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Abstract This paper gives new existence results for elliptic and evolutionary varia-
tional and quasi-variational inequalities. Specifically, we give an existence theorem
for evolutionary variational inequalities involving different types of pseudo-monotone
operators. Another existence result embarks on elliptic variational inequalities driven
by maximal monotone operators. We propose a new recessivity assumption that
extends all the classical coercivity conditions. We also obtain criteria for solvability
of general quasi-variational inequalities treating in a unifying way elliptic and evolu-
tionary problems. Two of the given existence results for evolutionary quasi-variational
inequalities rely onMosco-type continuity properties and Kluge’s fixed point theorem
for set-valued maps. We also focus on the case of compact constraints in the evolu-
tionary quasi-variational inequalities. Here a relevant feature is that the underlying
space is the domain of a linear, maximal monotone operator endowed with the graph
norm. Applications are also given.
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1 Introduction

In recent years, the theory of quasi-variational inequalities has emerged as one of the
most promising domains of applied mathematics. Quasi-variational inequalities not
only subsume variational inequalities and nonlinear partial differential inequations,
they also provide a unified framework for studying general boundary value prob-
lems with complicated, possibly unilateral, boundary conditions. This field offers us
a powerful mathematical apparatus for investigating a wide range of problems aris-
ing in diverse domains such as mechanics, economics, finance, optimization, optimal
control, and others, see [1–30]. The existence and the approximation theories for
quasi-variational inequalities require that a variational inequality and a fixed point
problem be solved simultaneously. As a result, many solution techniques which are
readily available for variational inequalities cannot be extended for quasi-variational
inequalities in a straightforward manner. In this paper, our primary objective is to give
new existence results for elliptic and evolutionary quasi-variational inequalities. This
work on quasi-variational inequalities subsumes many known results and presents
new ones for elliptic and evolutionary quasi-variational inequalities, as well as elliptic
and evolutionary variational and hemivariational inequalities, and numerous boundary
value problems.

The rest of the paper is organized as follows. Section 2 describes the problem
formulation. Section 3 contains preliminaries that are needed in the sequel. Section 4
is devoted to variational inequalities. Section5 sets forth the results onquasi-variational
inequalities. Section 6 presents applications of the abstract results.

2 Problem Formulation

Given a Banach space Z with the topological dual Z∗, the duality pairing between
Z and Z∗ will be denoted by 〈·, ·〉Z . By ‖ · ‖Z we denote the norm on Z . The
domain and the graph of a multi-valued map F : Z ⇒ Z∗ are given by D(F) :=
{x ∈ Z| F(x) �= ∅}, and G(F) := {(x, w)| x ∈ D(F), w ∈ F(x)}, respectively.
We denote the (effective) domain of a functional Φ : Z → R ∪ {+∞}, which is
�≡ +∞, by D(Φ) := {x ∈ Z| Φ(x) < +∞}. The strong convergence and the weak
convergence are specified by → and ⇀, respectively.

To define the quasi-variational inequality that is the focus of this study, we first
introduce the data. Let X and Y be reflexive Banach spaces with a compact linear
map i : X → Y , and let L : D(L) ⊆ X → X ∗ be a linear, maximal monotone map.
Let A : X ⇒ X ∗ and B : Y ⇒ Y∗ be multi-valued maps, let K be a nonempty,
closed, and convex subset of X , let Φ : X → R∪ {+∞} be a functional �≡ +∞, and
let C : K ⇒ K be a multi-valued map such that for any z ∈ K, C(z) is a nonempty,
closed, and convex subset of K, and let f ∈ X ∗. With these data, we formulate the
following quasi-variational inequality: find x ∈ C(x) ∩ D(L) ∩ D(Φ) such that for
some a ∈ A(x) and b ∈ B(i x), we have
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〈L(x)+a − f, z − x〉X +〈b, i z−i x〉Y+Φ(z) − Φ(x)≥0 for all z∈C(x)∩D(L).

(1)

The statement of (1) incorporates evolutionary inequality problems thanks to the
presence of the possibly unbounded operator Lwhose prototype is the time derivative
L(x) = x ′ on a space as X = L p(0, τ,V), with 1 < p < +∞, τ > 0, and a reflexive
Banach space V . A detailed study of this setting can be found in Zeidler [30] (see
also [7]). We emphasize that the constraint set C(x) in (1) depends on the solution
x . This dependence poses serious challenges and is the main reason that a majority
of techniques which are available for variational inequalities have not yet been fully
extended to quasi-variational inequalities.

Quasi-variational inequality (1) is quite general covering both elliptic and evolution-
ary problems and conveniently includes many important situations and applications
of interest as special cases. In this direction we mention just a simple but relevant
example, namely that if the map A is single-valued with D(A) = X , Φ = 0, B = 0,
and L = 0, then (1) reduces to the quasi-variational inequality given by Bensoussan
and Lions [6]: find x ∈ C(x) such that

〈A(x) − f, z − x〉X ≥ 0 for every z ∈ C(x).

If additionally C(x) = K for every x ∈ K, then it recovers the standard statement of
variational inequality (see [10,20]): find x ∈ K such that

〈A(x) − f, z − x〉X ≥ 0 for every z ∈ K.

A powerful technique for solving quasi-variational inequalities is by finding fixed
points of the associated variational selection which is defined below. For any w ∈ K,
we consider the following parametric evolutionary variational inequality: find x ∈
C(w) ∩ D(L) ∩ D(Φ) such that for some a ∈ A(x) and b ∈ B(i x) and for all
z ∈ C(w) ∩ D(L), we have

〈L(x) + a − f, z − x〉X + 〈b, i z − i x〉Y + Φ(z) − Φ(x) ≥ 0. (2)

This permits us to define a set-valued map, commonly termed as variational selec-
tion,

S : K ⇒ K (3)

by the condition that for each y ∈ K, the image S(y) is the set of all solutions of (2).
Note that if x is a fixed point of the set-valued map S in (3), that is, x ∈ S(x), then x
solves the evolutionary quasi-variational inequality (1).

One of the primary objectives of this work is to study a quite general class of vari-
ational inequalities. Our first result is Theorem 4.1, which deals with evolutionary
variational inequalities involving different types of pseudo-monotone operators. In
Theorem 4.2 we give a new existence result for elliptic variational inequalities with
generalized pseudo-monotone maps. Moreover, in Theorem 4.3 we give another new
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existence result for variational inequalities for pseudo-monotone maps. Another exis-
tence result, which is stated as Theorem4.4, embarks on elliptic variational inequalities
driven by maximal monotone operators. Our results cover new situations. For exam-
ple, the recessivity assumption (H2) (see below) extends all the classical coercivity
conditions. Another trait of interest of our results is that the imposed assumptions
exploit the interplay between the properties of the operators involved in the problem
and the geometry of the sets of constraints, for instance their exterior normal cones.

Another major goal of our work is to obtain criteria for solvability of general quasi-
variational inequalities as stated in problem (1) treating in a unifying way elliptic
and evolutionary problems. Here our first main result is Theorem 5.1, which is based
on Mosco-type continuity properties and Kluge’s fixed point theorem for set-valued
maps. In Theorem 5.3 we give an existence result for quasi-variational inequalities
where the focus is on maximal monotone maps. As a tool to prove this existence
result, we also give the Minty formulation for evolutionary variational inequalities.
Finally, in Theorem 5.4we focus on the case of compact constraints in the evolutionary
quasi-variational inequalities. A relevant feature is that the underlying space is the
domain of the linear, maximal operatorL endowedwith the graph norm. Examples and
applications of abstract results, specifically of Theorem 5.1, are given in Theorems 6.1
and 6.2.

3 Preliminaries

In this section, we collect a few notions and results to be used later in the paper. For
this, we first recall the basic classes of functions that will be dealt with in the present
work.

Definition 3.1 Given a Banach space X , let F : X ⇒ X ∗ be a set-valued map.

• F is called monotone, iff 〈u − v, x − y〉X ≥ 0 for every (x, u), (y, v) ∈ G(F).
• F is called maximal monotone, iffF is monotone and G(F) is not included in the
graph of any other monotone map with the same domain.

• F is called generalized pseudo-monotone iff for any sequence {(xn, wn)} ⊂ G(F)

with xn ⇀ x andwn ⇀ w such that lim sup
n→∞

〈wn, xn−x〉X ≤ 0,wehavew ∈ F(x)

and 〈wn, xn〉X → 〈w, x〉X .

Definition 3.2 The set-valued map F : X ⇒ X ∗ on a Banach space X is called
pseudo-monotone iff it satisfies the conditions:

(PM1) For each x ∈ X , the set F(x) is nonempty, closed, and convex in X ∗.
(PM2) For any sequence {(xn, wn)} ⊂ G(F) such that xn ⇀ x and lim sup

n→∞
〈wn,

xn − x〉X ≤ 0, then for each y ∈ X there exists w(y) ∈ F(x) satisfying
lim inf
n→∞ 〈wn, xn − y〉X ≥ 〈w(y), x − y〉X .

(PM3) The map F is upper semicontinuous from each finite-dimensional subspace
of X to the weak-topology of X ∗.
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Remark 3.1 Kenmochi [16] showed that a set-valued map F : X ⇒ X ∗ with D(F)

= X on a reflexive Banach space X verifying (PM1), (PM2) of Definition 3.2 is
pseudo-monotone if it satisfies the condition:

(PM4) For each x ∈ X and for each bounded subset B of X , there exists a constant
c(B, x) such that for every (z, u) ∈ G(F) with z ∈ B, it holds 〈u, z − x〉X
≥ c(B, x).

The above condition is fulfilled by any monotone map F with D(F) = X as well as
by bounded maps.

Remark 3.2 A pseudo-monotone map F : X ⇒ X ∗ on a reflexive Banach space
X is a generalized pseudo-monotone. Conversely, a generalized pseudo-monotone
and bounded map F : X ⇒ X ∗ on a reflexive Banach space X satisfying (PM1) is
pseudo-monotone (see [7]).

We quote from Kenmochi [16, Proposition 4.1] the following result:

Theorem 3.1 Let F : X ⇒ X ∗ be a set-valued map on a reflexive Banach space
X satisfying (PM1), (PM2), and (PM4), let C be a nonempty, closed, convex, and
bounded subset of X , let Φ : X → R∪ {+∞} be lower semicontinuous, convex, with
C ∩ D(Φ) �= ∅, and let f ∈ X ∗. Then there exists x ∈ C ∩ D(Φ) such that for some
w ∈ F(x) we have

〈w − f, z − x〉X ≥ Φ(x) − Φ(z) for every z ∈ C.

Next we quote the following result from Lunsford [26, Theorem 3.1].

Theorem 3.2 Let X be a separable Banach space with its topological dual X∗ and let
K be a nonempty, compact, convex subset of X. Let the set-valued maps F : K ⇒ X∗
and G : K ⇒ K satisfy the conditions:

(i) The map M : K ⇒ K defined by

M(x) :=
{
z ∈ K | inf

w∈F(x)
〈w, x − z〉X ≤ 0

}

has a closed graph.
(ii) G is lower semicontinuous and has closed graph and nonempty convex values.

Then there exists a fixed point x ∈ G(x) such that

inf
w∈F(x)

〈w, x − z〉X ≤ 0 for all z ∈ G(x).

If, in addition, F(x) is weakly compact, then there exists w ∈ F(x) such that

〈w, x − z〉X ≤ 0 for all z ∈ G(x).

We also recall the continuity property introduced by Mosco [27,28].
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Definition 3.3 Given a nonempty, closed, and convex subset K of a reflexive Banach
space X , a map C : K ⇒ K is called M-continuous iff the following conditions hold:

(M1) For any sequence {xn} ⊂ K with xn ⇀ x, and for each y ∈ C(x), there exists
{yn} such that yn ∈ C(xn) and yn → y.

(M2) For yn ∈ C(xn) with xn ⇀ x and yn ⇀ y, we have y ∈ C(x).

Remark 3.3 We will make use in Theorem 5.1 below of an M-continuity property of
a map C : K ⇒ K relative to a function Φ : X → R ∪ {+∞} which is �≡ +∞ (see
condition (A8)).

The following estimate by Alber and Notik [2] will also be useful:

Lemma 3.1 Let Z be a reflexive Banach space with Z∗ as its dual. Let A : Z ⇒ Z∗
be a monotone map with x̄ ∈ int (D(A)). Then there exists a constant r = r(x̄) > 0
such that for every (x, w) ∈ G(A) and corresponding c := sup{‖w′‖| ‖x ′ − x̄‖ ≤
r, and w′ ∈ A(x ′)} < ∞, we have

〈w, x − x̄〉 ≥ r‖w‖ − (‖x − x̄‖ + r)c. (4)

We conclude this section by stating for easy reference the fixed point theorem of
Kluge [21]:

Theorem 3.3 Let Z be a real reflexive Banach space and let D ⊂ Z be nonempty,
convex, bounded, and closed. Assume that P : D ⇒ D is a set-valued map such that
for every u ∈ D, the set P(u) is nonempty, closed, and convex, and its graph G(P) is
weakly closed. Then P has a fixed point.

Remark 3.4 In Theorem 3.3, the hypothesis on the set D to be bounded in Z can be
replaced by requiring that the image P(D) be bounded. For this it is sufficient to apply
Theorem 3.3 to the closed convex hull co(P(D)) of P(D) in place of D.

4 Existence Results for Variational Inequalities

The first step toward developing an existence theory for quasi-variational inequalities
is to ensure that for every parameter w ∈ K, the corresponding parametric variational
inequality (2) is solvable. Our aim in this section is to give general existence results
for elliptic and evolutionary variational inequalities to be applied later on to quasi-
variational inequalities.

Theorem 4.1 Given the reflexive Banach spacesX and Y with a compact linear map
i : X → Y , and a closed convex subset K of X with nonempty interior intK, assume
that:

(A1) L : D(L) ⊆ X → X ∗ is linear, maximal monotone.
(A2) A : X ⇒ X ∗ is bounded, pseudo-monotone.
(A3) B : Y ⇒ Y∗ is bounded, sequentially strongly-weakly graph closed (i.e., if
(yn, bn) ∈ G(B) with yn → y in Y and bn ⇀ b in Y∗, then (y, b) ∈ G(B)), and
has nonempty, convex, closed values.
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(A4) Φ : K → R ∪ {+∞} is convex, lower semicontinuous, and intK ⊂ D(Φ).
(A5) f ∈ X ∗, and when the setK is unbounded inX there exist u0 ∈ D(L)∩ intK
and an r > 0 satisfying

〈a, v − u0〉X + 〈b, iv − iu0〉Y > 〈 f, v − u0〉X
for all a ∈ A(v), b ∈ B(iv), v ∈ X with ‖v‖X > r .

Then there exists a solution of the following variational inequality: find u ∈ K ∩
D(L) ∩ D(Φ) such that for some a ∈ A(u) and b ∈ B(iu) we have

〈L(u) + a − f, v − u〉X + 〈b, iv − iu〉Y + Φ(v) − Φ(u) ≥ 0 for all v ∈ K. (5)

Proof Define Ψ : X → R ∪ {+∞} by

Ψ (x) =
{

Φ(x), x ∈ K
+∞, x ∈ X \ K.

From assumption (A4), it follows thatΨ is convex, lower semicontinuous and �≡ +∞.
We note that problem (5) is equivalent to the following statement: find u ∈ D(L) ∩
D(Ψ ) such that for some a ∈ A(u) and b ∈ B(iu) it holds

〈L(u) + a − f, v − u〉X + 〈b, iv − iu〉Y + Ψ (v) − Ψ (u) ≥ 0 for all v ∈ X . (6)

In turn, (6) is equivalent to the inclusion problem: find u ∈ D(L) ∩ D(∂Ψ ) such that

f ∈ L(u) + A(u) + i∗B(iu) + ∂Ψ (u), (7)

where the notation ∂Ψ stands for the subdifferential of Ψ in the sense of convex
analysis (see [18]). Indeed, admitting (6) we have

−(L(u) + a − f + i∗b) ∈ ∂Ψ (u),

thus (7) ensues. Conversely, if (7) holds, then (6) follows by definition of the convex
subdifferential ∂Ψ (u). Therefore, in order to complete the proof, it suffices to show
the solvability of (7).

Since intK ⊂ D(Ψ ) as known from hypothesis (A4), it turns out that

intK ⊂ D(∂Ψ ) ⊂ K. (8)

On the other hand, hypothesis (A1) implies that

D(L) is dense in X (9)

(see, e.g., [30, Theorem 32.L]). Then (9) yields

D(L) ∩ intK �= ∅. (10)

123



J Optim Theory Appl (2015) 167:1136–1161 1143

Due to (8) and (10), we are in a position to apply the sum theorem for maximal
monotone operators obtaining

L + ∂Ψ : X ⇒ X ∗ is maximal monotone. (11)

We claim that
i∗Bi : X ⇒ X ∗ is pseudo-monotone. (12)

Indeed, in view of the last part of assumption (A3), the values of the operator i∗Bi
are nonempty and convex. Let x ∈ X and {bn} ⊂ B(i x) with i∗bn → z in X ∗.
By (A3), {bn} is bounded in Y∗, so along a relabeled subsequence we have bn ⇀ b
in Y∗ with b ∈ B(i x), so z = i∗b showing that the set-valued mapping i∗Bi is
closed valued. Furthermore, we note that if xn ⇀ x in X and wn ⇀ w in X ∗,
with wn ∈ i∗B(i xn), then i xn → i x in Y (because i : X → Y is compact) and
wn = i∗bn with bn ∈ B(i xn). Since by assumption (A3), B is bounded, along a
relabeled subsequence there holds bn ⇀ b in Y∗. Using once again (A3), this results
in b ∈ B(i x). We infer that i∗bn → i∗b in Y∗ because i∗ is compact, thus we can
conclude thatwn → w = i∗b ∈ i∗B(i x). From this, taking into accountDefinition3.2,
it is straightforward to derive (12).

Since the sum of pseudo-monotone operators is pseudo-monotone, from (A2) and
(12) it follows that

A + i∗Bi : X ⇒ X ∗ is pseudo-monotone and bounded. (13)

Now on the basis of (11), (13) and assumption (A5), the main theorem on
pseudo-monotone perturbations of maximal monotone mappings (see [30, Theo-
rem 32.A and problem 32.4*]) implies that inclusion (7) holds true for some u ∈
D(L)∩ D(∂Ψ ). The second inclusion in (8) ensures u ∈ K. The equivalence between
problems (5) and (7) completes the proof. ��
Remark 4.1 Theorem 4.1 extends different existence results for variational inequali-
ties aswell as variational-hemivariational inequalities as for instance [16, Theorem4.1]
and [25, Theorem 3.1] (see also [24]). Specifically, for variational-hemivariational
inequalities, if g : Y → R is a locally Lipschitz function, denoting its generalized
gradient by ∂g : Y ⇒ Y∗, we can choose B = ∂g. If the function g is convex,
the generalized gradient ∂g becomes the subdifferential of g in the sense of convex
analysis.

In the next result, we give a new existence result for multi-valued elliptic variational
inequalities where the constraint setK could have an empty interior. The proof of this
result relies on a novel asymptotic recessivity condition (see (H2)) and cannot be
derived from the proof of Theorem 4.1.

Theorem 4.2 Given the reflexive Banach spacesX and Y with a compact linear map
i : X → Y , and a nonempty closed convex subset K of X , and f ∈ X ∗, assume the
conditions (A2), (A3), and

(H1) Φ : X → R ∪ {+∞} is convex, and lower semicontinuous and x0 ∈ K ∩
D(Φ).
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(H2) If K is unbounded, then for every {xn} ⊂ K ∩ D(Φ) with ‖xn‖X → ∞ and
xn‖xn‖X ⇀ x in X , for every an ∈ A(xn), and for every bn ∈ B(i xn), we have

lim inf
n→∞

1

‖xn‖X
[〈an + i∗bn, xn − x0〉X + Φ(xn)

]
> 〈 f, x〉X . (14)

Then there exists a solution of the following variational inequality: find x ∈ K ∩
D(Φ) such that for some a ∈ A(x) and for some b ∈ B(i x) we have

〈a − f, y − x〉X + 〈b, iy − i x〉Y + Φ(y) − Φ(x) ≥ 0 for all y ∈ K. (15)

Proof For every integer n, we define Kn := K ∩ BX (x0, n), where BX (x0, n) stands
for the closed ball in X of center x0 and of radius n. Here x0 ∈ K ∩ D(Φ) is the
point given in assumption (H1). Note that Kn is closed, convex, and bounded in X
with x0 ∈ Kn . By virtue of (A2), (A3), as shown in the proof of Theorem 4.1, the map
A + i∗Bi : X ⇒ X ∗ is bounded and pseudo-monotone.

On the basis of the previous claim and of hypothesis (H1), we can apply Theo-
rem3.1,which ensures that there exists xn ∈ Kn∩D(Φ) such that for somean ∈ A(xn)
and for some bn ∈ B(i xn) we have

〈an + i∗bn − f, z − xn〉X ≥ Φ(xn) − Φ(z) for all z ∈ Kn . (16)

Now we claim that there exists an integer k > 0 such that

‖xk − x0‖X < k. (17)

Arguing by contradiction, assume that for every integer n > 0 it holds

‖xn − x0‖X = n. (18)

Due to the reflexivity ofX , passing to a subsequence we can admit that xn‖xn‖X ⇀ x
in X for some x ∈ X . By setting z = x0 in (16), we obtain

〈an + i∗bn, xn − x0〉X + Φ(xn) − Φ(x0) ≤ 〈 f, xn − x0〉.

Passing to the limit as n → ∞ yields

lim sup
n→∞

[〈
an + i∗bn,

xn − x0
‖xn‖X

〉
X

+ Φ(xn)

‖xn‖X
]

≤ 〈 f, x〉X ,

contradicting (14). Therefore the sequence {xn} is bounded in X .
Let y ∈ K be arbitrary. By (17), for sufficiently small t > 0, we know that

‖xk + t (y − xk) − x0‖X < k.
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Inserting z = xk + t (y − xk), with a sufficiently small t > 0, in (16) for n = k and
using the convexity of Φ, we deduce

〈
ak + i∗bk − f, y − xk

〉
X ≥ Φ(xk) − Φ(y), (19)

where ak ∈ A(xk) and bk ∈ B(i xk) are independent of y. We conclude that xk solves
(15). The proof is thus complete. ��

The following new existence result for variational inequalities with pseudo-
monotone maps can be proven by following the arguments used in the above result
with B = 0 and by means of Remark 3.1.

Theorem 4.3 Given the reflexive Banach space X and a nonempty closed convex
subset K of X , and f ∈ X ∗, assume (H1), and

(C1) A : X ⇒ X ∗ is a set-valued map satisfying (PM1), (PM2), and (PM4).
(C2) If K is unbounded, then for every {xn} ⊂ K ∩ D(Φ) with ‖xn‖X → ∞ and

xn‖xn‖X ⇀ x in X , for every an ∈ A(xn), we have

lim inf
n→∞

1

‖xn‖X [〈an, xn − x0〉X + Φ(xn)] > 〈 f, x〉X . (20)

Then there exists a solution of the following variational inequality: find x ∈ K ∩
D(Φ) such that for some a ∈ A(x) we have

〈a − f, y − x〉X + Φ(y) − Φ(x) ≥ 0 for all y ∈ K. (21)

Now we present an existence theorem for variational inequalities targeting the case
where the operator A is maximal monotone. Generally, in this situation we can have
D(A) �= X , so none of the above theorems is applicable. For the sake of simplicity,
we suppose that L = 0 and B = 0.

Theorem 4.4 Let K be a nonempty, closed, and convex subset of a reflexive Banach
space X , let f ∈ X ∗ and let Φ : X → R ∪ {+∞} be convex, lower semicontinuous.
Assume the following conditions:

(S1) A : D(A) ⊆ X ⇒ X ∗ is a maximal monotone map, with 0 ∈
K ∩ int (D(A)) ∩ int (D(∂Φ)), 0 ∈ A(0), and the weak closure in X of
K ∩ D(A) ∩ D(∂Φ) is contained in D(A).
(S2) For every sequence {xn} ⊂ K ∩ D(A) ∩ D(∂Φ) with ‖xn‖X → ∞ and

xn‖xn‖X ⇀ z in X , we have

lim inf
n→∞

Φ(xn)

‖xn‖X > 〈 f, z〉X . (22)

(S3) For every x ∈ K ∩ D(A) ∩ D(Φ) there exists a = a(x) ∈ A(x) such that if
z ∈ K∩ D(Φ) there are a sequence tn ↓ 0 as n → ∞ with x + tn(z− x) ∈ D(A)
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and a sequence ξn ∈ A((1 − tn)x + tnz) satisfying

lim inf
n→∞ 〈ξn, z − x〉X ≤ 〈a, z − x〉X .

Then there exists x ∈ K ∩ D(A) ∩ D(Φ) such that for a = a(x) ∈ A(x) given in
(S3), we have

〈a − f, z − x〉X ≥ Φ(x) − Φ(z) for all z ∈ K. (23)

Proof SinceX is reflexive, we can renorm it so thatX andX ∗ become strictly convex.
Define the set-valued map T : X ⇒ X ∗ by T := A + NK + ∂Φ, where NK denotes
the subdifferential of the indicator function of K (equivalently, NK(x) is the cone of
exterior normals toK at x ∈ K). Due to assumption (S1), we know that T is a maximal
monotone map (see, e.g., [30, Theorem 32.I]). By a classical surjectivity result, there
exists xn ∈ D(T ) = K ∩ D(A) ∩ D(∂Φ) such that f ∈ T (xn) + εn J (xn), where
J : X → X ∗ stands for the duality mapping of X and the sequence {εn} satisfies
εn ↓ 0. Therefore, for every n ∈ N, there exist wn ∈ A(xn), vn ∈ NK(xn), and
un ∈ ∂Φ(xn) such that

〈wn + vn + un + εn J (xn) − f, y − xn〉X = 0 for all y ∈ X .

Thanks to the inequalities 〈vn, y − xn〉X ≤ 0 and Φ(y) − Φ(xn) ≥ 〈un, y − xn〉X
whenever y ∈ K, it turns out

〈wn + εn J (xn) − f, y − xn〉X ≥ Φ(xn) − Φ(y) for all y ∈ K.

From this and the monotonicity of A, we infer that

〈w + εn J (y) − f, y − xn〉X ≥ Φ(xn) − Φ(y) for all w ∈ A(y) and y ∈ K∩ D(A).

(24)
We claim that {xn} is bounded. Arguing by contradiction, assume that there exists

a relabeled subsequence such that ‖xn‖X → ∞ as n → ∞. In view of the reflexivity
of X , we can find z ∈ X such that up to a subsequence it holds

xn
‖xn‖X ⇀ z in X .

Setting y = 0 and w = 0 in (24), which is possible according to assumption (S1), and
then dividing by ‖xn‖X and letting n → ∞ give

lim sup
n→∞

Φ(xn)

‖xn‖X ≤ 〈 f, z〉X .

This contradicts assumption (S2), which proves the claim.
The reflexivity ofX enables us to pass to a subsequence still denoted {xn} converg-

ing weakly in X to some x ∈ K. Letting n → ∞ in (24) yields

〈w − f, y − x〉X ≥ Φ(x) − Φ(y) for all w ∈ A(y) and y ∈ K ∩ D(A). (25)
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Setting y = 0 and w = 0 in (25) shows that x ∈ D(Φ), whereas from the last part of
assumption (S1) we know that x ∈ D(A).

By virtue of hypothesis (S3), to x ∈ K ∩ D(A) ∩ D(Φ) there corresponds an
a ∈ A(x) as stated therein. Let z ∈ K ∩ D(Φ). Then we can find tn ↓ 0 as n → ∞
with x + tn(z − x) ∈ D(A) and a sequence ξn ∈ A((1 − tn)x + tnz) that fulfills

lim inf
n→∞ 〈ξn, z − x〉X ≤ 〈a, z − x〉X . (26)

Since (1− tn)x + tnz ∈ K ∩ D(A), we can insert y = (1− tn)x + tnz in (25), which
renders through the convexity of Φ that

〈w − f, z − x〉X ≥ Φ(x) − Φ(z) for all w ∈ A((1 − tn)x + tnz).

In particular, we obtain

〈ξn − f, z − x〉X ≥ Φ(x) − Φ(z).

Then on the basis of (26) we get (23). Observe that (23) is valid for any z ∈ K with
Φ(z) = +∞, which completes the proof. ��

Remark 4.2 Condition (S3) in the statement of Theorem 4.4 represents a multi-
valued version of Minty technique for variational inequalities driven by single-valued
monotone and hemicontinuous operators. Nonetheless, Theorem 5.2 gives a Minty
formulation for evolutionary variational inequalities where it is shown that by assum-
ing that K ⊂ int (D(A)) ∩ int (D(∂Φ)), condition (S3) can be dropped. We also note
that the asymptotic recessivity (22) which played the central role in Theorem 4.4 is a
condition that does not involve A; in particular, it does not require any coercivity for
A and is supposed through the data Φ and f . However, it is evident from the above
proof that the classical coercivity can be imposed on A to reach the conclusion.

5 Quasi-Variational Inequalities

In this section, we focus on the evolutionary quasi-variational inequality (1). We pro-
ceed through a parametric approach by means of evolutionary variational inequalities
of type (5). The notation is that indicated in the statement of (1). Let us suppose that
for every w ∈ K, C(w) is a closed convex subset of K with nonempty interior in X
(see also (27) below).

Using the data in problem (1) we formulate the conditions:

(A′
5) f ∈ X ∗, and if the setK is unbounded in X , there exist an r > 0 and a point

u0 ∈ D(L) ∩ int

( ⋂
w∈K

C(w)

)
(27)
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satisfying

〈a, v − u0〉X + 〈b, iv − iu0〉Y > max {〈 f, v − u0〉X , 〈 f − L(u0), v − u0〉X }

for all a ∈ A(v), b ∈ B(iv), v ∈ X with ‖v‖X > r .
(A6) The operator A + i∗Bi is monotone on C(w), that is,

〈av − au, v − u〉X + 〈bv − bu, iv − iu〉Y ≥ 0 for all u, v ∈ C(w),

au ∈ A(u), av ∈ A(v), bu ∈ B(iu), bv ∈ B(iv), w ∈ K.
(A7) For every x ∈ C(w)∩ D(L)∩ D(Φ), there exist Ax ∈ A(x) and Bx ∈ B(i x)
such that

lim sup
t↓0

[〈at , z − x〉X + 〈bt , i z − i x〉Y ] ≤ 〈Ax , z − x〉X + 〈Bx , i z − i x〉Y

whenever z ∈ C(w) ∩ D(L), at ∈ A(x + t (z − x)), bt ∈ B(i x + t (i z − i x)).
(A8) The map C : K ⇒ K has the following Mosco-type continuity properties:

(i) If {wn} ⊂ K and un ∈ C(wn)∩ D(L)∩ D(Φ) satisfywn ⇀ w inX and un ⇀ u
in X , with u ∈ D(L) and L(un) ⇀ L(u) in X ∗, then u ∈ C(w).

(ii) For every sequence {wn} ⊂ K ∩ D(L) with wn ⇀ w in X and for every
v ∈ C(w) ∩ D(L), there exist a subsequence {wnk } of {wn} and a sequence
vk ∈ C(wnk ) ∩ D(L) with vk → v in X and Φ(vk) → Φ(v).

Theorem 5.1 Assume that conditions (A1)–(A4), (A′
5), (A6)–(A8) hold. Then there

exists a solution of the quasi-variational inequality (1).

Proof Conditions (A1)–(A5) are verified with C(w) in place of K for each w ∈ K.
Therefore Theorem 4.1 with C(w) in place of K can be applied. In particular, this
ensures that the parametric problem (2) is solvable for every w ∈ K. Consequently,
the variational selection S : K ⇒ K introduced in (3) has nonempty values. Toward
proving the existence of a fixed point of S, we split the proof in several parts.
Step 1: For every w ∈ K, problem (2) is equivalent to the following one: find x ∈
C(w) ∩ D(L) ∩ D(Φ) such that for every z ∈ C(w) ∩ D(L), and for every a ∈ A(z)
and b ∈ B(i z), we have

〈L(z) + a − f, z − x〉X + 〈b, i z − i x〉Y + Φ(z) − Φ(x) ≥ 0. (28)

The fact that if x ∈ C(w) ∩ D(L) ∩ D(Φ) is a solution of (2), then it solves (28)
follows from (A1) and (A6).

Conversely, suppose that x ∈ C(w) ∩ D(L) ∩ D(Φ) is a solution of (28) and
let z ∈ C(w) ∩ D(L). Since C(w) ∩ D(L) is a convex set, it follows that zt
:= (1 − t)x + t z ∈ C(w) ∩ D(L) for all t ∈]0, 1]. Then (28) yields

0 ≤ 〈L(zt ) + at − f, zt − x〉X + 〈bt , i zt − i x〉Y + Φ(zt ) − Φ(x)
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whenever at ∈ A(zt ) and bt ∈ B(i zt ). The linearity of L and the convexity of Φ as
postulated in (A4) imply

0≤〈tL(z)+(1−t)L(x)+at − f, z − x〉X + 〈bt , i z − i x〉Y + Φ(z) − Φ(x).

(29)

Letting t → 0 in (29), by hypothesis (A7) we find that x solves problem (2).
Step 2: The set S(w) is convex and closed in X whenever w ∈ K.

On the basis of Step 1, we first check that the solution set of (28) is convex in X .
To this end, fix w ∈ K. Let u and v solve (28), so u, v ∈ C(w) ∩ D(L) ∩ D(Φ) such
that for every z ∈ C(w) ∩ D(L) and for every a ∈ A(z) and b ∈ B(i z) we have

〈L(z) + a − f, z − u〉X + 〈b, i z − iu〉Y + Φ(z) − Φ(u) ≥ 0,

〈L(z) + a − f, z − v〉X + 〈b, i z − iv〉Y + Φ(z) − Φ(v) ≥ 0.

Let t ∈ [0, 1]. From the convexity of Φ, it is seen that

〈L(z) + a − f, z − (1 − t)u − tv〉X + Φ(z) − Φ((1 − t)u + tv) ≥ 0,

which in view of Step 1 entails the convexity assertion.
Now we consider {un} ⊂ S(w) with un → u in X . Since un ∈ S(w), we deduce

at once that un ∈ C(w) ∩ D(L) ∩ D(Φ), and for some an ∈ A(un) and bn ∈ B(iun)
we have

〈L(un)+an − f, v − un〉X +〈bn, iv − iun〉Y+Φ(v) − Φ(un) ≥ 0

for all v ∈ C(w) ∩ D(L). (30)

Using that C(w) is a closed subset of K, we get that u ∈ C(w). By hypotheses
(A2) and (A3), the sequences {an} and {bn} are bounded in X ∗ and Y∗, respectively.
Consequently, along relabeled subsequences there hold an ⇀ a in X ∗ and bn ⇀ b in
Y∗. Observing that limn→∞〈an, un − u〉X = 0, we obtain from (A2) that a ∈ A(u)

because thenA is generalized pseudo-monotone (see Remark 3.2). Similarly, in view
of (12), we derive that b ∈ B(iu).

Recalling that intC(w) is nonempty, we can choose a ball B in X such that B ⊂
C(w). Then (30), in conjunction with the density of D(L) in X , guarantees that the
sequence {L(un)} is uniformly bounded from below on the ball B, which ensures that
{L(un)} is bounded in X ∗. Since L is linear, maximal monotone, so weakly graph
closed, we have that u ∈ D(L) and L(un) ⇀ L(u) in X ∗. We also observed from
(30) that u ∈ D(Φ) thanks to the lower semicontinuity of Φ as required in (A4),
Altogether, we can pass to the limit in (30) as n → ∞ proving that u ∈ S(w).
Step 3: The image S(K) of S is bounded in X .

Arguing by contradiction, we assume that there exists a sequence {un} ⊂ S(K)

satisfying
‖un‖X → ∞ as n → ∞. (31)
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Necessarily, (31) requires thatK is unbounded. Let wn ∈ K be such that un ∈ S(wn).
Consequently, un ∈ C(wn) ∩ D(L) ∩ D(Φ) and there exist an ∈ A(un) and bn ∈
B(iun) satisfying (30). Due to (A′

5) we can insert v = u0 in (30), which by the
monotonicity of L reads as

〈an, un − u0〉X + 〈bn, iun − iu0〉Y + Φ(un) − Φ(u0) ≤ 〈 f − L(u0), un − u0〉X .

Taking into account (31), we reach a contradiction to the inequality demanded in
hypothesis (A′

5). In view of this contradiction, we have thus checked that Step 3 is
valid.
Step 4: The graph G(S) of S is sequentially weakly closed in X × X .

Let {(wn, un)} ⊂ G(S) converge weakly to (w, u) in X × X . The fact that un ∈
S(wn) means that wn ∈ K, un ∈ C(wn) ∩ D(L) ∩ D(Φ) and for some an ∈ A(un)
and bn ∈ B(iun), inequality (30) is fulfilled. We note that w ∈ K.

Owing to (27) in (A′
5), we can choose a ball B in X such that B ⊂ C(wn) for all n.

Then (30) and the density of D(L) inX ensure that the sequence {L(un)} is uniformly
bounded from below on the ball B, which guarantees that {L(un)} is bounded in
X ∗. Since L being linear, maximal monotone, is weakly graph closed, we obtain that
u ∈ D(L) and L(un) ⇀ L(u) in X ∗. Then according to assumption (A8) (i) we have
that u ∈ C(w). Moreover, by (A4) and (30) we derive that u ∈ D(Φ).

Since u ∈ C(w) ∩ D(L) ∩ D(Φ), we can invoke assumption (A8) (ii) obtaining
a subsequence of {wn}, denoted again {wn}, corresponding to which there exists a
sequence {zn} with zn ∈ C(wn) ∩ D(L), zn → u in X and Φ(zn) → Φ(u). It is thus
permitted to insert v = zn in (30) resulting in

〈L(un) + an − f, zn − un〉X + 〈bn, i zn − iun〉Y + Φ(zn) − Φ(un) ≥ 0,

which reads as

〈an, un − u〉X ≤ 〈an, zn − u〉X + 〈L(un) − f, zn − un〉X
+〈bn, i zn − iun〉Y + Φ(zn) − Φ(un). (32)

The monotonicity of L, in conjunction with unk ⇀ u in X and L(unk ) ⇀ L(u) in
X ∗, implies

lim inf
n→∞ 〈L(un), un〉X ≥ 〈L(u), u〉X . (33)

Because the map i : X → Y is compact, we have that iun → iu in Y . We also
note that from hypothesis (A3) and property (12) it turns out that along a relabeled
sequence it holds bn ⇀ b in Y∗ with b ∈ B(iu). Thanks to the boundedness of the
map A, up to a subsequence, we have an ⇀ a in X ∗. So (32), (33) and (A4) yield

lim sup
n→∞

〈an, un − u〉X ≤ 0.

Due to this, assumption (A2) and Remark 3.2 entail that

a ∈ A(u) and 〈an, un〉X → 〈a, u〉X . (34)
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Now let an arbitrary v ∈ C(w) ∩ D(L). On the basis of assumption (A8) (ii), there
exists vk ∈ C(wnk ) ∩ D(L) such that vk → v in X and Φ(vk) → Φ(v). By testing
(30) with v = vk when n = nk , we get

〈L(unk )+ank − f, vk − unk 〉X +〈bnk , ivk − iunk 〉Y + Φ(vk) − Φ(unk ) ≥ 0. (35)

Letting k → ∞ in (35) and taking into account (33) and (34) give

〈L(u) + a − f, v − u〉X + 〈b, iv − iu〉Y + Φ(v) − Φ(u) ≥ 0,

which proves that (w, u) ∈ G(S). This confirms that G(S) is sequentially weakly
closed in X × X .

At this point let us apply Theorem 3.3 by taking D to be the closed convex hull of
S(K) inX and let P be the restriction of S to thisD (see Remark 3.4). Steps 2–4 show
that all the hypotheses are verified. Consequently, through Theorem 3.3 we obtain a
fixed point of S, which represents a solution of the quasi-variational inequality (1).
This completes the proof. ��
Remark 5.1 The part regarding the closeness of S(w) in Step 2 cannot be handled on
the basis of Step 1 as done for the convexity of S(w) because we must show that the
limit u belongs to D(L). Actually, this assertion is also the consequence of Step 4.

We now consider the following evolutionary quasi-variational inequality where the
focus is on maximal monotone maps A: find x ∈ C(x) ∩ D(L) ∩ D(Φ) such that for
some a ∈ A(x) we have

〈L(x) + a − f, z − x〉X + Φ(z) − Φ(x) ≥ 0 for all z ∈ C(x) ∩ D(L). (36)

As before, we proceed through the use of the variational selection. For this, for
any w ∈ K, we consider the parametric evolutionary variational inequality: find x ∈
C(w) ∩ D(L) ∩ D(Φ) such that for some a ∈ A(x) we have

〈L(x) + a − f, z − x〉X + Φ(z) − Φ(x) ≥ 0 for all z ∈ C(w) ∩ D(L). (37)

We first give the following Minty formulation for evolutionary variational inequal-
ity:

Theorem 5.2 Let K be a nonempty, closed, and convex subset of a reflexive Banach
space X , let L : D(L) ⊆ X → X ∗ be linear, maximal monotone, let A : D(A) ⊆
X ⇒ X ∗ be a maximal monotone map, let Φ : X → R ∪ {+∞} be a convex,
lower semicontinuous functional �≡ +∞, let f ∈ X ∗, and let K ⊂ int (D(A)) ∩
int (D(∂Φ)). Assume that there exists an element x ∈ K ∩ D(L) such that for every
z ∈ K ∩ D(L) and for every az ∈ A(z), we have

〈L(z) + az − f, z − x〉X ≥ Φ(x) − Φ(z). (38)
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Then there exists a ∈ A(x) such that

〈L(x) + a − f, z − x〉X ≥ Φ(x) − Φ(z) for all z ∈ K ∩ D(L). (39)

Proof Since for every z ∈ K ⊂ D(∂Φ), for every z∗ ∈ ∂Φ(z), and for every y ∈ X ,

we have

Φ(y) − Φ(z) ≥ 〈z∗, y − z〉X ,

it follows from (38) by setting y = x that for any z ∈ K ∩ D(L), for any z∗ ∈ Φ(z),
and for any az ∈ A(z), we have

〈L(z) + az + z∗ − f, z − x〉X ≥ 0. (40)

We define the set-valued map T : X ⇒ X ∗ by T := L + A + NK + ∂Φ, where
NK denotes the subdifferential of the indicator function of K. We know that T is a
maximal monotone map with D(T ) = K ∩ D(L) (see, e.g., [30, Theorem 32.1]).

Therefore, for any uz ∈ NK (z) and for any z ∈ K ∩ D(L), we note from (40) that

〈L(z) + az + z∗ + uz − f, z − x〉X = 〈L(z) + az + z∗ − f, z − x〉X
+〈uz, z − x〉X ≥ 0,

implying by the maximal monotonicity of T that f ∈ (L + A + ∂Φ + NK)(x).
Consequently, there exist a ∈ A(x), u ∈ NK(x), and x∗ ∈ ∂Φ(x) such that

〈L(x) + a + u + x∗ − f, z − x〉X = 0 for all z ∈ X ,

which by using the inequalities 〈u, z − x〉X ≤ 0 and Φ(z) − Φ(x) ≥ 〈x∗, z − x〉X
whenever z ∈ K ∩ D(L), confirms that (39) holds, and the proof is complete. ��

We have the following existence result with focus on maximal monotone maps:

Theorem 5.3 Let K be a nonempty, closed and convex subset of a reflexive Banach
space X , let f ∈ X ∗ and let Φ : X → R ∪ {+∞} convex, lower semicontinuous.
Assume (A1), (A8), and the conditions:

(T1) A : D(A) ⊆ X ⇒ X ∗ is a maximal monotone map, with

0 ∈ int (
⋂
w∈K

C(w)) ⊂ K ⊂ int (D(A)) ∩ int (D(Φ))

and 0 ∈ A(0).
(T2) For every sequence {xn} ⊂ K with ‖xn‖X → ∞, and xn‖xn‖X ⇀ z in X , we
have

lim inf
n→∞

Φ(xn)

‖xn‖X > 〈 f, z〉X . (41)
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Then the evolutionary quasi-variational inequality (36) has a nonempty solution
set.

Proof It is straightforward to check that the assumptions of Theorem 4.4 are fulfilled
for every C(w) in place of K. Specifically, condition (S3) is true because A is hemi-
continuous onK due to (T1), whereas (T1) and (T2) imply (S1) and (S2), respectively.
Then Theorem 4.4 ensures that the parametric evolutionary variational inequality (37)
is solvable for everyw ∈ K. Therefore, the associated variational selectionS : K ⇒ K
has nonempty values for every w ∈ K.

We are going to show the existence of a fixed point of S. Using Theorem 5.2, it is
seen that (37) is equivalent to the following evolutionary variational inequality: find
x ∈ C(w) ∩ D(L) such that for every a ∈ A(z), we have

〈L(z) + a − f, z − x〉X + Φ(z) − Φ(x) ≥ 0 for all z ∈ C(w) ∩ D(L). (42)

This at once proves that the solution set S(w) is convex. It is also closed, which can
be established through a reasoning like in Step 2 of Theorem 5.1. Here the essential
fact is that A is locally bounded on K as guaranteed by assumption (T1).

Our next objective is to show that the imageS(K) is bounded inX . This corresponds
to Step 3 in the proof of Theorem 5.1. By contradiction, suppose that there exists a
sequence {un} ⊂ S(K) satisfying (31). Let wn ∈ K be such that un ∈ S(wn), that is
un ∈ C(wn) ∩ D(L) and there exists an ∈ A(un) such that

〈L(un) + an − f, z − un〉X ≥ Φ(un) − Φ(z) for all z ∈ C(wn) ∩ D(L). (43)

Setting v = 0 in (43), which is permitted in view of assumption (T1), and using the
monotonicity of L and A we arrive at

Φ(un) − Φ(0) ≤ 〈 f, un〉X .

From here it is clear that we reach a contradiction to (41) in assumption (T2). Therefore
S(K) is bounded in X .

Let us prove that the graph G(S) of S is sequentially weakly closed in X × X . In
this respect, let {(wn, un)} ⊂ G(S) converge weakly to (w, u) in X × X . We know
that wn ∈ K and un ∈ C(wn) ∩ D(L) satisfies for some an ∈ A(un) that

〈L(un) + an − f, v − un〉X + Φ(v) − Φ(un) ≥ 0

for all z ∈ C(wn) ∩ D(L). (44)

By (T1), we can choose a ball B in X such that B ⊂ C(wn) for all n. Then (44), the
local boundedness of the monotone map A on K (see (T1)) and the density of D(L)

in X ensure that the sequence {L(un)} is bounded in X ∗. Since L is weakly graph
closed, it turns out that u ∈ D(L) and L(un) ⇀ L(u) in X ∗. Then assumption (A8)

(i) yields that u ∈ C(w).
We claim that {an} is bounded. Since u ∈ C(w) ∩ D(L), we can obtain through

assumption (A8) (ii) a relabeled subsequence of {wn} and a sequence {zn} with zn ∈

123



1154 J Optim Theory Appl (2015) 167:1136–1161

C(wn) ∩ D(L), zn → u in X and Φ(zn) → Φ(u). This allows us to insert v = zn in
(44) getting

〈L(un) + an − f, zn − un〉X + Φ(zn) − Φ(un) ≥ 0.

Lemma 3.1 applied for A − f implies that there are constants c > 0 and r > 0 such
that

r‖an − f ‖X ≤ 〈an − f, un − u〉X + c(r + ‖un − u‖X )

= 〈an − f, un − zn〉X + 〈an − f, zn − u〉X + c(r + ‖un − u‖X )

≤ ‖an − f ‖X ∗‖zn − u‖X + c(r + ‖un − u‖X )

+〈L(un), zn − un〉X + Φ(zn) − Φ(un),

and consequently,

[r−‖zn−u‖X ]‖an− f ‖X ∗ ≤ c(r+‖un−u‖X )+ 〈L(un), zn−un〉X +Φ(zn)−Φ(un).
(45)

Since zn → u and the right-hand side of the above inequality remains bounded, we
deduce the boundedness of {an} as claimed.

Let v ∈ C(w) ∩ D(L). By assumption (A8) (ii), there exists vk ∈ C(wnk ) ∩ D(L)

such that vk → v in X and Φ(vk) → Φ(v). From (44) with v = vk and ank ∈ A(unk )
we infer that

〈L(unk ) + ank − f, vk − unk 〉X + Φ(vk) − Φ(unk ) ≥ 0. (46)

Then, for any av ∈ A(v), (46) enables us to find

〈L(v) + av, unk − v〉X ≤ 〈L(v) + av, unk − v〉X
+ 〈L(unk ) + ank − f, vk − unk 〉X + Φ(vk) − Φ(unk )

= 〈L(unk ) + ank , vk − v〉X
+ 〈L(unk ) + ank − L(v) − av, v − unk 〉X
+ 〈 f, unk − vk〉X + Φ(vk) − Φ(unk )

≤ 〈L(unk ) + ank , vk − v〉X + 〈 f, unk − vk〉X
+ Φ(vk) − Φ(unk ),

where we used the monotonicity of L and A. In the limit we obtain

〈L(v) + av, u − v〉X ≤ Φ(v) − Φ(u) + 〈 f, u − v〉.

We now apply Theorem 3.3 with D being the closed convex hull of S(K) in X
and P the restriction of S to this D. The discussion before ensures that this fulfills all
the requirements in Theorem 3.3. So, Theorem 3.3 provides a fixed point of S, thus a
solution of the quasi-variational inequality (36). This completes the proof. ��

Finally, we study evolutionary quasi-variational inequalities (1) with compact con-
straints C(w), but allowing more flexibility for other data. Suppose that X and Y are
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reflexive Banach spaces and it is given a continuous linear map i : X → Y . Consider
the maps L : W := D(L) ⊆ X → X ∗, A : X ⇒ X ∗, and B : Y ⇒ Y∗ such that
conditions (A1), (A2), (A3) are satisfied.

We notice that W endowed with the graph norm

‖x‖W = ‖x‖X + ‖L(x)‖X ∗ for x ∈ W (47)

is a reflexive Banach space, and further assume that W is separable. Let K be a
nonempty compact convex subset of W, let Φ : X → R ∪ {+∞} be a convex and
lower semicontinuous function with K ⊂ D(∂Φ), let C : K ⇒ K be a multi-valued
map, and let f ∈ X ∗. With these data, the quasi-variational inequality (1) reads: find
x ∈ C(x) ∩ D(L) such that for some a ∈ A(x) and b ∈ B(i x) we have

〈L(x)+ a − f, z− x〉X +〈b, i z − i x〉Y +Φ(z)−Φ(x) ≥ 0 for all z ∈ C(x). (48)

We formulate the following statement:

Theorem 5.4 Under assumptions (A1), (A2), (A3), if ∂Φ is bounded on K and the
multi-valued map C : K ⇒ K is lower semicontinuous with closed graph and non-
empty convex values, then the evolutionary quasi-variational inequality (48) has a
nonempty solution set.

Proof By the definition of the convex subdifferential ∂Φ, it is sufficient to find x ∈
C(x) such that for some a ∈ A(x), b ∈ B(i x), and c ∈ ∂Φ(x) we have

〈L(x) + a + c − f, z − x〉X + 〈b, i z − i x〉Y ≥ 0 for all z ∈ C(x). (49)

Since K ⊂ D(∂Φ), we can introduce for every x ∈ K the set

M(x) :=
{
z ∈ K| inf

a∈A(x),b∈B(i x),c∈∂Φ(x)
[〈L(x) + a + c − f, x − z〉X

+〈b, i x − i z〉Y
] ≤ 0

}
. (50)

Notice that x ∈ M(x) for every x ∈ K.
We claim that the multi-valuedmap M : K ⇒ K defined in (50) has closed graph in

theW topology. To justify this, let (xn, zn) ∈ G(M) be a sequence such that xn → x
and zn → z in W . It is seen from (50) that (xn, zn) ∈ G(M) means that there exist
an ∈ A(xn), bn ∈ B(i xn), cn ∈ ∂Φ(xn) such that

〈L(xn) + an + cn − f, xn − zn〉X + 〈bn, i xn − i zn〉Y ≤ 1

n
. (51)

We note that xn → x in X , zn → z in X , and L(xn) → L(x) in X ∗, which ensures
that

〈L(xn), xn − zn〉X → 〈L(x), x − z〉X as n → ∞. (52)
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On the other hand, it turns out fromassumptions (A2) and (A3) that along relabeled sub-
sequences one has an ⇀ a inX ∗ and bn ⇀ b inY∗ for some a ∈ A(x) and b ∈ B(i x).
Moreover, the boundedness of ∂Φ on K renders that along a relabeled subsequence
one has cn ⇀ c in X ∗, with c ∈ ∂Φ(x) because ∂Φ is maximal monotone. Then,
taking into account (51) and (52), we infer that

〈L(x) + a + c − f, x − z〉X + 〈b, i x − i z〉Y
≤ lim supn→∞ [〈L(xn) + an + cn − f, xn − zn〉X + 〈bn, xn − zn〉X ] ≤ 0,

which entails z ∈ M(x), so our claim holds true. Hence hypothesis (i) in Theorem 3.2
is verified.

Since we assumed that C : K ⇒ K is lower semicontinuous with closed graph and
nonempty convex values, hypothesis (ii) in Theorem 3.2 holds also true. Therefore we
are able to apply Theorem 3.2 for X = W , K = K, F = (L+A+ i∗Bi +∂Φ)|K − f
and G = C. Notice that our hypotheses ensure that the set F(x) is bounded, convex,
and closed in X ∗, and so weakly compact in W∗. Therefore, the final assertion of
Theorem 3.2 enables us to complete the proof. ��

Remark 5.2 Sufficient conditions to have the properties required for the multi-valued
map C : K ⇒ K in Theorem 5.4 can be found in [26].

6 Examples and Applications

Here we present two applications of Theorem 5.1. In order to emphasize the main
ideas by avoiding technicalities, we regard situations less general than the abstract
result permits. For instance, we take the set K to be the whole space.

The first application deals with an elliptic quasi-variational inequality in the form
of a hemivariational inequality. Given a bounded domain Ω in RN and a number p ∈
[2,+∞), we consider the reflexiveBanach spacesW 1,p

0 (Ω) and L p(Ω) endowedwith

their usual norms. Notice that the inclusion W 1,p
0 (Ω) ⊂ L p(Ω) is a dense compact

embedding. Recall that the negative (Dirichlet) p-Laplacian −
p : W 1,p
0 (Ω) →

W−1,p′
(Ω), with 1/p + 1/p′ = 1, defined by 
pu = div(|∇u|p−2∇u), satisfies

〈−
pu + 
pv, u − v〉
W 1,p

0 (Ω)
≥ c(p)‖u − v‖p

W 1,p
0 (Ω)

for all u ∈ W 1,p
0 (Ω), (53)

with a constant c(p) > 0, and has a positive first eigenvalue λ1.
Let f ∈ W−1,p′

(Ω) and let a convex and continuous function Φ : W 1,p
0 (Ω) → R.

Next we fix a function J : L p(Ω) → Rwhich is Lipschitz continuous on the bounded
sets in L p(Ω) and whose generalized gradient ∂ J : L p(Ω) ⇒ L p′

(Ω) satisfies
0 ∈ ∂ J (0) and
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〈ξ−η, u−v〉L p(Ω) ≥−c0‖u−v‖p
L p(Ω) for all u, v ∈ L p(Ω), ξ ∈ ∂ J (u), η ∈ ∂ J (v),

(54)
with a constant c0 < λ1c(p).

At this point, we formulate the following quasi-variational inequality: given ρ > 0,
find u ∈ W 1,p

0 (Ω) provided

‖u‖
W 1,p

0 (Ω)
≤ ρ + ‖u‖L p(Ω) (55)

such that for some b ∈ ∂ J (u) we have

〈−
pu − f, v − u〉
W 1,p

0 (Ω)
+ 〈b, v − u〉L p(Ω) + Φ(v) − Φ(u) ≥ 0 (56)

for all v ∈ W 1,p
0 (Ω) with ‖v‖

W 1,p
0 (Ω)

≤ ρ + ‖u‖L p(Ω).

Theorem 6.1 If the locally Lipschitz function J : L p(Ω) → R fulfills (54), then for
any ρ > 0, problem (55), (56) possesses at least a solution.

Proof Fix a number ρ > 0 and set X = W 1,p
0 (Ω) and Y = L p(Ω). Our goal is to

apply Theorem 5.1 for K = W 1,p
0 (Ω), L = 0, A = −
p, B = ∂ J , and a convex,

lower semicontinuous function Φ : W 1,p
0 (Ω) → R. It is clear that requirements (A1)

and (A4) are true. It is known that −
p is continuous, bounded, uniformly monotone
(see (53)), so it is pseudo-monotone. Therefore assumption (A2) is verified.

In order to check assumption (A3), let bn ∈ ∂ J (yn) with yn → y in L p(Ω) and
bn ⇀ b in L p′

(Ω). Then [7, Proposition 2.171] ensures that b ∈ ∂ J (y). Furthermore,
∂ J has nonempty, convex, closed values, and it is a bounded operator because J is
supposed to be Lipschitz continuous on the bounded sets. Altogether, we can conclude
that assumption (A3) is fulfilled.

We define the multi-valued map C : W 1,p
0 (Ω) ⇒ W 1,p

0 (Ω) by

C(w) =
{
v ∈ W 1,p

0 (Ω)| ‖v‖
W 1,p

0 (Ω)
≤ ρ + ‖w‖L p(Ω)

}
for all w ∈ W 1,p

0 (Ω).

By (53) and (54), the following estimate is valid

〈−
pu − f, u〉
W 1,p

0 (Ω)
+ 〈b, u〉L p(Ω) ≥ (c(p) − λ−1

1 c0)‖u‖p

W 1,p
0 (Ω)

−‖ f ‖W−1,p′ (Ω)
‖u‖

W 1,p
0 (Ω)

for every u ∈ W 1,p
0 (Ω) and b ∈ ∂ J (u). Since c0 < λ1c(p), we derive that hypothesis

(A′
5) is satisfied with u0 = 0. Through an estimate of the same type based on (53) and

(54), we arrive at the conclusion that hypothesis (A6) holds true.
Given u, z ∈ C(w) with w ∈ W 1,p

0 (Ω), from [7, Proposition 2.171] it turns out
that
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lim sup
t↓0

〈bt , z − u〉L p(Ω) ∈ {〈b, z − u〉L p(Ω)| b ∈ ∂ J (u)}

whenever bt ∈ ∂ J (i x + t (z − x)) with t ↓ 0. This enables us to obtain

lim sup
t↓0

〈bt , z − u〉L p(Ω) ≤ max{〈b, z − u〉L p(Ω)| b ∈ ∂ J (u)} = 〈Bu, z − u〉L p(Ω),

for some Bu ∈ ∂ J (u)), because the generalized gradient ∂ J (u)) is weak*-compact in
L p′

(Ω). Combining with the continuity of −
p, this proves assertion (A7).

We now pass to the proof of assertion (A8). Let {wn} ⊂ W 1,p
0 (Ω) and un ∈ C(wn)

satisfy wn ⇀ w and un ⇀ u in W 1,p
0 (Ω). It is thus known that ‖un‖W 1,p

0 (Ω)
≤

ρ + ‖wn‖L p(Ω) and along a relabeled subsequence wn → w in L p(Ω). Therefore in
the limit we get ‖u‖

W 1,p
0 (Ω)

≤ ρ + ‖w‖L p(Ω), so u ∈ C(w), which ensues condition

(A8) (i).
Let {wn} ⊂ W 1,p

0 (Ω) with wn ⇀ w in W 1,p
0 (Ω) and v ∈ C(w). We set

vn := ρ + ‖wn‖L p(Ω)

ρ + ‖w‖L p(Ω)

v.

Along a relabeled subsequence, we have vn → v inW 1,p
0 (Ω) and vn ∈ C(wn) because

v ∈ C(w) and thus

‖vn‖W 1,p
0 (Ω)

= ρ + ‖wn‖L p(Ω)

ρ + ‖w‖L p(Ω)

‖v‖
W 1,p

0 (Ω)
≤ ρ + ‖wn‖L p(Ω).

Hence condition (A8) (ii) holds, too.
Since all the hypotheses of Theorem 5.1 are verified, we are in a position to apply

this result to problem (55), (56), which leads to the desired conclusion. ��
Our second application concerns an evolutionary quasi-variational inequality. Let

a bounded domain Ω in R
N and numbers p ∈ [2,+∞) and τ > 0. As before

we denote p′ the number satisfying 1/p + 1/p′ = 1. For simplicity, we set X
:= L p(0, τ ;W 1,p

0 (Ω)), which is a reflexive Banach space under the usual norm and
has the dual space X ∗ = L p′

(0, τ ;W−1,p′
(Ω)). Let f ∈ X ∗, and let a convex,

continuous function Φ : X → R. We also introduce the map A : X ⇒ X ∗ by

A(u)(t) = −
p(u(t)) for all u ∈ X , t ∈ [0, τ ]. (57)

Fix a (possibly nonlinear) compact operator T : X → X . We state the following
evolutionary quasi-variational inequality: given a number ρ > 0, find u ∈ X with
u′ = du

dt ∈ X ∗ and u(0) = 0 such that

‖u‖X ≤ ρ + ‖Tu‖X (58)
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and
〈u′ + A(u) − f, v − u〉X + Φ(v) − Φ(u) ≥ 0 (59)

for all v ∈ X with ‖v‖X ≤ ρ + ‖Tu‖X .

Theorem 6.2 For any ρ > 0, problem (58), (59) possesses at least a solution.

Proof Fix a ρ > 0. Recall that the (time) derivative on X := L p(0, τ ;W 1,p
0 (Ω)) is

an operator L : D(L) ⊆ X → X ∗ defined as follows: L(u) = u′ for all u ∈ D(L),
where

D(L) = {
u ∈ X | u′ ∈ X ∗, u(0) = 0

}
.

It is a linear, maximal monotone operator (see e.g., [7, Lemma 2.149]), so assumption
(A1) is satisfied. The mapA : X ⇒ X ∗ introduced in (57) is monotone, hemicontinu-
ous, and bounded (see e.g., [30, p. 878]), which implies assumption (A2). Hypothesis
(A3) is verified by taking B = 0.

Choose K := X . Then hypothesis (A4) is automatically satisfied. Let us define the
multi-valued map C : X ⇒ X by

C(w) = {v ∈ X | ‖v‖X ≤ ρ + ‖Tw‖X } for all w ∈ X .

By (53), the operatorA introduced in (57) is coercive, which renders true assump-
tion (A′

5) for instance with u0 = 0. Since the operatorA is monotone, whereas B = 0,
condition (A6) is valid. Condition (A7) holds because the operatorA is hemicontinu-
ous.

In order to check condition (A8) (i), we consider sequences {wn} ⊂ X and un ∈
C(wn) satisfyingwn ⇀ w and un ⇀ u inX .We have that ‖un‖X ≤ ρ+‖Twn‖X and,
thanks to the compactness of the mapping T , we can pass to a relabeled subsequence
such that Twn → Tw in X . Taking the limit results in ‖u‖X ≤ ρ + ‖Tw‖X , that is
u ∈ C(w), thus (A8) (i) holds.

In order to establish condition (A8) (ii), we consider {wn} ⊂ X with wn ⇀ w in
X and v ∈ C(w). Set

vn := ρ + ‖Twn‖X
ρ + ‖Tw‖X v.

Using that the map T is compact and v ∈ C(w), it is straightforward to show that
along a relabeled subsequence vn → v in X and vn ∈ C(wn). Since the function Φ is
continuous, condition (A8) (ii) is satisfied.

We have proven that all the hypotheses of Theorem 5.1 hold true. Through Theo-
rem 5.1, we can infer the solvability of problem (58), (59), which completes the proof.

��

7 Conclusions

Wepresented very general existence results for evolutionary and elliptic variational and
quasi-variational inequalities. Motivated by diverse applications, numerous constraint
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sets enjoying Mosco-type convergence properties have been studied (see [3,15]). Evi-
dently our general theorems can conveniently be coupled with such constraint sets to
give new existences results. Moreover, the notion of generalized solutions for quasi-
variational inequalities can be used to relax some of the monotonicity conditions from
our results (see [13,14]). It is also natural to explore issues such as regularization,
penalization, and control for the evolution quasi-variational inequalities studied in
this work (see [1,9,17,19]).
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