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Abstract We consider a generalized expenditure function and the corresponding
Hicksian demand. First, we provide some economic interpretation of the problem
at stake. Then, we obtain different properties of the solution: existence, Lipschitz
behavior and differential properties. Finally, we provide a Slutsky-type property.
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1 Introduction

In 1947, Samuelson suggested the dual approach in consumer theory. Instead of con-
sidering a consumer maximizing his utility with respect to a budget constraint, one
does consider a consumer minimizing his expenditure with respect to a level of util-
ity he must achieve. In other words, one does consider the reciprocal problem of the
Utility Maximization Problem. Due to this reciprocity, there exist well-known rela-
tions between the Marshallian demand (i.e., the solution of the Utility Maximization
Problem) and the Hicksian demand (i.e., the solution of the Expenditure Minimization
Problem). For a discussion concerning these relations, we refer the reader to [1]. For a
more general discussion about the concept of duality in economics, we refer the reader
to [2] and [3]. As Barten and Böhm explained in [1]:
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In certain cases, it provides a more direct analysis of the price sensitivity of
demand[…].

For this reason, the so-called Expenditure Minimization Problem has been extensively
studied during the last decades. For instance, one can mention the early contribution
of McKenzie [4], who obtained Slutsky equation in demand theory using expenditure
minimization instead of utility maximization. We shall also mention the contribution
of Diamond and McFadden [5], who provided three uses of the expenditure function
in public finance: deadweight burden of taxation, optimal taxation and optimal invest-
ment. For an extensive discussion about the Expenditure Minimization Problem and
for more references, we refer the reader to [1] and [2].

The purpose of thiswork is to dealwith a generalization of this problem to amultiple
constraint case. It is customary to studymultiple constraintmodels in consumer theory.
On the other hand, there is little research concerning consumer facing more than
one utility constraint. As illustrated in next section, in many relevant situations, the
consumer or the economic planner faces more than one utility constraint and this
observation calls for such a generalization. Contrary to what one could expect, we do
not restrict ourselves to the problem of existence and uniqueness. As a matter of fact,
we study the Lipschitz behavior of the solution and we identify the conditions on the
parameters (i.e., the utility levels and the price vector) under which this solution is
continuously differentiable around some point. Our last contribution is a Slutsky-type
property that generalizes the classical one.

The paper is divided as follows. Section 2 states the problem and the assumptions.
In addition, we provide three economic motivations for the optimization problem. In
Sect. 3, after characterizing the solution by necessary and sufficient first-order con-
ditions, we prove the existence and continuity of the solution. Section 4 studies the
classical properties of the generalized expenditure function and states that the gener-
alized Hicksian demand is locally Lipschitz continuous. The proof relies on the result
of Cornet and Vial [6] on the Lipschitz behavior of the solution of a mathematical
programming problem. In Sect. 5, we show that the generalized Hicksian demand
is continuously differentiable if a strict complementary slackness condition holds.
Following Fiacco and McCormick [7], this result is a consequence of the classical
Implicit Function Theorem. Finally, we obtain a Slutsky-type property for the gen-
eralized Hicksian demand. Section 6 presents perspectives of further research, while
Sect. 7 summarizes the results.

2 Assumptions and Economic Motivations

Let u1, . . . , un be n functions defined on R
�++. The problem with which we shall be

concerned throughout this paper is:

max〈−p · x〉 s.t. uk(x) ≥ vk , k = 1, . . . , n , x � 0 (1)

with p belonging toR�++ and v := (vk)
n
k=1 ∈ R

n . The solution of this problemwill be
denoted by Δ(p, v) and called the generalized Hicksian/compensated demand. The
aim of the paper is to study the properties of this mapping.
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We proceed to posit the assumptions concerning the functions (uk)
n
k=1.

1

Assumption 2.1 For all k = 1, . . . , n,

1. uk is C2 on R�++,
2. uk is differentiably strictly quasi-concave (i.e., D2uk(x) is negative definite on

∇uk(x)⊥ for all x ∈ R
�++),

3. uk is differentiably strictly increasing (i.e., ∇uk(x) � 0,∀x ∈ R
�++).

Assumption 2.2 For all k ∈ {1, . . . , n}, if a sequence (xν)ν≥0 converges to x ∈
∂R�++, then:

lim
ν 
−→+∞

∇uk(xν) · xν

‖∇uk(xν)‖ = 0.

The boundary behavior of the preferences is given by Assumption 2.2. Roughly
speaking, when the quantity of one good is very small, the consumer basically wants
to increase it as explained in [8]. For that reason, this boundary assumption ensures us
that the demand is interior. Generally, one considers the usual boundary assumption:
For all x ∈ R

�++, the closure in R
� of the set {x ′ ∈ R

�++|u(x ′) ≥ u(x)} is contained in
R

�++ which implies Assumption 2.2. However, both assumptions are not equivalent.
For instance, the Expected Utility Function often does not satisfy the classical closure
assumption. As an example, the utility function u defined on R

2++ by: u(x1, x2) =
1

2
√

x1 + 1

2
√

x2 satisfies Assumption 2.2 but not the classical boundary assumption.2

In Problem (1), all individual utility levels are not relevant. To determine the relevant
one, we shall define, for v ∈ R

n , the set P(v) by:

P(v) :=
{

x ∈ R
�++ : uk(x) ≥ vk, ∀k = 1, . . . , n

}
.

If this set is empty or equal to the whole set, the vector v is obviously not relevant.
This motivates the definition of the set V by:

V :=
{
v ∈ R

n : P(v) �= ∅ and P(v) �= R
�++

}
.

1 In the paper, we use the following notations:

– x ≥ y means: xh ≥ yh for all h = 1, . . . , �.
– x � y means: xh > yh for all h = 1, . . . , �.
– eh denotes the h-th vector of the canonical basis of R�.
– 1� denotes the �-dimensional vector whose coordinates are all equal to one. Similarly, 1n denotes the

n-dimensional vector whose coordinates are all equal to one. When there is no confusion, we simply
write 1.

– Let v ∈ R
�.‖v‖ := ∑�

h=1 |vh | denotes the norm of the vector v.

2 Take x :=
(
1

4
,
1

4

)
and

(
xν :=

(
1 + 1

ν
,
1

ν

))

ν≥1
as a counterexample.
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As a matter of fact, one can give a more explicit description of V · v ∈ V means:
∃z ∈ R

�++ such that uk(z) ≥ vk for all k = 1, . . . , n and ∃z′ ∈ R
�++, k0 ∈ {1, . . . , n}

such that: uk0(z
′) < vk0 . Clearly, the set V is an open3 subset of Rn .

Finally, we proceed to define the generalized expenditure function.

Definition 2.1 The function e is defined on R
�++ × V by: e(p, v) = p · Δ(p, v) and

called the generalized expenditure function.

Before pursuing the analysis, we present next three applications.

2.1 Generalization of the Classical Compensated Demand

Ifn is equal to one,Δ(p, v) is the so-called compensated demandorHicksian demand.4

So Δ(p, v) can be viewed as a multi-criterion extension of the Hicksian demand.

2.2 Public Goods

The following application concerns economic planning. Consider an economy with n
consumers, � public goods5 and m private goods. Suppose that the basket of private
goods (ξk) ∈ R

m++ to be consumed by consumer k has already been chosen, i.e.,
uk(x) := Uk(x, ξk)whereUk is the utility function of consumer k. As usual, consumer
k wishes to achieve an individual level of utility vk ∈ R. In this situation, the economic
planner shall choose the cheapest basket of public goods x ∈ R

�++ with respect to the
price p ∈ R

�++ given the individual levels of private goods (ξk)
n
k=1 and the individual

levels of utility (vk)
n
k=1. Therefore, he has to solve Problem (1).

2.3 Private Goods and Positive Externalities

Consider an economy with n consumers and r private goods. The price of good h is
denoted by qh , while the consumption bundle of consumer k is denoted by xk . Suppose
that the consumption of every good by another consumer has a positive effect6 on the
utility of consumer k. Hence, the utility function uk of consumer k is a function of both
his consumption bundle xk and the consumption bundles of the others (x j ) j �=k . Let
us write � := rn and denote by x := (xk) ∈ R

�++ the concatenation of consumption
bundles. In the same way, the vector p := (q, . . . , q) ∈ R

�++ denotes the n-replica
of the price vector p ∈ R

r++. An economic planner who wants to minimize the

3 For the sake of completeness, this is proved in “Appendix.”
4 A presentation of the expenditure minimization problem can be found in any intermediary or advanced
microeconomics textbook. For the sake of completeness, we refer the reader to [9].
5 A good is considered public if its use by one agent does not prevent other agents from using it[…].
(Laffont[10])
6 Recall the definition in [9]: An externality is present whenever the well-being of a consumer or the
production possibilities of a firm are directly affected by the actions of another agent in the economy. Many
economic goods can be considered as positive externalities such as vaccination or network.
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expenditure of the society p · x = ∑n
k=1 q · xk with respect to the individual utility

levels (vk)
n
k=1 has

7 to solve Problem (1).

3 Existence of the Solution

In order to establish the existence of the solution of Problem (1), we first show that this
solution is characterized by first-order conditions. We then introduce an intermediary
ε-problem and prove that this problem admits a unique solution Δε(p, v) for all
(p, v) ∈ R

�++ × V. In addition, the continuity of the function Δε is proved. Finally,
we present a characterization of Δε(p, v) by first-order conditions. Combining these
results, we show that Δ(p, v) is a singleton and that Δ defines a continuous function
on R�++ × V .

3.1 Characterization of the Generalized Hicksian Demand by First-Order
Conditions

Proposition 3.1 Let p ∈ R
�++ and v ∈ V . The two following assertions are equiva-

lent:

1. x̄ = Δ(p, v)

2. There exists λ ∈ R
n+ \ {0} such that x̄ is the solution of the system:

p =
n∑

k=1

λk∇uk(x)

λk(uk(x) − vk) = 0, k = 1, . . . , n

uk(x) ≥ vk, k = 1, . . . , n

x � 0 (2)

Proof We first show that Assertion 1 implies Assertion 2. Since v belongs to the set
V , there exists some element x ∈ R

�++ such that uk(x) ≥ vk for all k ∈ {1, . . . , n}.
Hence, bymonotonyof the functions (uk)

n
k=1, there exists x̂ such thatuk(x̂) > vk for all

k = 1, . . . , n. As a consequence, the first-order conditions are necessary since Slater’s
Constraint Qualification holds.8 The multiplier vector λ := (λk)

n
k=1 is necessarily

different from zero because the vector p belongs to R�++.
Nowwe prove the converse statement. The functions (uk)

n
k=1 are differentiable and

quasi-concave and satisfy: ∇uk(x) �= 0 for all x ∈ R
�++, while the objective function

is linear.9 This implies that the first-order conditions are sufficient. Thus, Assertion 2
implies Assertion 1. ��

7 The first scalar product q · x is the one of R� where � = rn, while the second scalar product p · xh is the
one of Rr .
8 See [11].
9 See [12].
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3.2 An Intermediary Existence Result

To solve Problem (1), we have to study an intermediary problem. For ε > 0 and
(p, v) ∈ R

�++ × V , we shall consider the following problem:

max〈−p · x〉 s.t. uk(x) ≥ vk , k = 1, . . . , n , xh ≥ ε , h = 1, . . . , � (3)

We start by an existence result:

Proposition 3.2 Let ε > 0. The solution of Problem (3) denoted by Δε(p, v) exists
and is a singleton.

Proof Since v belongs to V , there exists z0 ∈ R
�++ such that uk(z0) ≥ vk for all k ∈

{1, . . . , n}. Let us choose z1 ∈ R
� such that z1h ≥ max{ε, z0h} for all h ∈ {1, . . . , �}.

We now consider another intermediary problem.

max〈−p · x〉 s.t. uk(x) ≥ vk , k = 1, . . . , n , p · x ≤ p · z1 , x ≥ ε1 , x ∈ R
� (4)

Note that z1 is feasible for Problem (4) because z1 ≥ z0 and because the functions
(uk)

n
k=1 are increasing.

We proceed to prove that Problem (4) admits a solution.
The set A := {

x ∈ R
� : x ≥ ε1 and p · x ≤ p · z1

}
is a compact set as a closed and

bounded set in a finite-dimensional vector space. Moreover, the function x 
−→ −p ·x
is continuous on R

�++. According to Weierstrass Theorem, this problem admits a
solution.

Thanks toLemma8.2 proved in “Appendix,”wededuce that Problem (3) also admits
a solution. Finally, we show that the set Δε(p, v) is a singleton. Suppose that x and x ′

are distinct solutions of Problem (3). The element x ′′ := 1

2
(x + x ′) is clearly feasible.

By strict quasi-concavity of the functions (uk)
n
k=1, we have indeed uk(x ′′) > vk for

every k = 1, . . . , n. On the other hand, x ′′ ≥ ε1 obviously holds. Both x and x ′
cannot be equal to ε1. So, at least one of them has a component larger than ε. To fix
the ideas, suppose that x1 is larger than ε. By continuity of the functions (uk)

n
k=1, for

δ positive sufficiently small, we have: x ′′ − δe1 ≥ ε1 and uk(x ′′ − δe1) > vk for every
k = 1, . . . , n.Moreover, the element x̃ := x ′′−δe1 satisfies−p·x = −p·x ′′ < −p·x̃ .
So x is not a solution. Consequently, one gets a contradiction. ��

3.3 Continuity of Δε

Proposition 3.3 Let ε > 0. The function Δε is continuous on R
�++ × V .

Proof Let ( p̄, v̄) ∈ R
�++ × V and a compact neighborhood Ξ of ( p̄, v̄).Ξ is chosen

such that v belongs to V for all (p, v) ∈ Ξ.10 The compactness of Ξ allows us to
say that for M > ε sufficiently large, u := M1 belongs to the interior of P(v) for all

10 This is possible when the neighborhood is small enough thanks to the openness of V .
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(p, v) ∈ Ξ . Take such a number M . The budget sets11 B(p, p · u) are all contained
in a compact set K since p varies in a compact set contained in R

�++ when (p, v)

belongs to Ξ . For M̄ > 0 large enough, M̄1 does not belong to the compact set K .
Proceed now to define the correspondence Cε, for (p, v) ∈ Ξ , by:
Cε(p, v) := {x ∈ R

�++ : uk(x) ≥ vk, ∀k = 1, . . . , n and ε1 ≤ x ≤ M̄1} and
observe that, by construction, for all (p, v) ∈ Ξ,Δε(p, v) is the solution of the
following problem:

max〈−p · x〉 s.t. x ∈ Cε(p, v).

On Ξ , the interior of Cε(p, v) is nonempty since V is an open set. We now prove
that the function (p, v) 
−→ Δε(p, v) is continuous on Ξ . This is a consequence of
Berge’s Theorem [13]. We have to prove that the correspondence Cε is both upper
semi-continuous and lower semi-continuous on Ξ . First, we show that Cε is upper
semi-continuous. On Ξ , the set Cε(p, v) remains in a fixed compact set. Hence, the
upper semi-continuity of Cε is equivalent to the closedness of its graph, which is a
consequence of the continuity of the functions (uk)

n
k=1.

We now have to show that the correspondence Cε is lower semi-continuous. We
proceed to define the correspondence Ĉε on Ξ by:
Ĉε(p, v) := {x ∈ R

�++ : uk(x) > vk, ∀k = 1, . . . , n and ε1 � x � M̄1}. The
correspondence Ĉε has an open graph by the continuity of the functions (uk)

n
k=1. So

Ĉε is lower semi-continuous. Note that Ĉε(p, v) is nonempty for every (p, v) ∈ Ξ

since M̄1 belongs to the interior of P(v).
Moreover, the closure of Ĉε(p, v) is Cε(p, v). Let x ∈ Cε(p, v). We have to

show that x is the limit of a sequence of elements of Ĉε(p, v). We choose y ∈
Ĉε(p, v) and observe that for all λ ∈]0, 1[, (1 − λ)x + λy belongs to Ĉε(p, v) since
the functions (uk)

n
k=1 are strictly quasi-concave. To conclude, x is the limit of the

sequence

(
xν :=

(
1 − 1

ν

)
x + 1

ν
y

)

ν≥1
. Moreover, one remarks that xν belongs to

Ĉε(p, v) for all ν ≥ 1 and the result follows.
We deduce that the correspondence Cε is lower semi-continuous since the clo-

sure of a lower semi-continuous correspondence is lower semi-continuous.12 Berge’s
Theorem implies that the function Δε is continuous on the set Ξ . Since ( p̄, v̄) was
arbitrary chosen, the function Δε is continuous on R�++ × V as required. ��

3.4 Characterization of Δε( p, v) by First-Order Conditions

Let ε > 0. The first-order conditions corresponding to Problem 3 are: there exists
λε ∈ R

n+ and με ∈ R
�+ such that Δε(p, v) is the solution of the system:

11 Like in standard microeconomics, for p ∈ R
�++ and w > 0, the budget set B(p, w) is defined by:

B(p, w) := {x ∈ R
�++ : p · x ≤ w}.

12 See the appendix of [14].
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p =
n∑

k=1

λε
k∇uk(x) + με

λε
k(uk(x) − vk) = 0, k = 1, . . . , n

uk(x) ≥ vk, k = 1, . . . , n

με
h(ε − xh) = 0, h = 1, . . . , �

xh ≥ ε, h = 1, . . . , � (5)

As before, the first-order conditions are necessary since Slater’s Constraint Qualifi-
cation holds. These are sufficient since the objective function is linear, the functions
(uk)

n
k=1 are quasi-concave functions satisfying ∇uk(x) �= 0 for all x ∈ R

�++, and the
� additional constraints are affine.

3.5 Existence and Continuity of the Solution of Problem 1

In this subsection, we show the main result of the section:

Proposition 3.4 For (p, v) ∈ R
�++×V,Δ(p, v) is a singleton. Moreover, the function

Δ is continuous on R
�++ × V .

Proof Let (p, v) ∈ R
�++ × V and a compact neighborhood Ξ of (p, v). As before,

the set Ξ is chosen such that v′ belongs to V for all (p′, v′) ∈ Ξ . Our goal is to show
that there exists ε̄ > 0 such that the multipliers με̄ corresponding to the additional
constraints are equal to zero for all (p′, v′) in Ξ . We reason by contradiction. Oth-
erwise, there would exist a decreasing sequence (εq)q≥0 that converges to zero and
a sequence of Ξ denoted by (pq , vq)q≥0 such that μεq := μεq (pq , vq) �= 0 for all
q ∈ N.

Necessarily, (xq := Δεq (pq , vq))q≥0 is bounded. Observe that for all q ∈ N, xq �
0 and a · xq ≤ pq · xq ≤ p0 · x0 where the vector a is defined by ah := min{p′

h :
(p′, v′) ∈ Ξ} for h = 1, . . . , �. The vector a is well defined and belongs to R

�++
thanks to the compactness of Ξ . Therefore, the sequence (xq)q≥0 converges, up to a
subsequence, to an element x̂ belonging to the boundary of R�++, and the sequence
(pq , vq)q≥0 converges, up to a subsequence, to some element ( p̂, v̂) ∈ Ξ since Ξ is a
compact set. In particular, remark that v̂ belongs toV and that p̂ is necessarily different
from zero. With a slight abuse of notation, we denote the converging subsequences as
the original sequences.

Observe that the sequence (μεq )q≥0 is also a bounded sequence thanks to the first
equation of (5) and to the compactness of Ξ . From the same equation, recalling that
we consider the 1-norm, we have,13 for all k ∈ {1, . . . , n} and all q ∈ N:

λ
εq
k ‖∇uk(xq)‖ ≤ ‖pq‖.

13 We write: λ
εq
k := λ

εq
k (pq , vq ) for k ∈ {1, . . . , n} and q ∈ N to simplify the notation.
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Therefore, for all k ∈ {1, . . . , n} and all q ∈ N, we get:

0 ≤ λ
εq
k

∇uk(xq) · xq

‖pq‖ ≤ ∇uk(xq) · xq

‖∇uk(xq)‖ .

Thanks to Assumption 2.2 and in light of the previous inequalities, for all k ∈
{1, . . . , n}, we get:

lim
q 
−→+∞ λ

εq
k

∇uk(xq) · xq

‖pq‖ = 0.

For q ∈ N, doing an inner product with xq and dividing by ‖pq‖ in the first equation
of (5), we find:

pq · xq

‖pq‖ =
n∑

k=1

λ
εq
k

∇uk(xq) · xq

‖pq‖ + 1

‖pq‖μεq · xq .

In view of (5), therefore, μεq · xq = εqμεq · 1 = εq‖μεq ‖ converges to zero. So the
right-hand side goes to zero. Therefore, the left-hand side goes to zero. Since ( p̂, v̂)

belongs to Ξ, p̂ � 0 and the limit of the sequence (xq)q≥0 is necessarily zero.
Let x̄ ∈ R

�++. We show that x̄ belongs to P(v̂). For q sufficiently large, one
has: x̄ � xq and x̄ � εq1. Thus, by monotony of the functions (uk)

n
k=1, for all

k ∈ {1, . . . , n}, uk(x̄) > uk(xq) ≥ vkq . Hence, x̄ belongs to P(vq) for q large enough.
By continuity of the functions (uk)

n
k=1, x̄ belongs to P(v̂). Since x̄ was arbitrarily

chosen, we have: P(v̂) = R
�++, which contradicts v̂ ∈ V .

Consequently, there exists ε̄ > 0 such that με̄ = 0. Thus, Δε̄(p′, v′) satisfies the
necessary and sufficient conditions corresponding to Problem 1 for all (p′, v′) in Ξ .
So Δ = Δε̄ on Ξ and the continuity of Δ follows. ��

4 Properties of Δ and e.

InSect. 4.1,we study the properties of the function e. Section4.2 concerns theLipschitz
behavior of Δ with respect to (p, v).

4.1 Properties of e

Proposition 4.1 1. The function e is concave in p.
2. The function e is twice differentiable a.e., and D2e(p, v) is semi-definite negative

when defined.
3. Dpe(p, v) = Δ(p, v) and D2

pe(p, v) = DpΔ(p, v) when defined.

Proof The proof is essentially borrowed fromRader [15]. The function−e is convex in
p as amaximumof linear functions. For instance, e(p, v) canbedefinedby−e(p, v) =
max{−p · y : y ∈ R

�++ , uk(y) ≥ vk , k = 1, . . . , n} for all (p, v) ∈ R
�++ ×V . So the

function e is concave. ByAlexandroff’s Theorem, the function e is twice differentiable
a.e. in p, and its second derivative is semi-definite negative.
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By Theorem 4(iii) of Rader [15], Dpe(p, v) = Δ(p, v). ��

4.2 Lipschitz Behavior of Δ

Firstly, for all (p, v) ∈ R
�++ × V , we define the set M(p, v) by:

M(p, v) := {k ∈ {1, . . . , n} : uk(x) = vk} .

Secondly, we define the set Π by:

Π :=
{
(p, v) ∈ R

�++ × V : (∇uk(Δ(p, v)))k∈M(p,v) are independent.
}

.

This set is an open subset of R� ×R
n thanks to the continuity of Δ on the open subset

R
�++ × V .
For (p, v) ∈ Π , the constraints of the optimization problem satisfy the Linear

Independence Constraint Qualification(LICQ).14 Thus, the multipliers are unique,
and the following definition makes sense. For (p, v) ∈ Π , we proceed to define the
set K (p, v) by:

K (p, v) := {k ∈ {1, . . . , n} : λk(p, v) > 0} .

From Proposition 3.1, one deduces that this set is nonempty. The cardinal of K (p, v)

is denoted by κ(p, v).
Finally, the set Π̃ is defined as follows:

Π̃ := {(p, v) ∈ Π : K (p, v) = M(p, v)} .

Proposition 4.2 The function Δ and the multipliers (λk)
n
k=1 are locally Lipschitz

continuous on Π . Hence, the function Δ is differentiable almost everywhere on Π .

Proof This proposition happens to be a consequence of Corollary 2.3 in Cornet and
Vial [6]. Actually, we prove that the function Δ is locally Lipschitz on Π by verifying
that Assumptions (A.0), (C.1) and (C.2) of Corollary 2.3. of [6] are satisfied.We define
on R�++ × Π the following functions:

– f (x, p, v) := p · x ,
– gk(x, p, v) := vk − uk(x) for k ∈ {1, . . . , n}.

For (p, v) ∈ Π,Δ(p, v) is the solution of the problem:

min f (x, p, v)

s.t.

gk(x, p, v) ≤ 0, k = 1, . . . , n (6)

x is the variable and (p, v) are the parameters.

14 See [11].
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Assumptions (A.0) are satisfied. Indeed, we take U = R
�++ and P = Π . The set U

is an open set, and the set P is obviously a metric space. So Assumption (A.0) (i) is
satisfied. Assumptions (A.0) (ii), (iii), (iv) and (v) are satisfied because the functions at
stake areC2 on the setU × P . Assumption (A.0) (vi) is satisfied with Q = C = −R

n+.
Assumption (C.1) is satisfied. This is an immediate consequence of the definition

of Π .
Assumption (C.2) is satisfied. Let x be a solution of Problem (6) with a correspond-

ing multiplier λ := (λk)
n
k=1. We shall verify that for all h ∈ R

�, h �= 0 such that:
∇ f (x, p, v) · h = 0 and ∇gk(x, p, v) · h = 0 for k ∈ K (p, v), we have:15

⎡
⎣D2 f (x, p, v) +

∑
k∈K (p,v)

λk D2gk, x, p, v)

⎤
⎦ h · h > 0.

Observing that D2 f ≡ 0, it remains to show that:

∑
k∈K (p,v)

λk D2gk(x, p, v)h · h > 0.

whence

−
∑

k∈K (p,v)

λk D2uk(x)h · h > 0

which is true becauseofAssumption2.1 andbecause∇uk(x)·h = 0 for k ∈ K (p, v).16

According to Corollary 2.3 in [6], the functionΔ is locally Lipschitz onΠ . Thanks
to Rademacher’s Theorem, the function Δ is almost everywhere differentiable on Π .

��

5 Differential Properties of Δ

In this section, we interest ourselves in the continuous differentiability of Δ. We
conclude by a Slutsky-type property.

5.1 Continuous Differentiability of Δ

Proposition 5.1 If ( p̄, v̄) ∈ Π̃,Δ is continuously differentiable on a neighborhood
of ( p̄, v̄).

Proof This proof is essentially an application of the Implicit Function Theorem and
is quite standard borrowing ideas from Fiacco and McCormick[7]. Without loss of
generality, suppose that: M( p̄, v̄) = {1, . . . , r}. Observe that in light of the continuity

15 Thanks to Proposition 3.1, K (p, v) is nonempty.
16 Indeed, K (p, v) is a subset of M(p, v)
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of bothΔ and the utility functions (uk)
n
k=1, we can neglect the nonbinding constraints.

Moreover, by continuity of the positive multipliers, one has: M(p, v) = M( p̄, v̄) on
a neighborhood of ( p̄, v̄). As shown above, since the first-order optimality conditions
are necessary and sufficient and in light of the continuity of the functions (uk)

n
k=1, the

elementΔ(p, v) and the correspondingmultipliers λ(p, v) are solution of the equation
G(x, λ, p, v) = 0 where G is defined by:

G(x, λ, p, v) =
⎧⎨
⎩

p −
r∑

k=1
λk∇uk(x)

uk(x) − vk, k = 1, . . . , r
(7)

To show that the function Δ and the multipliers are continuously differentiable on
a neighborhood of ( p̄, v̄), from the Implicit Function Theorem, it suffices to show
that the partial Jacobian matrix of G with respect to (x, λ) has full column rank17 at
x̄ := Δ( p̄, v̄). This matrix is equal to:

M :=

⎡
⎢⎢⎢⎣

−∑n
k=1 λ̄k D2uk(x̄) −∇u1(x̄) · · · · · · −∇ur (x̄)

∇u1(x̄)T 0 · · · · · · 0
...

...
...

...
...

∇ur (x̄)T 0 · · · · · · 0

⎤
⎥⎥⎥⎦ .

It is sufficient to prove that M

(
Δx
Δλ

)
= 0 implies: Δx = 0 and Δλ = 0.Δx is a

column vector of dimension �, and Δλ is a column vector of dimension r . We have to
solve the system:

−
r∑

k=1

λ̄k D2uk(x̄)Δx −
r∑

k=1

Δλk∇uk(x̄) = 0

∇uk(x̄) · Δx = 0, ∀k = 1, . . . , r

Multiplying the first line by (Δx)T , one has that:

−
r∑

k=1

λ̄k(Δx)T D2uk(x̄)Δx −
r∑

k=1

Δλk∇uk(x̄) · Δx = 0

∇uk(x̄) · Δx = 0, ∀k = 1, . . . , r

17 The vectors are, by convention, column vectors, and the transpose of a vector x is denoted by xT . We
use the notation: λ̄ := λ( p̄, v̄).
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whence

−
r∑

k=1

λ̄k(Δx)T D2uk(x̄)Δx = 0

∇uk(x̄) · Δx = 0, ∀k ∈ {1, . . . , r}

For all k ∈ {1, . . . , r}, D2uk(x̄) is negative definite on ∇uk(x̄)⊥ and since Δx ∈
∇uk(x̄)⊥, we find: Δx = 0. Hence, the first equation becomes:

−
r∑

k=1

Δλk∇uk(x̄) = 0

and we conclude that Δλ = 0 since ( p̄, v̄) ∈ Π . ��

5.2 Slutsky-Type Property

The next result is a generalization of the well-known result about the negative defi-
niteness of the Slutsky matrix.

Proposition 5.2 Suppose that ( p̄, v̄) ∈ Π̃ . The matrix DpΔ( p̄, v̄) has rank � −
κ( p̄, v̄), and its kernel is the linear space L (∇uk(x̄) , k ∈ M( p̄, v̄)

)
spanned by the

family (∇uk(x̄))k∈M( p̄,v̄) where x̄ := Δ( p̄, v̄).

Proof According to Proposition 4.1, DpΔ( p̄, v̄) defines a symmetric negative semi-
definite bilinear form. Observe that by continuity ofΔ, we can neglect the nonbinding
constraints and, by continuity of the positive multipliers, M(p, v) = M( p̄, v̄) on a
neighborhood of ( p̄, v̄).

Without loss of generality, suppose that M( p̄, v̄) = {1, . . . , r}. For p ∈ R
�++

sufficiently near from p̄,Δ(p, v̄) is characterized by the first-order conditions:18

uk(Δ(p, v̄)) = v̄k, k = 1, . . . , r

p =
n∑

k=1

αk(p)∇uk(ΔK (p, v̄)) with αk(p) > 0, k = 1, . . . , r (8)

We proceed to differentiate the first condition with respect to p and readily obtain at
p̄ for all q ∈ R

�:

∇uk(Δ( p̄, v̄)) · DpΔ( p̄, v̄)(q) = ∇uk(x̄) · DpΔ( p̄, v̄)(q) = 0, ∀k = 1, . . . , r.

From these equalities, we readily deduce that the image of DpΔ( p̄, v̄) is contained in
the linear subspace ∩r

k=1∇uk(x̄)⊥ of dimension �− r , recalling that ( p̄, v̄) belongs to
Π . Furthermore, since DpΔ( p̄, v̄) defines a symmetric negative semi-definite bilinear

18 To simplify the notation, for all k = 1, . . . , r , we write αk (p) := λ(p, v̄).
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form, ∇uk(x̄) belongs to the kernel of DpΔ( p̄, v̄) for all k = 1, . . . , r . Thus, the
dimension of the image of DpΔ( p̄, v̄) is at most � − r . Differentiating the second
condition with respect to p, for q ∈ R

�, we find:

q =
r∑

k=1

αk(p)D2uk(Δ(p, v̄))DpΔ(p, v̄)(q) +
n∑

k=1

(∇αk(p) · q)∇uk(Δ(p, v̄)).

In view of the previous equation, for all q ∈ ∩r
k=1∇uk(x̄)⊥, we get:

q =
[

r∑
k=1

αk( p̄)D2uk(x̄)

]
DpΔ( p̄, v̄)(q).

Thus, we have for q ∈ ∩r
k=1∇uk(x̄)⊥:

DpΔ( p̄, v̄)(q) = 0 �⇒ q = 0.

So the kernel of the restriction on ∩r
k=1∇uk(x̄)⊥ of DpΔ( p̄, v̄) is reduced to zero. As

a consequence, the rank of DpΔ( p̄, v̄) is at least �−r . Finally, the rank of DpΔ( p̄, v̄)

is equal to � − r , and the kernel of DpΔ( p̄, v̄) is equal to L (∇uk(x̄) , k = 1, . . . , r).
��

6 Perspectives

Two important questions concern, respectively, the sets Π and Π̃ . We wish to know
under which conditions on the functions (uk)

n
k=1, the setΠ is “big” from a topological

or measure-theoretical point of view. We already know that this set is an open set and
a legitimate question would be under which conditions this set is dense and under
which conditions it has full Lebesgue measure. When the number of constraints n is
equal to 1, we obviously have:Π = R

�++ ×V . In view of the applications, we provide
another framework in which the equality Π = R

�++ × V holds true. Suppose that for
k := 1, . . . , n,

uk(x) :=
�∑

h=1

akhbh(xh)

where the functions (bh)�h=1 are twice continuously real-valued functions such that:

b′
h > 0 and b′′

h < 0, limxh−→0 b′(xh) = 0 and
∑�

h=1 ah = 1 for all k ∈ {1, . . . , n}.
As it was shown in [16], the only requirement is that A := (akh)1≤k≤n,1≤h≤� has full
row rank. Such a framework can be related to decision theory through the Expected
Utility Function (if bh := b for all h ∈ {1, . . . , �}) or to the separable preferences in
microeconomics. We refer to [9] for a discussion about the Expected Utility Function
and to [1] for a presentation of separable preferences. As a consequence, in these cases,
the generalized Hicksian demand Δ is locally Lipschitz on the whole set R�++ × V .

Similarly, we wish to find conditions under which the set Π̃ is dense in Π . Under
these conditions, the generalizedHicksian demandΔwould be locally Lipschitz on the
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open set Π and continuously differentiable on its open dense subset of full Lebesgue
measure Π̃ .

7 Conclusions

Existence and uniqueness of the solution of Problem (1) are established under mild
assumptions. Without any additional assumption, the continuity of the solution with
respect to the parameter is obtained. On the other hand, the Lipschitz behavior only
requires (LICQ). We shall point out that this analysis can be carried out because we
restricted ourselves to the relevant levels of utility. If Strict Complementary Slackness
holds in addition at a point, the solution is continuously differentiable on a neigh-
borhood of this point. Strangely enough, a Slutsky-type property is obtained in this
case.
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Appendix

Lemma 8.1 The set V is an open set.

Proof Let v0 ∈ V . We want to construct a neighborhood of v0 contained in V . There
exists x0 ∈ R

�++ such that: uk(x0) ≥ v0k for all k = 1, . . . , n, and there exists
y0 ∈ R

�++ and k0 ∈ {1, . . . , n} such that: uk0(y0) < v0k0 . Proceed to define v by

v := v0 − 1n and v̄ by v̄k := uk(x0 + 1�) for k = 1, . . . , n. Finally, we define the

sets A := {v ∈ R
n : uk0(y0) < vk0} and B :=

n∏
k=1

]
vk, v̄k

[
. By construction, the set

A∩ B is a nonempty open neighborhood of v0 contained in V . Since v0 was arbitrarily
chosen, one concludes that the set V is an open set. ��

Lemma 8.2 The sets of solutions of Problem (3) and Problem (4) coincide.

Proof We first prove that the set of solutions of Problem (3) is a subset of the one of
Problem (4). Let y be a solution of Problem (3). Since z1 is feasible for Problem (3),
one finds: p · y ≤ p · z1. So y is feasible for Problem (4) and y is clearly a solution to
Problem (4). In fact, the set of feasible points of Problem (4) is obviously contained
in the set of feasible points of Problem (3).

Let y be a solution of Problem (4), and y is feasible for Problem (3) by construction.
Let z be feasible for Problem (3), either −p · z < −p · z1 or −p · z ≥ −p · z1. In the
first case, obviously, −p · z ≤ −p · y. In the second case, z is feasible for Problem
(4). Thus, −p · z ≤ −p · z1 ≤ −p · y. Since z was arbitrarily chosen, we conclude
that y is a solution to Problem (3). ��
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