, we use the system (47) with
μ = 0 as a corrector step.

The feasibility step
(
Δ f x,Δ f y,Δ f s

)
is obtained as follows:

Δ f x = Δa
x + Δc

s , Δ f y = Δa
y + Δc

y, Δ f s = Δa
s + Δc

s .

Next, we calculate the maximum step sizes θ
p
max and θdmax in, respectively, the pri-

mal and the dual spaces along the step
(
Δ f x,Δ f y,Δ f s

)
, as described in Sect. 9.2.

Assuming that μ is the outcome of the predictor step, we obtain a θ such that

Φ(x + θθ p
maxΔ

f x, s + θθdmaxΔ
f s, μ) ≤ τ̂ ,

with τ̂ chosen as described in Sect. 9.4. By setting θp = θθdmax and θd = θθdmax, we
calculate the new iterates

(
x f , y f , s f

)
as follows:

x f = x + θpΔ
f x, y f = y + θdΔ

f y and s f = s + θdΔ
f s.

9.5 Results

In this section, we present our numerical results. Motivated by the theoretical result
which says that the kernel functionψq gives rise to the best-known theoretical iteration
bound for large-update IIPMs based on kernel functions, we compare the performance
of the algorithm described in the previous subsection based on both the logarithmic
barrier function and the ψq -based barrier function. As the theory suggests, we use
q = log n

6 in ψq .
Our test was done on a standard PC with Intel� CoreTM 2 Duo CPU and 3.25 GB

of RAM. The code was implemented by version 7.11.0 (R2010b) of MATLAB� on
Windows XP Professional operating system. The problems chosen for our test are
from the NETLIB set. To simplify the study, we choose the problems which are in
(P) format, i.e., there is no nonzero lower bound or finite upper bound on the decision
variables.

Before solving a problem using the algorithm, we first solve it for singleton vari-
ables. This helps to reduce the size of the problem.

Numerical results are tabulated in Table 1. In second and the fourth columns, we
listed the total number of iterations of the algorithm based on, respectively, ψ1, the
kernel function of the logarithmic barrier function, andψq . The third and fifth columns
stand for the quantity E(x, y, s). The iteration numbers of the LIPSOL package are
given in the sixth column of these tables. Finally, in the seventh column, we listed the
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Table 1 Numerical results
(
q = log n

6 inψq

)

Problem ψ1 ψq Lipsol

Name Rows Cols It. E(x, y, s) It. E(x, y, s) It. E(x, y, s)

25fv47 822 1571 26 1.8e−007 27 6.1e−007 25 2.8e−007

Adlittle 57 97 12 6.8e−008 12 8.9e−008 11 2.4e−011

Afiro 28 32 8 1.0e−007 8 1.6e−007 7 3.7e−009

Agg 489 163 17 8.8e−007 18 7.2e−008 18 1.1e−008

Agg2 517 302 17 9.5e−007 17 4.9e−007 18 2.6e−010

Agg3 517 302 18 3.0e−007 18 5.7e−007 16 6.2e−008

Bandm 306 472 20 2.6e−007 19 3.5e−007 16 3.6e−007

Beaconfd 174 262 11 1.1e−007 11 3.0e−007 11 1.2e−010

Blend 75 83 13 6.2e−007 13 2.7e−007 12 5.7e−011

Bnl1 644 1175 32 5.0e−007 32 1.2e−007 25 5.3e−008

Bnl2 2325 3489 33 4.1e−007 31 9.3e−007 31 1.3e−007

Brandy 221 249 19 2.5e−007 19 8.9e−008 18 2.0e−008

D2q06c 2172 5167 28 5.6e−001 31 7.0e−007 28 4.8e−007

Degen2 445 534 25 1.3e−004 18 1.2e−004 13 4.2e−007

Degen3 1504 1818 23 1.4e−004 24 3.0e−005 19 1.4e−007

e226 224 282 22 7.4e−007 23 2.7e−007 20 8.9e−007

fffff800 525 854 26 1.0e−006 27 5.7e−007 26 3.0e−007

Israel 175 142 22 2.0e−007 21 7.1e−007 20 2.2e−007

Lotfi 154 308 16 3.7e−007 15 5.4e−007 15 4.6e−008

Maros-r7 3137 9408 19 8.0e−007 19 7.6e−008 14 1.0e−009

Sc105 106 103 10 1.7e−008 10 2.3e−008 9 4.2e−008

Sc205 206 203 11 2.5e−007 11 2.5e−007 11 6.5e−009

Sc50a 51 48 9 1.4e−007 9 1.2e−007 9 2.8e−009

Sc50b 51 48 7 5.4e−007 7 4.9e−007 7 1.6e−007

Scagr7 130 140 13 3.1e−007 13 3.4e−008 11 3.5e−007

Scfxm1 331 457 18 4.2e−007 19 2.0e−007 16 3.7e−007

scfxm2 661 914 21 1.4e−006 22 5.9e−008 19 1.6e−008

Scfxm3 991 1371 23 1.3e−007 22 8.5e−007 20 3.0e−010

Scsd1 78 760 13 3.9e−007 14 1.2e−007 10 3.3e−011

Scsd6 148 1350 15 3.8e−007 15 4.2e−007 11 7.8e−008

Scsd8 398 2750 13 6.4e−008 12 3.3e−007 11 4.0e−011

Sctap1 301 480 18 5.5e−007 18 6.9e−007 16 1.2e−008

Sctap2 1091 1880 19 1.3e−007 18 3.5e−007 18 3.5e−009

Sctap3 1481 2480 19 6.4e−007 20 9.6e−008 17 2.4e−008

Share1b 118 225 23 6.0e−007 23 1.5e−006 21 1.9e−010

Share2b 97 79 12 1.3e−008 12 6.8e−008 11 1.7e−007

Ship04l 403 2118 15 7.8e−007 15 8.0e−007 12 5.6e−011

Ship04s 403 1458 15 3.2e−007 15 4.3e−007 12 3.6e−007

Ship12l 1152 5427 19 9.1e−007 19 3.7e−007 15 7.7e−009
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Table 1 continued

Problem ψ1 ψq Lipsol

Name Rows Cols it. E(x, y, s) it. E(x, y, s) it. E(x, y, s)

Ship12s 1152 2763 17 1.3e−007 18 6.0e−008 15 3.6e−007

Stocfor1 118 111 14 4.9e−007 16 2.5e−007 16 1.1e−007

Stocfor2 2158 2031 25 1.8e−007 25 2.1e−007 21 2.3e−008

Truss 1001 8806 18 3.9e−007 18 1.7e−007 17 8.4e−007

Wood1p 245 2594 17 8.3e−007 17 1.2e−005 14 7.0e−010

Woodw 1099 8405 25 3.1e−007 24 1.0e−006 23 5.1e−010

Total 816 815 725

quantity E(x, y, s) of the LIPSOL package. In each row, the Italic number denotes the
smallest of the iteration numbers of the three algorithms, namely our algorithm based
on ψ1 and ψq , and LIPSOL, and the bold number denotes the smallest of the iteration
numbers of ψ1-based and ψq -based algorithms. As it can be noticed from the last row
of the table, the overall performance of the algorithm based on ψ1 is much better than
that the variant based onψq .However, in someof the problems, theψq -based algorithm
outperforms the ψ1-based algorithm. This amounts to the problems AGG, BANDM,
DEGEN2, DEGEN3, SCSD1, SCSD6, SCSD8 and SHARE2B. The columns related
to LIPSOL prove that it is still the best; however, our ψ1-based algorithm saved one
iteration compared with LIPSOL, to solve AGG2 and AGG3, and two iterations when
solving STOCFOR1.

10 Conclusions

In this paper, we analyze infeasible interior-point methods (IIPMs) for LO based on
a large neighborhood. Our work is motivated by [4] in which Roos presents a full-
Newton IIPM for LO. Since the analysis of our algorithms requires properties of barrier
functions based on kernel functions that are used in large-update feasible interior-point
methods (FIPMs), we present primal-dual large-update FIPMs for LO based on kernel
functions, as well.

In Roos’ algorithm, the iterates move within small neighborhood of the μ-centers
of the perturbed problem pairs. In many IIPMs, the algorithm reduces the infeasibility
and the duality gap at the same rate. His algorithm has the advantages that it uses
full-Newton steps and hence no calculation of step size is needed, and moreover its
theoretical iteration bound is O(n log(ε(ζe, 0, ζe)/ε)) which coincides with the best-
known iteration bound for IIPMs. Nevertheless, it has the deficiency that it is too slow
in practice as it reduces the quantity ε(x, y, s) by a factor (1 − θ) with θ = O( 1n ) at
an iteration.

We attempt to design a large-update version of Roos’ algorithm which allows
some larger amount of reduction of ε(x, y, s) at an iteration than 1 − θ with
θ = O(1/n). This requires that the parameter θ is larger than O(1/n), even θ = O(1).
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Unfortunately, the result of Sect. 5 implies that θ is O(1/(n(log n)2)) which yields
O(n

√
n(log n)3 log(ε(ζe, 0, ζe)/ε) iteration bound for a variant. Since the theoretical

result of the algorithm is disappointing, we rely on the numerical results to establish
that our algorithm is a large-update method. A practically efficient version of the
algorithm is presented and its numerical result is compared with the well-known LIP-
SOL package. Fortunately, the numerical results seem promising as our algorithm
has iteration numbers close to those of LIPSOL and, in a few cases, outperforms
it. This means that IIPMs suffer from the same irony as FIPMs, i.e., regardless of
their nice practical performance, the theoretical complexity of large-update meth-
ods is worse. Recall that the best-known iteration bound for large-update IIPMs is
O(n

√
n log n log(ε(ζe, 0, ζe)/ε) which is due to Salahi et al. [7].

As in LIPSOL [16], different step sizes in the primal and the dual spaces are used
in our implementation. This gives rise to a faster achievement in feasibility than when
identical step sizes are used. Moreover, inspired by the LIPSOL package, we use a
predictor–corrector step in the feasibility step of the algorithm.

Future research may focus on the following areas:

– Asmentioned before, our algorithmhas a factor (log n)2 worse iteration bound than
the best-known iteration bound for large-update IIPMs. One may consider how to
modify the analysis such that the iteration bound of our algorithm is improved by
a factor (log n)2.

– As mentioned in Sect. 10, according to the analysis of our algorithm presented
in Sect. 5, the barrier-updating parameter θ is O(1/(n(log n)2)). This yields the
loose iteration bound given by (44). This slender value of θ is obtained because of
some difficulties in the analysis of the algorithm which uses the largest value of θ ,
satisfying (24), to assure that Ψ (v̂) = O(n). This value of θ is much smaller than
the best value we may choose. Assuming n = 60, the largest value of θ satisfying
Ψ (v̂) = n is 0.849114 while the value of θ suggested by theory is 0.141766. A
future research may focus on some new analysis of the algorithm which yields
some larger value of θ .

– Roos’ full-Newton step IIPM was extended to semidefinite optimization (SDO)
by Mansouri and Roos [23], to symmetric optimization (SO) by Gu et al. [24] and
to LCP by Mansouri et al. [25]. An extension of large-update FIPMs based on
kernel functions to SDO was presented by El Ghami [10]. One may consider how
our algorithm behaves in theory and practice when it is extended to case of SDO,
SO and LCP.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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