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Abstract In this paper, we discuss the stability of three kinds of minimal point sets
and three kinds of minimizer sets of naturally quasi-functional set-valued optimization
problems when the data of the approximate problems converges to the data of the
original problems in the sense of Painlevé—Kuratowski. Our main results improve and
extend the results of the recent papers.
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1 Introduction

Stability is widely studied in optimization theory and methodology. In recent years,
some papers have appeared, which are devoted to this topic for vector-valued opti-
mization problems; see, e.g., [1-12] and references therein. Attouch and Riahi [1]
first studied this topic. Lucchetti and Miglierina [4] discussed stability for a convex
vector-valued optimization problem based on the concept of the continuous conver-
gence of the vector-valued mappings. Oppezzi and Rossi [6,7] extended the definition
of gamma-convergence from scalar-valued to vector-valued and applied it to this topic
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for a convex vector-valued problem. Lalitha and Chatterjee [9,10] further discussed
this topic for a properly quasi-convex vector-valued problem and improved the main
results of [6,7].

Also, set-valued optimization problems have been intensively investigated and
applied to various problems, such as game theory, duality principles, robust optimiza-
tion, and fuzzy optimization; see, e.g., [ 13—15] and the references therein. However, the
studies dealing with the stability of set-valued optimization problems have so far been
very limited [2,3]. The line of proof in [2,3] is similar to ones used for vector-valued
optimization problems. To the best of our knowledge, the studies of stability based
on the other ways for set-valued optimization problems are not available. Maybe, the
main reason is that the notion of set-valued mappings is more complicated than vector-
valued ones. Therefore, we must employ new analysis tools and techniques, which
are different from the ones in [2,3], to discuss the stability of set-valued optimization
problems.

The aim of this paper is to use some techniques similar to the ones of [4,6-11]
to study the stability for set-valued optimization problems. Following the idea of
[4,6-11], we first establish the Painlevé—Kuratowski convergence of three kinds of
minimal point sets of naturally quasi-functional set-valued optimization problems.
Furthermore, we investigate the Painlevé—Kuratowski set-convergence of three kinds
of minimizer sets for set-valued optimization problems. Our results are extensions and
improvements in the corresponding ones for vector-valued optimization problems in
[9-11].

The paper is organized as follows. In Sect. 2, we recall some concepts and establish
fundament results. In Sect. 3, we establish the Painlevé—Kuratowski set-convergence
results of three kinds of minimal point sets of naturally quasi-functional set-valued
optimization problems. In Sect. 4, we furthermore establish the Painlevé—Kuratowski
set-convergence results of three kinds of minimizer sets. In Sect. 5, we provide a
conclusion of the work presented.

2 Preliminaries

Throughout this paper, let P be a pointed (i.e., P N (—P) = {0}), closed and convex
cone in R/ with nonempty interior. For a nonempty set D of R/, let int D, d D and D¢
denote the interior, boundary and complement of D, respectively. Let B(0, r) denote
the closed ball centered at 0 and with radius . Some fundamental terminologies are
presented as follows.

Definition 2.1 Let D be a nonempty set of R!. A point y € D is said to be

(1) a minimal (resp. weak minimal) point of D iff (D — y) N (—P) = {0} (resp.
(D — y) N (—int P) = ¥), and Minp D (resp. Minjy p D) denotes the set of all
minimal (resp. weak minimal) points of D;

(ii) aHenig proper minimal point of D iff there exists a convex cone P’ withint P’ # (J
such that P\{0} C int P’ and (D — y) N (—P’) = {0}, and Ming D denotes the
set of all Henig properly minimal points of D.

It is easy to check that Ming D C Minp D € Minjy p D.
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We now consider the following constrained set-valued optimization problem

min F(x), (A, F)

x€A

where F : RF = R’ is a set-valued mapping and A C R is a nonempty set.

Based on the above notions of minimality for a set, we denote by Minp F'(A),
Minjy p F(A) and Ming F (A) the sets of all minimal, weak minimal and Henig proper
minimal points, respectively.

Definition 2.2 A pair (xg, yo) with xg € A and yg € F(xp) is said to be a minimizer
(resp. weak minimizer, Henig minimizer) of the problem (A, F) iff yp € Minp F(A)
(resp. yo € Minjpc p F(A), yo € Minlg F(A)). Wedenote by Ep (A, F),Einip (A, F)
and Eg (A, F) the set of all minimizers, weak minimizers and Henig minimizers of
the problem (A, F), respectively.

Definition 2.3 (see [5]) A sequence of sets {D,} of Rk converges to a set D in the

sense of Painlevé—Kuratowski (for short, P.K.) convergence, denoted by D, E)’ D,
iff lim sup, D, € D C liminf, D,, where

liminf, D, ;= {x € R™ : x = lim, 00 X5, Xn € D,, Vn € N} and
limsup, D, := {x € R" : x = limg_ o0 Xk, Xk € Dp,, Vk,{nx} € N}.

Definition 2.4 (see [3,16]) A sequence of set-valued mappings F, : RE= R (n e N)
converges to F : R = R/ in the sense of P.K. convergence, denoted by F, Ly ,
iff epiF;, PX epiF, where epiF := {(x,z) € R x Rl : z € F(x) + P).

We introduce a virtual element +oc in R/ meaning that forany y € R/, 400 € y+P.
Then, we recall the following concept.

Definition 2.5 Let F, F,, : RF - R/ (n € N) be set-valued mappings, A, A, (n €
N) be sets in R¥ and {(A,, Fy) : n € N} be the corresponding sequence pair. We
say that (A,, F;,) converges to (A, F) in the sense of P.K. convergence, denoted by

(An, E) 25 A, Py, itf B, 25 F, where

F,(x), x € A,;
{+o00}, x e RF\ 4,

F(x), xeA;

and F(x) = [{+oo}, x e RE\ A.

Fn(x) = [

Definition 2.6 (see [17,18]) Let A be a nonempty and convex subset of RK. A set-
valued mapping F : R¥ = R’ is said to be:

(i) P-function (for short, P-F) on A iff for every x;, x» € A and A € [0, 1],
AF(x1) + (1 = A)F(x2) € F(xy) + P, where xj := Ax; + (1 — A)xp;
(ii) P-like-function (for short, P-LF) on A iff for every x1,x; € Aand A € [0, 1],
there exists z € A such that AF(x;) + (1 — X)) F(x2) C F(z) + P;
(iii) properly quasi- P-function (for short, P-PQF) on A iff for every x1, x, € A and
re [0,1], F(x1) € F(xp)+ P or F(x2) € F(x))+ P;
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(iv) naturally quasi-P-function (for short, P-NQF) on A iff for every x1, x; € A,
y1 € F(x1),y2 € F(x2) and A € [0, 1], there exists n € [0, 1] such that
1+ (L —=mn)y2 € F(xp) + P.

We say F is strictly P-function ( for short, P-SF) on A iff for every x1, xp € A,

x1 # xp and A €]0, 1[ such that the inequality of (i) holds whenever P is replaced
by int P. Similarly, F is P-SLF, P-SPQF and P-SNQF on A.

Proposition 2.1 (see [17]) The following statements hold
(1) P-SF = P-F = P-LF and P-SF = P-SLF = P-LF;
(2) P-SPQF = P-PQF = P-NQF and P-SPQF = P-SNQF = P-NQF.

Proposition 2.2 (see[17]) A set-valued mapping F : R = Rl is P-LF onanonempty
and convex subset A of R if and only if F(A) + P is a convex set.

Definition 2.7 (see [19]) A set-valued mapping F : R = R/ is said to be compact-
valued (resp. convex-valued) on a set A in R* if for any x € A, F(x) is a compact
(resp. convex) subset of R

Lemma 2.1 (see [19]) Let F : R¥ = R/ be a set-valued map and xo € A of R* be a
given point. If F be compact-valued on A, then F is upper semicontinuous (for short,
u.s.c) at xo € A if and only if for any sequence {x,} S A with x, — xo and for
every y, € F(x,), there exist yo € F(xo) and a subsequence {y,,} of {y,} such that
Ynp = YO-

Lemma 2.2 (see [17]) Let F : R¥ = R! be u.s.c. and convex-valued on a convex set
A in RF, If F is P-NQF on A, then F is P-FLon A, i.e., F(A)+ P is a convex subset.

Definition 2.8 (see [20]) A nonempty and convex subset A of R is said to be rotund
if the boundary of A does not contain line segments, i.e., for any x, x’ € A : x # x/,
Ix, X'[N@ A) # @, where Jx, x'[:= {Ax + (1 — M)x’ : A €]0, 1[ }.

For the set-valued mapping, we introduce a similar concept as following.

Definition 2.9 A convex-valued mapping F : R¥ = R/ is said to be rtound-valued
on A C RFiff for any x € A, F(x) is a rotund subset of R/,

Remark 2.1 If F is a single-valued mapping, then F is both rotund-valued and
compact-valued on A C Rk,

Motivated by the idea of Theorem 4.3 in [21], we get the following result.

Lemma 2.3 If A is a convex set, F is P-SNQF and F is convex-valued and rotund-
valued on A, then Minjy p F(A) = Minp F(A).

Proof 1Tt suffices to show that Minjy p F(A) € Minp F(A). Let y € Minjy p F(A),
hence there exists x € A such that

ye F(x) and (F(A)—y) N(—intP) =7. (1)
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By the contradiction, assume y ¢ Minp F (A), i.e., (F(A) — y) N (—P) # {0}. Then
there exist x € A and y € F(x) such that y € y + P\{0}. The following two
cases would be considered: Case 1. If x = x, then it follows from y € y + P\{0}
and the rotundity of F(x) that ]y, y[N (9 F(x))¢ # @, ie., Jy, y[Nint F(x) # @.
Hence there exists y’ € ]y, y[Nint F(x). We can choose € € int P such that y) — € €
F(x) N (y —int P), which contradicts (1).

Case 2. If x # x, by the P-SNQF property of F, for every A €]0, 1[, there exist
n €[0,1]and y' € F(Ax + (I — A)X) such that ny + (1 — )y € y’ + int P, which
with y €  + P\{0} yields that y € y" + int P, which contradicts (1). O

Corollary 2.1 Assume the conditions of Lemma 2.3 are satisfied. Then we have
Einp(F, A) = E(F, A).

The following example is given to illustrate Lemma 2.3 and Corollary 2.1.

Example 2.1 Let P = R2, A =Rand F : R = R? be defined as
Fx)={(rs):x><r<x’+1,x><s<x*+1}, VxeR.

Clearly, we have: (i) F is P-SNQF on A; (ii)) Minp F(A) = {(0,0)} and
Minjpp F(A) = {(0,5) : 0 < s < 1} U{(r,0) : 0 < r < 1}. So, Lemma 2.3
and Corollary 2.1 do not hold in the absence of rotundity of F.

Definition 2.10 For « € R/, the sublevel set of F : R¥ = R on A C RF at height o
isF*:={xeA:uaeF(x)+ P}.

For any o € R!, we have: (i) F* = F%, where F : RF = R/ is defined as in
Definition 2.5; (ii) F* is a convex set whenever F' is a P-NQF mapping.

Definition 2.11 (see [22]) For a convex set A of R¥, the recession cone of A is the
set0T(A):={deR":a+tde A, Yaec A, Yt>0.

It is known that if A is a closed and convex set in R¥, then 0T (A) = (0} iff A
is a bounded set. By Theorem 1.1.17 of [5], for any convex and closed set A in Rk,
0t(A)={deRF:3aec A, a+tde A, Vit=>0}

Lemma 2.4 Let A be a nonempty, closed and convex set in R¥ and F be an u.s.c. P-
NOQF and compact-valued mapping on A. If ANF® # ( fora € R, then 0t (ANFY) =
{0} if and only if AN F% is bounded.

Proof If AN F® # () for @ € R, then A N F¥ is obviously a convex set. To apply
the remark above, we only need to verify that A N F¢ is a closed set. Indeed, let
X, € AN F% with x,, > x € A as A is closed. Then there exists y, € F(x;,) such
that o € y, + P. By Lemma 2.1, there exists a subsequence {yy,,} of {y,} such that
Y = ¥ € F(x),and so a € F(x) + P. Therefore, x € A N F%, which means that
AN F%is closed.

[ «<]. This implication follows from the remark above.

[=1]. Assume to the contrary that there exists a sequence {x,} in A N F* such
that ||x,|| — oo. By passing to a subsequence if necessary, we can assume that
“n 5 dand ||d|| = 1. Next we show that in such case d € 07 (A N F%). Indeed,

[EA
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let x € AN F* be arbitrarily given. From the convexity of A, it follows that for any

real number ¢ > 0, z, := (1 — ”x’—n”)x + mxn € A for sufficiently large n. It is easy

to see that 7, — z := x + td € A as A 1s closed. Since x,, x € A N F¥, there exist
yp € F(x,) and y € F(x) such that

aey,+P and v e€y+ P. 2)

As F is P-NQF on A, there is n € [0, 1] such that ny, + (1 — n)y € F(z,) + P,
which together with (2) yields that « € F(z,) + P, i.e.,z, € AN F*. Hence, there
exists w, € F(z,) such that « — w, € P. By Lemma 2.1, there exists a subsequence
{wy, } of {w,} such that w,, — w € F(z). So, we have « — w € P. This implies that
ae F(z)+P,ie.,z€ F¥.Thusz = x+td € ANF¥and0 # d € 0T (ANF%) = {0},
which is a contradiction. The proof is complete. O

Lemma 2.5 Let A be a nonempty, closed and convex subset of R¥ and F be an
u.s.c., P-NQF and compact-valued mapping on A. If 0T (A N F%) = {0} whenever
ANFY £ @ fora € R, then F(A) + P is a closed set.

Proof Take a sequence {y,}in F(A) + P such that y, — y. There exists a sequence
{x,}in A such that y, € F(x,) + P. By y, — y, for any € € int P sufficiently large
n, we have y + € € y, + P. Hence, y + € € F(x,) + P for sufficiently large n. So,
we have x,, € A N FY*€ and there exists w, € F(x,) such that y + ¢ — w, € P. As
0T (AN FY*€) = {0}, it follows from Lemma 2.4 that {x, } is bounded. By passing to a
subsequence if necessary, we can assume that x, — x € A as A is closed. Therefore,
from Lemma 2.1 it follows that there exists a subsequence {wy, } of {w,} such that
wy, — w € F(x). So, by the arbitrariness of € and the closedness of P, we have
y —w € P. This implies that y € F(x) 4+ P and the proof is complete. O

3 Stability of the Minimal Point Sets

In the sequel, unless otherwise specified, let F, F}, : RF > R! (n € N) be set-valued
mappings and A, A,(n € N) be nonempty, closed and convex sets in R¥. In this
section, we mainly investigate the P.K. convergence of three kinds of minimal point
sets of set-valued optimization problems.

Proposition 3.1 Let A, A,(n € N) be nonempty, closed and convex subsets of R¥.
Let F, F, : R = Rl(n € N) be P-NQF mappings on A, A, respectively. Assume
that: (i) Ay 25 A; (i) (An, F) 25 (A, F); (iii) if AOVFY % 0 for some a € R,
then 0T (A N F%) = {0}.

Then 0% (A, N FY) = {0} for sufficiently large n whenever A, N F¥ # (.

Proof Assume to the contrary that for some o € R!, we have A, N FY # () and
0% (A, NFY) # {0} for infinite number of indices n. Then, there exists a subsequence
{dk} such that d; € 0T (A, N Fp),di — d,|ldell = |ld]l = 1. Let x € A be

fixed, and let B € F(x). Clearly, AN F# £ (. Asint P # ), there exit € € int P
and A > 0O such that e € o + P and Ae € B + P. Letting y = Ae, we have
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yea+P and y € B+ P.Clearly, x € AN F”. Since (An, Fn) 5 (A, F),
there exists a subsequence { (x,’(, ¥x)} such that

(X vi) = (2, 9), 3
x; € Ay, and g € Fy (x;) + P. 4)

By (3), we have yx — y. Then, for any e € int P and for sufficiently large k,
y+eecy+ P. 5)

Then it follows from (4) and (5) that for sufficiently large k,y + e € Fy, (x,/c) + P.
This means that

Xj € Ay NFLTC (6)

Now, since dy € 0T (A, N F%) S 0t (A, N F ), which together with (6) yields

that for any u > 0, x; + pdp € Ay N F,Zk—i_e. By (A, Fy) PK (A, F), we
have that x,’( +pdy — x +pd € AN FYT for any > 0. That implies that
0#d e 0" (AN FY*) = {0}, which is a contradiction. ]

Proposition 3.2 Assume that all conditions of Proposition 3.1 are satisfied. Then for
every a € R! with AN F¥ # () and for every r > 0, there exists k, € N such that,
A, NEYCANFY+B(0,r), VYn > k.

Proof Suppose to the contrary that there exist « € R/, r > 0 with AN F* # ¢ and
the conclusion is not true. Then there exists a subsequence {x;} such that

Xk € Ay N F,Z( and d(xg, ANF%) > r, @)

where d(x, A) := inf,cq [|x — a||. If {xx} is bounded, by passing eventually to a

subsequence, we have x; — xo € A. Then, by xx € A, N F,f‘k we have (xg, @) €

epil?nk and (x;, o) — (xo, ). From (A,, F};) PX (A, F) it follows that (xg, @) €
epiF. This implies that xo € A N F*, which contradicts (7).
When {x;} is unbounded, we can assume that ||x;|| — oo. Let x’ € AN F% be

given. By (A,, F,,) LS (A, F), there exists a subsequence {(x;, yx)} in epiFnk such
that (x;, yx) — (x', &). Clearly, for any k,

Yk € Fu,(x) + P. ®

By passing to a subsequence if necessary, we can assume that for any ¢ > 0,

x¢ — td and |d| = 1. )
[l |l
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From the convexity of A, it follows that

t t
2k = (1 — —) X;, + ——xi € Ap, for k sufficiently large. (10)
[l || flock

By (9), (10) and A, 25 A, we have
% — z2:=x+1td € A. (11)
Since yx — «, for any € € int C, there exists k. € N such that,
oa+eey+ P, Vk=>ke. (12)
By (7), (8) and (12), there exist yx € F, (xx) and y; € Fy, (x) such that
a€y+P and a+eecy,+P. (13)
As Fy, is P-NQF on A, , there exists n € [0, 1] such that
nyk + (1 =y € Fy, (zx) + P. (14)

Combining (13) and (14), we have o + (1 — n)e € F,, (zx) + P, which implies

that zx € Ay, N FET7P¢ Then from (A,, Fy) —5 (A, F) and (11) it follows
that z € AN FYtU=M¢ Thatis 0 # d € 0T (A N F@t(=m¢) — (0}, which is a
contradiction. Thus, the conclusion holds and the proof is complete. O

Proposition 3.3 Assume that all conditions of Proposition 3.1 hold and F is an u.s.c.
and compact-valued map on A. Then F,(A,) + P E& F(A)+ P.

Proof Firstly we prove that F(A)+ P C liminf, (F,(A,)+ P).Lety € F(A)+ P be

arbitrarily given. Then there exists x € A suchthaty € F(x)+ P. Since (A,, F;) E&
(A, F), there exists a sequence {(x,, y,)} in epi F,, such that (Xn, yn) — (x,y). This
means that y € liminf, (F,(A,) + P).

Secondly we prove that limsup, (F,(A,) + P) € F(A) + P. Take y in
lim sup,, (F, (A,) + P), hence there exists a subsequence {yx} in Fy, (A,,) + P such
that yy — y. Then we can choose x; € A, such that yy € Fy, (xx) + P. Noting
that yx — v, then for any € € int P, there exists kc € Nsuchthat y + € € y; + P,
Vk > ke. So, y + € € Fy (x) + P, Vk > k. This means that x; € A,, N F,?:”E. In
virtue of Lemma 2.4 and Proposition 3.2, we have that {x;} is bounded. By passing to

a subsequence if necessary, we assume that x; — x € A.From (A,, F;) K (A, F),
we get (xg, yk) — (x,y) € epi F,thatis,y € F(x) + P C F(A) + P. The proof is
completed. O
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Lemma 3.1 (see [4]) Let D,,(n € N) and D be nonempty, closed and convex subsets
of RL. Assume that D, LS D. Then

(i) MinpD C liminf Minp Dy (if) Minf D ¢ limingin’g D,,.

Theorem 3.1 Assume all conditions of Proposition 3.1 are satisfied and F, F,, (n €
N) are u.s.c. and compact-valued mappings on A, A,(n € N), respectively. Then

()Minp F(A) € liminf Minp F, (Ap): (ii)Min% F(A) C lim inf Minf F, (A,).

Proof (i) From Proposition 3.3, we have F,,(A,) + P PX F(A)+ P. Since F,, is an
u.s.c., P-NQF and compact-valued map on A,, by Lemmas 2.2 and 2.5, F;,(A,)+ P is
closed and convex for sufficiently large n. So, by Lemma 3.1 (i) and Proposition 3.3, we
have Minp (F(A) + P) C liminf, Minp(F,,(A,;) + P). AsMinp(A + P) = Minp A
forany A C R¥, Minp F(A) C liminf, Minp F,,(A;).

(ii) The proof follows on similar lines by using Lemma 3.1 (ii). O

Corollary 3.1 Assume that all conditions of Theorem 3.1 hold and F is P-SNQF and
rotund-valued on A. Then Minjy p F(A) C liminf,, Minjy p F;, (Ay).

Proof By Lemma 2.3, we have Minjp p F(A) = Minp F(A), which together with
Theorem 3.1 yields that Minjy p F(A) C liminf,Minp F, (A,).Foranyset A, C Rk,
we have lim inf,Minp F,(A,) C lim inf,Minjy p F;,(A,). So, the conclusion is true
and the proof is complete. O

Theorem 3.2 If (A, F) -5 (A, F), lim sup, Minin p Fp(Ay) € Miniy p F(A).

Proof For any y € lim sup,, Miniy p F,(Ap,), there exists a subsequence {(xk, yx)} in
Eintp (A, Fy,) such that yp — y. Suppose y ¢ Minjy p F'(A). Then there exist
xo € Aand yp € F(xp) such that ygo — y € —int P. Let € := y — yp € int P. Since
Yr — Y, there exists k. € N such that k > k.,

ykey—ZJrintP. (15)

As (xo0, yo0) € epiF and (A,, F,) L (A, F), there exists a sequence {(u,, v,)} in
epi Fy, such that (u,,v,) — (x0, y0). Then there exists k, > ke such that for any
n>k.,

v,,eyo—i—g—intP:y—%—intP. (16)
Combining (15) and (16), we have for any k > &,
€ . .
vkeyk—z—theyk—th. a7
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As (u,v) € epiFy,, there exists v; € F, (ux) such that v; € v — P, which
together with (17) yields that v,/c € yr — int P. This contradicts the fact (xx, yx) €
Eint p(Ay,, Fy,). Therefore, y € Min;y p F'(A) and the proof is complete. O

Corollary 3.2 Suppose that (A, Fy) E)’ (A, F) and F is P-SNQF and rotund-
valued on A. Then, we have lim sup, Minp F,,(A,) € Minp F(A).

Proof By Theorem 3.2 and Lemma 2.3, lim sup, Minijy p F,(4,) € Minp F(A).
Then, we have lim sup, Miniy p F,,(A,) € Minp F(A), which together with the
fact limsup,Minp F,(A,) < limsup,Minjy p F,,(A,), YA, C RX yields that
lim sup, Minp F,,(A,) € Minp F(A). So, the proof is complete. O

By strengthening the conditions of Theorem 3.2, we can establish the upper part of
convergence of Henig minimal point sets for perturbed problems.

Theorem 3.3 Assume that all conditions of Proposition 3.1 are satisfied. Let F, F,
(n € N) be u.s.c., P-SPQF and compact-valued maps on A, A, (n € N), respectively.
Furthermore, assume that epiF is a closed set. Then, we have

lim sup Min®¥! F,(A,) € Min¥ F(A).
n

Proof Let y € limsup, Ming F,(A;) be any given. By Theorem 3.2, we have y €
lim sup,, Minlg F,(A,) € Minjy pF(A) C F(A). Hence there exists x € A such that
y € F(x). We claim that y € Ming F(A). By the contradiction, we suppose that for
any pointed convex cone P; with P\{0} C int P, there exist xo € A and yg € F(xp)
such that

0#z:=y—ye—Pr. (18)

As y € limsup, Min¥ F,,(A,), there exists a sequence {y;} in Min% F,,, (A,,,) such
that yx — y. Then there exits x; € A,, such that y, € F,, (xt). Let € € int P be an
arbitrary element. As yy — y, it follows that y +-¢ € Fy, (xi)-+ P for sufficiently large

k. This means that x; € A, N F; ,:re. By Lemma 2.4 and Proposition 3.2, the sequence
{xx} is bounded and has a convergent subsequence. Without loss of generality, we

assume that x; — x € A. Since (x0, Yo) € epiF and (A,, F;;) m (A, F), there
exists a sequence {(uy, vr)} in epi Fy, such that (ug, vx) — (xo, yo). Then for any
€ € int P, there exists k. € N such that

Yo + € € Iy, (ug) + P, forany k > k.. (19)

For any k > 1, set s; := %uk + (1 - %)xk, which together with the convexity of A,

yields that s; € A,,. Noting that A, PK A, we have that s — x € A. If xp = uy
for any k, then

X = xg and F(X) = F(x0) > yo. 20)
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If xx # uy for some k, then the P-SPQF property of F,, implies that, either
Fo (xx) C Fy(sk) +int P or Fy, (ug) S Fy,(sk) + int P. Since yx € Fp, (xx)
and y; € Minlank(A,,k), Fy (xx) € Fy,(sx) + int P does not hold. Therefore,
we have F,, (uy) € Fy (sx) + int P for any k. Then from (19) it follows that

Yo + € € Fy (sx) + int P, forany k > k.. Then, (sx, yo + €) € epiF,, and

(s, y0 + €) — (X,y0 + €). By the fact (F,, A,) LS (F, A), we have that

(X, yo + €) € epiF. This implies that
yo+¢€ € F(x)+ P. 20

So, from (20) and (21) we always have yg + € € F(x) + P. By the arbitrariness of
€ and the closedness of epi F, we have yg € F(x) + P, that is, there exists pg € P
such that yg — pg € F(X).

The following two cases would be considered:

Case 1.If x = X, then y € F(x) = F(x). We claim that y # yy — pg. Otherwise,
we have

z=yo—y=po€ P C P (22)

Hence, from (18) and (22) it follows that 0 % z € Py N (—Pp). As Py is a pointed
cone, 0 # z € P N (—P;) = {0}, which is a contradiction. Thus y # yy — po,
which with the rotundity of F(x) yields that ]y, yo — po[N (0 F (X)) # @, that is,
1y, yo — pol Nint F (%) # @. Hence there exists y’ € 1y, yo — po[ Nint F(X). Now we
can choose € € int P such that y/ — ¢ € F(x) N (y — int P), which contradicts the
fact y € Minjp p F (A).

Case 2. If x # X, then P-SPQF property of F implies that for any A € ]0, 1[, either
F(x) CFOx+(1—=Mx)+intPor F(x) € F(Ax+ (1 —A)x)+int P. Asy € F(x)
and y € Minjy p F(A), F(x) € F(AXx + (1 — A)x) + int P does not hold. Hence, for
any A €10, 1[, F(x) € F(Ax + (1 —A)x) +int P, which together with yp € F(x)+ P
yields that yyp € F(Ax 4+ (1 — A)x) + int P. Since epi F is closed, by taking limit as
A — 04, wehave (x, yo) € epi F. Then there exists p(, € P suchthat yo— p(, € F(x).
Similar to the Case 1, we can show that y # yg — p6. By the rotundity of F'(x), we
have ]y, yo— pyl Nint F(x) # . Hence there exists y’ € ]y, yo— py[ Nint F (x). Now
we can choose € € int P such that y — e € F(x) N (y —int P), which contradicts the
fact y € Minjp p F (A).

So, from Cases 1 and 2 we can see that y € Minll;IF(A). m|

Summarizing Theorems 3.1 (i), 3.2 and Corollaries 3.1, 3.2, we have established
the P.K. convergence of the (weak) minimal point sets.

Theorem 3.4 Let A, A, (n € N) be nonempty, closed and convex subsets of R¥. Let
F : R* — R! be an u.s.c., P-SNQF, compact-valued and rotund-valued mapping on
Aand F, : R - Rl(n € N) be u.s.c., P-NQF and compact-valued mappings on

An(n € N). Assume that: (i) Ay 255 A; (ii) (An, F) 25 (A, F); (iii) if AN F® £ ¢
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for some a € R!, then 07 (A N F%) = {0}. Then, we have

. PK. . . : PK. . .
(a) MinpF,(A,) — MinpF(A); (D) Minin p Fn(Ay) — Minin p F(A).

Remark 3.1 Theorem 3.4 extends the corresponding ones of [4,6—11] in the following
aspects: (i) Theorem 3.4 extends the corresponding ones of [4,6—11] from the vector-
valued optimization problem to the set-valued case; (ii) The convexity of objective
mappings F, F,(n € N) in [4,6-9,11] are weakened to P-NQF; (iii) The convergence
of objective mappings F,(n € N) in [4,6,7,9,10] is weakened to P.K. convergence
(see, Examples 3.2 and 3.3 in [11]).

The following example is given to illustrate Remark 3.1 (i) and (ii).

Example 3.1 Let A, = A = [0, 1]and P = R3.Let F,, F : R = R? be respectively
defined as F,(x) = (x*,1 —x*+ 1) and F(x) = (x>, 1 — x?). Indeed, we have
Minjy p F(A) = MinpF(A) = {(x3,1 — x%) : x € [0, 1]} and Minjy p F,(4,) =
Minp F,(A,) = {(x3,1 —x2 4+ %) : x € [0, 1]}. Therefore, Minjy p F,(A),) =

Minp Fy(An) 25 WMing p F(A) = Minp F(A) and Theorem 3.4 is applicable.

However, the corresponding ones in [4,6—11] are not applicable. The main reasons
are that F,, and F are neither P-PQF nor P-F. So, Theorems 3.4 is an improvement
of the corresponding ones in [4,6—11].

Combining Proposition 2.1 (2), Theorems 3.1 (ii) and 3.3, we have established the
P.K. convergence of the Henig minimal sets.

Theorem 3.5 Let A, A, (n € N) be nonempty, closed and convex subsets of R¥,
Let F be an u.s.c., P-SPQF and compact-valued mapping on A and F, (n € N) be

P-SPQF and compact-valued maps on A,(n € N). Assume that: (i) A, LS A; (i)

(An, En) 25 (A, F); (iii) if AN F® £ 0 for some a € R, then 07 (A N F¥) = {0};
(iv) epi F is closed. Then, we have

. P.K. .
Mink F,(A,) == Minl F(A).

4 Stability of the Minimizer Sets

In this section, we investigate the P.K. convergence of three kinds of minimizer sets
in the given space.

Theorem 4.1 Suppose that all conditions of Theorem 3.4 hold. Then we have
P.K. P.K.
(@) Einp (An, Fr) — Einep (A, F); (D)Ep (An, Fy) — Ep (A, F).
Proof (a) Firstly, we show limsup, Eint p (A,, F) C Eincp (A, F). Let (x, y) in

lim sup,, Einc p (A, F), hence there exists a subsequence {(xg, yx)} inEine p (A, , Fyp)
such that (xg, yx) — (x, y). We claim that (x, y) € Ejyt p (A, F). Otherwise, there
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exist x’ € A and y € F(x’) such that 0 # y’ — y € —int P. Then we can choose
€ € int P such that

y —y+2€ € —int P. (23)

By the fact y € F(x') and (A,, Fy,) LS (A, F), there exists a sequence (x, y;) €
epi Fy, such that (x;, y;) — (x’,y"). As yx — y and y; — y’, then for sufficiently
large k and the above €, we have y; € y — € +int P and y; € y' + € — int P, which
together with (23) yields that y, — yx € —int P. As (x;, y;) € epi Fy, for any k, there
exists wy € Fy, (x;) such that wy € y; — P. So, wy — y; € —int P, which contradicts
(ks Yk) € Eine p (Any, Fuy).

Secondly, we prove Einp (A, F) C liminf, Ein p (An, F,). Taking (x, y) in
Eintp (A, F),wehave y € F(x) and y € Minjy p F(A). By Theorem 3.2, there exists
a sequence {y,} in Minjy p F, (A,) such that y, — y. We can choose a sequence {x,}
in A, such that y, € F,(x,) and (x,, y,) € Einc p (A, Fy,). Let € € int P be any ele-
ment. From the fact F,(x,,) > y, — y, itfollowsthaty +€¢ € y, + P C F,(x,) + P
for sufficiently large n. This means that x,, € A, N F;, +e By Lemma 2.4 and Propo-
sition 3.2, the sequence {x,} is bounded and has a convergent subsequence. Without

loss of generality, we assume that x,, — x € A. Since (A, Fy;) %& (A, F), we have
that lim sup,, epiFn - epiF. According to (x,, y,) € epiFn and (x,, yu) — (X, ),
we get that (%, y) € epiF. That is, there exists § € F (%) such that y € $ + P.

Now we show that x = X. Suppose to the contrary that x # x. As F is P-SNQF
onAandy € F(x) and y € F(X), for any A €]0, 1[, there exists n € [0, 1] such that
ny + (1 —n)y € F(Ax + (1 — 1)x) + int P which together with the fact y € y + P
yields y € F(Ax + (1 — A)Xx) +int P. This contradicts the fact (x, y) € Ein p (A, F).
Thus, every possible convergent subsequence of {x,} converges to x and hence the
entire sequence {x,} converges to x. So, (X, 1) € Eintp (An, Fy), (Xn, yn) = (x,)
and Ein¢ p (A, F) € liminf, Einc p (Ap, Fn).

(b) The proof follows on similar lines of (a). O

Theorem 4.2 Suppose that all conditions of Theorem 3.5 hold. Then we have

P.K.
EY (A,, F) = EH (A, F).

Proof As the proof is similar to the one of Theorem 4.1, we omit it. O

5 Conclusions

This paper considered the stability of a P-NQF set-valued optimization problem based
on the concept of P.K. convergence of the feasible sets and objective set-valued map-
pings. The results improved and extended the corresponding results of the recent
papers. The generalization is threefold: The objective mappings are extended from
vector-valued mappings to set-valued ones; the convexity of objective mappings is
weakened to P-NQF; the convergence of the sequences of objective mappings is
weakened to P.K. convergence.
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