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Abstract In this paper, we discuss the stability of three kinds of minimal point sets
and three kinds of minimizer sets of naturally quasi-functional set-valued optimization
problems when the data of the approximate problems converges to the data of the
original problems in the sense of Painlevé–Kuratowski. Our main results improve and
extend the results of the recent papers.
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1 Introduction

Stability is widely studied in optimization theory and methodology. In recent years,
some papers have appeared, which are devoted to this topic for vector-valued opti-
mization problems; see, e.g., [1–12] and references therein. Attouch and Riahi [1]
first studied this topic. Lucchetti and Miglierina [4] discussed stability for a convex
vector-valued optimization problem based on the concept of the continuous conver-
gence of the vector-valued mappings. Oppezzi and Rossi [6,7] extended the definition
of gamma-convergence from scalar-valued to vector-valued and applied it to this topic
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for a convex vector-valued problem. Lalitha and Chatterjee [9,10] further discussed
this topic for a properly quasi-convex vector-valued problem and improved the main
results of [6,7].

Also, set-valued optimization problems have been intensively investigated and
applied to various problems, such as game theory, duality principles, robust optimiza-
tion, and fuzzy optimization; see, e.g., [13–15] and the references therein.However, the
studies dealing with the stability of set-valued optimization problems have so far been
very limited [2,3]. The line of proof in [2,3] is similar to ones used for vector-valued
optimization problems. To the best of our knowledge, the studies of stability based
on the other ways for set-valued optimization problems are not available. Maybe, the
main reason is that the notion of set-valuedmappings is more complicated than vector-
valued ones. Therefore, we must employ new analysis tools and techniques, which
are different from the ones in [2,3], to discuss the stability of set-valued optimization
problems.

The aim of this paper is to use some techniques similar to the ones of [4,6–11]
to study the stability for set-valued optimization problems. Following the idea of
[4,6–11], we first establish the Painlevé–Kuratowski convergence of three kinds of
minimal point sets of naturally quasi-functional set-valued optimization problems.
Furthermore, we investigate the Painlevé–Kuratowski set-convergence of three kinds
of minimizer sets for set-valued optimization problems. Our results are extensions and
improvements in the corresponding ones for vector-valued optimization problems in
[9–11].

The paper is organized as follows. In Sect. 2, we recall some concepts and establish
fundament results. In Sect. 3, we establish the Painlevé–Kuratowski set-convergence
results of three kinds of minimal point sets of naturally quasi-functional set-valued
optimization problems. In Sect. 4, we furthermore establish the Painlevé–Kuratowski
set-convergence results of three kinds of minimizer sets. In Sect. 5, we provide a
conclusion of the work presented.

2 Preliminaries

Throughout this paper, let P be a pointed (i.e., P ∩ (−P) = {0}), closed and convex
cone in Rl with nonempty interior. For a nonempty set D of Rl , let int D, ∂ D and Dc

denote the interior, boundary and complement of D, respectively. Let B(0, r) denote
the closed ball centered at 0 and with radius r . Some fundamental terminologies are
presented as follows.

Definition 2.1 Let D be a nonempty set of Rl . A point y ∈ D is said to be

(i) a minimal (resp. weak minimal) point of D iff (D − y) ∩ (−P) = {0} (resp.
(D − y) ∩ (−int P) = ∅), and MinP D (resp. Minint P D) denotes the set of all
minimal (resp. weak minimal) points of D;

(ii) aHenig properminimal point of D iff there exists a convex cone P ′ with int P ′ �= ∅
such that P\{0} ⊆ int P ′ and (D − y) ∩ (−P ′) = {0}, and MinHP D denotes the
set of all Henig properly minimal points of D.

It is easy to check that MinHP D ⊆ MinP D ⊆ Minint P D.
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We now consider the following constrained set-valued optimization problem

min
x∈A

F(x), (A, F)

where F : Rk ⇒ R
l is a set-valued mapping and A ⊆ R

k is a nonempty set.
Based on the above notions of minimality for a set, we denote by MinP F(A),

Minint P F(A) andMinHP F(A) the sets of all minimal, weakminimal and Henig proper
minimal points, respectively.

Definition 2.2 A pair (x0, y0) with x0 ∈ A and y0 ∈ F(x0) is said to be a minimizer
(resp. weak minimizer, Henig minimizer) of the problem (A, F) iff y0 ∈ MinP F(A)

(resp. y0 ∈ Minint P F(A), y0 ∈ MinHP F(A)). We denote by EP (A, F), Eint P (A, F)

and EH
P (A, F) the set of all minimizers, weak minimizers and Henig minimizers of

the problem (A, F), respectively.

Definition 2.3 (see [5]) A sequence of sets {Dn} of Rk converges to a set D in the

sense of Painlevé–Kuratowski (for short, P.K.) convergence, denoted by Dn
P.K.−→ D,

iff lim supn Dn ⊆ D ⊆ lim infn Dn, where

lim infn Dn := {x ∈ R
m : x = limn→∞ xn, xn ∈ Dn, ∀n ∈ N} and

lim supn Dn := {x ∈ R
m : x = limk→∞ xk, xk ∈ Dnk , ∀k, {nk} ⊆ N}.

Definition 2.4 (see [3,16])A sequence of set-valuedmappings Fn : Rk ⇒ R
l (n ∈ N)

converges to F : Rk ⇒ R
l in the sense of P.K. convergence, denoted by Fn

P.K.−→ F ,

iff epiFn
P.K.−→ epiF, where epiF := {(x, z) ∈ R

k × R
l : z ∈ F(x) + P}.

We introduce a virtual element+∞ inRl meaning that for any y ∈ R
l ,+∞ ∈ y+P .

Then, we recall the following concept.

Definition 2.5 Let F, Fn : Rk → R
l(n ∈ N) be set-valued mappings, A, An (n ∈

N) be sets in R
k and {(An, Fn) : n ∈ N} be the corresponding sequence pair. We

say that (An, Fn) converges to (A, F) in the sense of P.K. convergence, denoted by

(An, Fn)
P.K.−→ (A, F), iff F̄n

P.K.−→ F̄ , where

F̄n(x) =
{
Fn(x), x ∈ An;
{+∞}, x ∈ R

k \ An
and F̄(x) =

{
F(x), x ∈ A;
{+∞}, x ∈ R

k \ A.

Definition 2.6 (see [17,18]) Let A be a nonempty and convex subset of Rk . A set-
valued mapping F : Rk ⇒ R

l is said to be:

(i) P-function (for short, P-F) on A iff for every x1, x2 ∈ A and λ ∈ [0, 1] ,
λF(x1) + (1 − λ)F(x2) ⊆ F(xλ) + P, where xλ := λx1 + (1 − λ)x2;

(ii) P-like-function (for short, P-LF) on A iff for every x1, x2 ∈ A and λ ∈ [0, 1] ,
there exists z ∈ A such that λF(x1) + (1 − λ)F(x2) ⊆ F(z) + P;

(iii) properly quasi-P-function (for short, P-PQF) on A iff for every x1, x2 ∈ A and
λ ∈ [0, 1] , F(x1) ⊆ F(xλ) + P or F(x2) ⊆ F(xλ) + P;
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(iv) naturally quasi-P-function (for short, P-NQF) on A iff for every x1, x2 ∈ A,
y1 ∈ F(x1), y2 ∈ F(x2) and λ ∈ [0, 1] , there exists η ∈ [0, 1] such that
ηy1 + (1 − η)y2 ∈ F(xλ) + P.

We say F is strictly P-function ( for short, P-SF) on A iff for every x1, x2 ∈ A,

x1 �= x2 and λ ∈ ]0, 1[ such that the inequality of (i) holds whenever P is replaced
by int P . Similarly, F is P-SLF, P-SPQF and P-SNQF on A.

Proposition 2.1 (see [17]) The following statements hold

(1) P-SF ⇒ P-F ⇒ P-LF and P-SF ⇒ P-SLF ⇒ P-LF;
(2) P-SPQF ⇒ P-PQF ⇒ P-NQF and P-SPQF ⇒ P-SNQF ⇒ P-NQF.

Proposition 2.2 (see [17])Aset-valuedmapping F : Rk ⇒ R
l is P-LFonanonempty

and convex subset A of Rk if and only if F(A) + P is a convex set.

Definition 2.7 (see [19]) A set-valued mapping F : Rk ⇒ R
l is said to be compact-

valued (resp. convex-valued) on a set A in R
k if for any x ∈ A, F(x) is a compact

(resp. convex) subset of Rl .

Lemma 2.1 (see [19]) Let F : Rk ⇒ R
l be a set-valued map and x0 ∈ A of Rk be a

given point. If F be compact-valued on A, then F is upper semicontinuous (for short,
u.s.c) at x0 ∈ A if and only if for any sequence {xn} ⊆ A with xn → x0 and for
every yn ∈ F(xn), there exist y0 ∈ F(x0) and a subsequence {ynk } of {yn} such that
ynk → y0.

Lemma 2.2 (see [17]) Let F : Rk ⇒ R
l be u.s.c. and convex-valued on a convex set

A inRk . If F is P-NQF on A, then F is P-FL on A, i.e., F(A)+ P is a convex subset.

Definition 2.8 (see [20]) A nonempty and convex subset A of Rk is said to be rotund
if the boundary of A does not contain line segments, i.e., for any x , x ′ ∈ A : x �= x ′,
]x, x ′[ ∩(∂ A)c �= ∅, where ]x, x ′[ := {λx + (1 − λ)x ′ : λ ∈]0, 1[ }.

For the set-valued mapping, we introduce a similar concept as following.

Definition 2.9 A convex-valued mapping F : Rk ⇒ R
l is said to be rtound-valued

on A ⊆ R
k iff for any x ∈ A, F(x) is a rotund subset of Rl .

Remark 2.1 If F is a single-valued mapping, then F is both rotund-valued and
compact-valued on A ⊆ R

k .

Motivated by the idea of Theorem 4.3 in [21], we get the following result.

Lemma 2.3 If A is a convex set, F is P-SNQF and F is convex-valued and rotund-
valued on A, then Minint P F(A) = MinP F(A).

Proof It suffices to show that Minint P F(A) ⊆ MinP F(A). Let y ∈ Minint P F(A),
hence there exists x ∈ A such that

y ∈ F(x) and (F(A) − y) ∩ (−int P) = ∅. (1)
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By the contradiction, assume y /∈ MinP F(A), i.e., (F(A) − y) ∩ (−P) �= {0}. Then
there exist x̄ ∈ A and ȳ ∈ F(x̄) such that y ∈ ȳ + P\{0}. The following two
cases would be considered: Case 1. If x = x̄ , then it follows from y ∈ ȳ + P\{0}
and the rotundity of F(x) that ]y, ȳ[ ∩ (∂ F(x))c �= ∅, i.e., ]y, ȳ[ ∩ int F(x) �= ∅.

Hence there exists y′ ∈ ]y, ȳ[ ∩ int F(x). We can choose ε ∈ int P such that y′ − ε ∈
F(x) ∩ (y − int P), which contradicts (1).

Case 2. If x �= x̄ , by the P-SNQF property of F , for every λ ∈]0, 1[, there exist
η ∈ [0, 1] and y′ ∈ F(λx + (1 − λ)x̄) such that ηy + (1 − η)ȳ ∈ y′ + int P, which
with y ∈ ȳ + P\{0} yields that y ∈ y′ + int P, which contradicts (1). �
Corollary 2.1 Assume the conditions of Lemma 2.3 are satisfied. Then we have
Eint P (F, A) = E(F, A).

The following example is given to illustrate Lemma 2.3 and Corollary 2.1.

Example 2.1 Let P = R
2+, A = R and F : R ⇒ R

2 be defined as

F(x) = {(r, s) : x2 ≤ r ≤ x2 + 1, x2 ≤ s ≤ x2 + 1}, ∀x ∈ R.

Clearly, we have: (i) F is P-SNQF on A; (ii) MinP F(A) = {(0, 0)} and
Minint P F(A) = {(0, s) : 0 ≤ s ≤ 1} ∪ {(r, 0) : 0 ≤ r ≤ 1}. So, Lemma 2.3
and Corollary 2.1 do not hold in the absence of rotundity of F .

Definition 2.10 For α ∈ R
l , the sublevel set of F : Rk ⇒ R

l on A ⊆ R
k at height α

is Fα := {x ∈ A : α ∈ F(x) + P}.
For any α ∈ R

l , we have: (i) Fα = F̄α , where F̄ : R
k ⇒ R

l is defined as in
Definition 2.5; (ii) Fα is a convex set whenever F is a P-NQF mapping.

Definition 2.11 (see [22]) For a convex set A of Rk , the recession cone of A is the
set 0+(A) := {d ∈ R

m : a + td ∈ A, ∀ a ∈ A, ∀ t ≥ 0}.
It is known that if A is a closed and convex set in R

k , then 0+(A) = {0} iff A
is a bounded set. By Theorem 1.1.17 of [5], for any convex and closed set A in R

k ,
0+(A) = {d ∈ R

k : ∃ a ∈ A, a + td ∈ A, ∀ t ≥ 0}.
Lemma 2.4 Let A be a nonempty, closed and convex set in Rk and F be an u.s.c. P-
NQFand compact-valuedmapping on A. If A∩Fα �= ∅ forα ∈ R

l , then0+(A∩Fα) =
{0} if and only if A ∩ Fα is bounded.

Proof If A ∩ Fα �= ∅ for α ∈ R
l , then A ∩ Fα is obviously a convex set. To apply

the remark above, we only need to verify that A ∩ Fα is a closed set. Indeed, let
xn ∈ A ∩ Fα with xn → x ∈ A as A is closed. Then there exists yn ∈ F(xn) such
that α ∈ yn + P . By Lemma 2.1, there exists a subsequence {ynk } of {yn} such that
ynk → y ∈ F(x), and so α ∈ F(x) + P . Therefore, x ∈ A ∩ Fα , which means that
A ∩ Fα is closed.

[⇐ ]. This implication follows from the remark above.
[⇒ ]. Assume to the contrary that there exists a sequence {xn} in A ∩ Fα such

that ‖xn‖ → ∞. By passing to a subsequence if necessary, we can assume that
xn‖xn‖ → d and ‖d‖ = 1. Next we show that in such case d ∈ 0+(A ∩ Fα). Indeed,
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let x ∈ A ∩ Fα be arbitrarily given. From the convexity of A, it follows that for any
real number t ≥ 0, zn := (1− t

‖xn‖ )x + t
‖xn‖ xn ∈ A for sufficiently large n. It is easy

to see that zn → z := x + td ∈ A as A is closed. Since xn, x ∈ A ∩ Fα , there exist
yn ∈ F(xn) and y ∈ F(x) such that

α ∈ yn + P and α ∈ y + P. (2)

As F is P-NQF on A, there is η ∈ [0, 1] such that ηyn + (1 − η)y ∈ F(zn) + P,

which together with (2) yields that α ∈ F(zn) + P , i.e., zn ∈ A ∩ Fα . Hence, there
exists wn ∈ F(zn) such that α − wn ∈ P . By Lemma 2.1, there exists a subsequence
{wnk } of {wn} such that wnk → w ∈ F(z). So, we have α − w ∈ P . This implies that
α ∈ F(z)+P , i.e., z ∈ Fα . Thus z = x+td ∈ A∩Fα and 0 �= d ∈ 0+(A∩Fα) = {0},
which is a contradiction. The proof is complete. �
Lemma 2.5 Let A be a nonempty, closed and convex subset of Rk and F be an
u.s.c., P-NQF and compact-valued mapping on A. If 0+(A ∩ Fα) = {0} whenever
A ∩ Fα �= ∅ for α ∈ R

l , then F(A) + P is a closed set.

Proof Take a sequence {yn} in F(A) + P such that yn → y. There exists a sequence
{xn} in A such that yn ∈ F(xn) + P . By yn → y, for any ε ∈ int P sufficiently large
n, we have y + ε ∈ yn + P . Hence, y + ε ∈ F(xn) + P for sufficiently large n. So,
we have xn ∈ A ∩ Fy+ε and there exists wn ∈ F(xn) such that y + ε − wn ∈ P . As
0+(A∩ Fy+ε) = {0}, it follows from Lemma 2.4 that {xn} is bounded. By passing to a
subsequence if necessary, we can assume that xn → x ∈ A as A is closed. Therefore,
from Lemma 2.1 it follows that there exists a subsequence {wnk } of {wn} such that
wnk → w ∈ F(x). So, by the arbitrariness of ε and the closedness of P , we have
y − w ∈ P . This implies that y ∈ F(x) + P and the proof is complete. �

3 Stability of the Minimal Point Sets

In the sequel, unless otherwise specified, let F, Fn : Rk → R
l(n ∈ N) be set-valued

mappings and A, An(n ∈ N) be nonempty, closed and convex sets in R
k . In this

section, we mainly investigate the P.K. convergence of three kinds of minimal point
sets of set-valued optimization problems.

Proposition 3.1 Let A, An(n ∈ N) be nonempty, closed and convex subsets of Rk .
Let F, Fn : Rk → R

l(n ∈ N) be P-NQF mappings on A, An, respectively. Assume

that: (i) An
P.K.−→ A; (ii) (An, Fn)

P.K.−→ (A, F); (iii) if A ∩ Fα �= ∅ for some α ∈ R
l ,

then 0+(A ∩ Fα) = {0}.
Then 0+(An ∩ Fα

n ) = {0} for sufficiently large n whenever An ∩ Fα
n �= ∅.

Proof Assume to the contrary that for some α ∈ R
l , we have An ∩ Fα

n �= ∅ and
0+(An ∩ Fα

n ) �= {0} for infinite number of indices n. Then, there exists a subsequence
{dk} such that dk ∈ 0+(Ank ∩ Fα

nk ), dk → d, ‖dk‖ = ‖d‖ = 1. Let x ∈ A be
fixed, and let β ∈ F(x). Clearly, A ∩ Fβ �= ∅. As int P �= ∅, there exit ε ∈ int P
and λ > 0 such that λε ∈ α + P and λε ∈ β + P . Letting γ = λε, we have
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γ ∈ α + P and γ ∈ β + P. Clearly, x ∈ A ∩ Fγ . Since (An, Fn)
P.K.−→ (A, F),

there exists a subsequence {(x ′
k, γk)} such that

(x ′
k, γk) → (x, γ ), (3)

x ′
k ∈ Ank and γk ∈ Fnk (x

′
k) + P. (4)

By (3), we have γk → γ . Then, for any e ∈ int P and for sufficiently large k,

γ + e ∈ γk + P. (5)

Then it follows from (4) and (5) that for sufficiently large k,γ + e ∈ Fnk (x
′
k) + P.

This means that

x ′
k ∈ Ank ∩ Fγ+e

nk . (6)

Now, since dk ∈ 0+(Ank ∩ Fα
nk ) ⊆ 0+(Ank ∩ Fγ+e

nk ), which together with (6) yields

that for any μ ≥ 0, x ′
k + μdk ∈ Ank ∩ Fγ+e

nk . By (Ank , Fnk )
P.K.−→ (A, F), we

have that x ′
k + μdk → x + μd ∈ A ∩ Fγ+e for any μ ≥ 0. That implies that

0 �= d ∈ 0+(A ∩ Fγ+e) = {0}, which is a contradiction. �
Proposition 3.2 Assume that all conditions of Proposition 3.1 are satisfied. Then for
every α ∈ R

l with A ∩ Fα �= ∅ and for every r > 0, there exists kr ∈ N such that,
An ∩ Fα

n ⊆ A ∩ Fα + B(0, r), ∀n ≥ kr .

Proof Suppose to the contrary that there exist α ∈ R
l , r > 0 with A ∩ Fα �= ∅ and

the conclusion is not true. Then there exists a subsequence {xk} such that

xk ∈ Ank ∩ Fα
nk and d(xk, A ∩ Fα) > r, (7)

where d(x, A) := infa∈A ‖x − a‖. If {xk} is bounded, by passing eventually to a
subsequence, we have xk → x0 ∈ A. Then, by xk ∈ Ank ∩ Fα

nk , we have (xk, α) ∈
epiF̄nk and (xk, α) → (x0, α). From (An, Fn)

P.K.−→ (A, F) it follows that (x0, α) ∈
epiF̄ . This implies that x0 ∈ A ∩ Fα , which contradicts (7).

When {xk} is unbounded, we can assume that ‖xk‖ → ∞. Let x ′ ∈ A ∩ Fα be

given. By (An, Fn)
P.K.−→ (A, F), there exists a subsequence {(x ′

k, γk)} in epiF̄nk such
that (x ′

k, γk) → (x ′, α). Clearly, for any k,

γk ∈ Fnk (x
′
k) + P. (8)

By passing to a subsequence if necessary, we can assume that for any t ≥ 0,

t

‖xk‖ xk → td and ‖d‖ = 1. (9)
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From the convexity of Ank it follows that

zk :=
(
1 − t

‖xk‖
)
x ′
k + t

‖xk‖ xk ∈ Ank for k sufficiently large. (10)

By (9), (10) and An
P.K.−→ A, we have

zk → z := x ′ + td ∈ A. (11)

Since γk → α, for any ε ∈ intC , there exists kε ∈ N such that,

α + ε ∈ γk + P, ∀k ≥ kε . (12)

By (7), (8) and (12), there exist yk ∈ Fnk (xk) and y′
k ∈ Fnk (x

′
k) such that

α ∈ yk + P and α + ε ∈ y′
k + P. (13)

As Fnk is P-NQF on Ank , there exists η ∈ [0, 1] such that

ηyk + (1 − η)y′
k ⊆ Fnk (zk) + P. (14)

Combining (13) and (14), we have α + (1 − η)ε ∈ Fnk (zk) + P, which implies

that zk ∈ Ank ∩ Fα+(1−η)ε
nk . Then from (An, Fn)

P.K.−→ (A, F) and (11) it follows
that z ∈ A ∩ Fα+(1−η)ε . That is 0 �= d ∈ 0+(A ∩ Fα+(1−η)ε) = {0}, which is a
contradiction. Thus, the conclusion holds and the proof is complete. �
Proposition 3.3 Assume that all conditions of Proposition 3.1 hold and F is an u.s.c.

and compact-valued map on A. Then Fn(An) + P
P.K.−→ F(A) + P.

Proof Firstly we prove that F(A)+P ⊆ lim infn(Fn(An)+P). Let y ∈ F(A)+P be

arbitrarily given. Then there exists x ∈ A such that y ∈ F(x)+P . Since (An, Fn)
P.K.−→

(A, F), there exists a sequence {(xn, yn)} in epi F̄n such that (xn, yn) → (x, y). This
means that y ∈ lim infn(Fn(An) + P).

Secondly we prove that lim supn(Fn(An) + P) ⊆ F(A) + P. Take y in
lim supn(Fn(An) + P), hence there exists a subsequence {yk} in Fnk (Ank ) + P such
that yk → y. Then we can choose xk ∈ Ank such that yk ∈ Fnk (xk) + P . Noting
that yk → y, then for any ε ∈ int P , there exists kε ∈ N such that y + ε ∈ yk + P ,
∀k > kε . So, y + ε ∈ Fnk (xk) + P , ∀k > kε . This means that xk ∈ Ank ∩ Fy+ε

nk . In
virtue of Lemma 2.4 and Proposition 3.2, we have that {xk} is bounded. By passing to
a subsequence if necessary, we assume that xk → x ∈ A. From (An, Fn)

P.K.−→ (A, F),
we get (xk, yk) → (x, y) ∈ epi F , that is, y ∈ F(x) + P ⊆ F(A) + P . The proof is
completed. �
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Lemma 3.1 (see [4]) Let Dn(n ∈ N) and D be nonempty, closed and convex subsets

of Rl . Assume that Dn
P.K.−→ D. Then

(i) MinP D ⊆ lim inf
n
MinP Dn; (i i) MinHP D ⊆ lim inf

n
MinHP Dn .

Theorem 3.1 Assume all conditions of Proposition 3.1 are satisfied and F, Fn (n ∈
N) are u.s.c. and compact-valued mappings on A, An(n ∈ N), respectively. Then

(i)MinP F(A) ⊆ lim inf
n
MinP Fn(An); (i i)MinHP F(A) ⊆ lim inf

n
MinHP Fn(An).

Proof (i) From Proposition 3.3, we have Fn(An) + P
P.K.−→ F(A) + P. Since Fn is an

u.s.c., P-NQF and compact-valuedmap on An , by Lemmas 2.2 and 2.5, Fn(An)+P is
closed and convex for sufficiently large n. So, byLemma3.1 (i) and Proposition 3.3,we
have MinP (F(A) + P) ⊆ lim infn MinP (Fn(An) + P). As MinP (A+ P) = MinP A
for any A ⊆ R

k , MinP F(A) ⊆ lim infn MinP Fn(An).

(ii) The proof follows on similar lines by using Lemma 3.1 (ii). �
Corollary 3.1 Assume that all conditions of Theorem 3.1 hold and F is P-SNQF and
rotund-valued on A. Then Minint P F(A) ⊆ lim infn Minint P Fn(An).

Proof By Lemma 2.3, we have Minint P F(A) = MinP F(A), which together with
Theorem3.1 yields thatMinint P F(A) ⊆ lim infnMinP Fn(An).For any set An ⊆ R

k ,
we have lim infnMinP Fn(An) ⊆ lim infnMinint P Fn(An). So, the conclusion is true
and the proof is complete. �

Theorem 3.2 If (An, Fn)
P.K.−→ (A, F), lim supn Minint P Fn(An) ⊆ Minint P F(A).

Proof For any y ∈ lim supn Minint P Fn(An), there exists a subsequence {(xk, yk)} in
Eint P (Ank , Fnk ) such that yk → y. Suppose y /∈ Minint P F(A). Then there exist
x0 ∈ A and y0 ∈ F(x0) such that y0 − y ∈ −int P. Let ε := y − y0 ∈ int P . Since
yk → y, there exists kε ∈ N such that k ≥ kε ,

yk ∈ y − ε

4
+ int P. (15)

As (x0, y0) ∈ epiF̄ and (An, Fn)
P.K.−→ (A, F), there exists a sequence {(un, vn)} in

epi F̄n such that (un, vn) → (x0, y0). Then there exists k′
ε ≥ kε such that for any

n ≥ k′
ε ,

vn ∈ y0 + ε

2
− int P = y − ε

2
− int P. (16)

Combining (15) and (16), we have for any k ≥ k′
ε ,

vk ∈ yk − ε

4
− int P ∈ yk − int P. (17)
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As (uk, vk) ∈ epi Fnk , there exists v′
k ∈ Fnk (uk) such that v′

k ∈ vk − P , which
together with (17) yields that v′

k ∈ yk − int P. This contradicts the fact (xk, yk) ∈
Eint P (Ank , Fnk ). Therefore, y ∈ Minint P F(A) and the proof is complete. �

Corollary 3.2 Suppose that (An, Fn)
P.K.−→ (A, F) and F is P-SNQF and rotund-

valued on A. Then, we have lim supn MinP Fn(An) ⊆ MinP F(A).

Proof By Theorem 3.2 and Lemma 2.3, lim supn Minint P Fn(An) ⊆ MinP F(A).

Then, we have lim supn Minint P Fn(An) ⊆ MinP F(A), which together with the
fact lim supnMinP Fn(An) ⊆ lim supnMinint P Fn(An), ∀An ⊆ R

k yields that
lim supn MinP Fn(An) ⊆ MinP F(A). So, the proof is complete. �

By strengthening the conditions of Theorem 3.2, we can establish the upper part of
convergence of Henig minimal point sets for perturbed problems.

Theorem 3.3 Assume that all conditions of Proposition 3.1 are satisfied. Let F, Fn
(n ∈ N) be u.s.c., P-SPQF and compact-valued maps on A, An(n ∈ N), respectively.
Furthermore, assume that epiF is a closed set. Then, we have

lim sup
n

MinHP Fn(An) ⊆ MinHP F(A).

Proof Let y ∈ lim supn MinHP Fn(An) be any given. By Theorem 3.2, we have y ∈
lim supn MinHP Fn(An) ⊆ Minint P F(A) ⊆ F(A). Hence there exists x ∈ A such that
y ∈ F(x). We claim that y ∈ MinHP F(A). By the contradiction, we suppose that for
any pointed convex cone P1 with P\{0} ⊆ int P1, there exist x0 ∈ A and y0 ∈ F(x0)
such that

0 �= z := y0 − y ∈ −P1. (18)

As y ∈ lim supn MinHP Fn(An), there exists a sequence {yk} in MinHP Fnk (Ank ) such
that yk → y. Then there exits xk ∈ Ank such that yk ∈ Fnk (xk). Let ε ∈ int P be an
arbitrary element. As yk → y, it follows that y+ε ∈ Fnk (xk)+P for sufficiently large
k. This means that xk ∈ Ank ∩Fy+ε

nk . By Lemma 2.4 and Proposition 3.2, the sequence
{xk} is bounded and has a convergent subsequence. Without loss of generality, we

assume that xk → x̂ ∈ A. Since (x0, y0) ∈ epiF̄ and (An, Fn)
P.K.−→ (A, F), there

exists a sequence {(uk, vk)} in epi F̄nk such that (uk, vk) → (x0, y0). Then for any
ε ∈ int P , there exists kε ∈ N such that

y0 + ε ∈ Fnk (uk) + P, for any k ≥ kε . (19)

For any k > 1, set sk := 1
k uk + (1 − 1

k )xk , which together with the convexity of Ank

yields that sk ∈ Ank . Noting that An
P.K.−→ A, we have that sk → x̂ ∈ A. If xk = uk

for any k, then

x̂ = x0 and F(x̂) = F(x0) � y0. (20)
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If xk �= uk for some k, then the P-SPQF property of Fnk implies that, either
Fnk (xk) ⊆ Fnk (sk) + int P or Fnk (uk) ⊆ Fnk (sk) + int P. Since yk ∈ Fnk (xk)
and yk ∈ MinHP Fnk (Ank ), Fnk (xk) ⊆ Fnk (sk) + int P does not hold. Therefore,
we have Fnk (uk) ⊆ Fnk (sk) + int P for any k. Then from (19) it follows that
y0 + ε ∈ Fnk (sk) + int P, for any k ≥ kε . Then, (sk, y0 + ε) ∈ epiFnk and

(sk, y0 + ε) → (x̂, y0 + ε). By the fact (Fn, An)
P.K.−→ (F, A), we have that

(x̂, y0 + ε) ∈ epiF . This implies that

y0 + ε ∈ F(x̂) + P. (21)

So, from (20) and (21) we always have y0 + ε ∈ F(x̂) + P . By the arbitrariness of
ε and the closedness of epi F , we have y0 ∈ F(x̂) + P , that is, there exists p0 ∈ P
such that y0 − p0 ∈ F(x̂).

The following two cases would be considered:
Case 1. If x = x̂ , then y ∈ F(x) = F(x̂). We claim that y �= y0 − p0. Otherwise,

we have

z = y0 − y = p0 ∈ P ⊆ P1. (22)

Hence, from (18) and (22) it follows that 0 �= z ∈ P1 ∩ (−P1). As P1 is a pointed
cone, 0 �= z ∈ P1 ∩ (−P1) = {0}, which is a contradiction. Thus y �= y0 − p0,
which with the rotundity of F(x̂) yields that ]y, y0 − p0[ ∩ (∂ F(x̂))c �= ∅, that is,
]y, y0 − p0[ ∩ int F(x̂) �= ∅. Hence there exists y′ ∈ ]y, y0 − p0[ ∩ int F(x̂). Now we
can choose ε ∈ int P such that y′ − ε ∈ F(x̂) ∩ (y − int P), which contradicts the
fact y ∈ Minint P F(A).

Case 2. If x �= x̂ , then P-SPQF property of F implies that for any λ ∈ ]0, 1[, either
F(x) ⊆ F(λx̂ + (1−λ)x)+ int P or F(x̂) ⊆ F(λx̂ + (1−λ)x)+ int P.As y ∈ F(x)
and y ∈ Minint P F(A), F(x) ⊆ F(λx̂ + (1 − λ)x) + int P does not hold. Hence, for
any λ ∈ ]0, 1[, F(x̂) ⊆ F(λx̂+ (1−λ)x)+ int P , which together with y0 ∈ F(x̂)+ P
yields that y0 ∈ F(λx̂ + (1 − λ)x) + int P. Since epi F is closed, by taking limit as
λ → 0+, we have (x, y0) ∈ epi F . Then there exists p′

0 ∈ P such that y0− p′
0 ∈ F(x).

Similar to the Case 1, we can show that y �= y0 − p′
0. By the rotundity of F(x), we

have ]y, y0− p′
0[ ∩ int F(x) �= ∅.Hence there exists y′ ∈ ]y, y0− p′

0[ ∩ int F(x). Now
we can choose ε ∈ int P such that y′ − ε ∈ F(x) ∩ (y − int P), which contradicts the
fact y ∈ Minint P F(A).

So, from Cases 1 and 2 we can see that y ∈ MinHP F(A). �

Summarizing Theorems 3.1 (i), 3.2 and Corollaries 3.1, 3.2, we have established
the P.K. convergence of the (weak) minimal point sets.

Theorem 3.4 Let A, An(n ∈ N) be nonempty, closed and convex subsets of Rk . Let
F : Rk → R

l be an u.s.c., P-SNQF, compact-valued and rotund-valued mapping on
A and Fn : Rk → R

l(n ∈ N) be u.s.c., P-NQF and compact-valued mappings on

An(n ∈ N). Assume that: (i) An
P.K.−→ A; (ii) (An, Fn)

P.K.−→ (A, F); (iii) if A∩ Fα �= ∅
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for some α ∈ R
l , then 0+(A ∩ Fα) = {0}. Then, we have

(a) MinP Fn(An)
P.K.−→ MinP F(A); (b) Minint P Fn(An)

P.K.−→ Minint P F(A).

Remark 3.1 Theorem 3.4 extends the corresponding ones of [4,6–11] in the following
aspects: (i) Theorem 3.4 extends the corresponding ones of [4,6–11] from the vector-
valued optimization problem to the set-valued case; (ii) The convexity of objective
mappings F, Fn(n ∈ N) in [4,6–9,11] are weakened to P-NQF; (iii) The convergence
of objective mappings Fn(n ∈ N) in [4,6,7,9,10] is weakened to P.K. convergence
(see, Examples 3.2 and 3.3 in [11]).

The following example is given to illustrate Remark 3.1 (i) and (ii).

Example 3.1 Let An = A = [0, 1] and P = R
2+. Let Fn, F : R ⇒ R

2 be respectively
defined as Fn(x) = (x3, 1 − x2 + 1

n ) and F(x) = (x3, 1 − x2). Indeed, we have
Minint P F(A) = MinP F(A) = {(x3, 1 − x2) : x ∈ [0, 1]} and Minint P Fn(An) =
MinP Fn(An) = {(x3, 1 − x2 + 1

n ) : x ∈ [0, 1]}. Therefore, Minint P Fn(An) =
MinP Fn(An)

P.K.−→ WMinint P F(A) = MinP F(A) and Theorem 3.4 is applicable.

However, the corresponding ones in [4,6–11] are not applicable. The main reasons
are that Fn and F are neither P-PQF nor P-F. So, Theorems 3.4 is an improvement
of the corresponding ones in [4,6–11].

Combining Proposition 2.1 (2), Theorems 3.1 (ii) and 3.3, we have established the
P.K. convergence of the Henig minimal sets.

Theorem 3.5 Let A, An (n ∈ N) be nonempty, closed and convex subsets of Rk .
Let F be an u.s.c., P-SPQF and compact-valued mapping on A and Fn (n ∈ N) be

P-SPQF and compact-valued maps on An(n ∈ N). Assume that: (i) An
P.K.−→ A; (ii)

(An, Fn)
P.K.−→ (A, F); (iii) if A ∩ Fα �= ∅ for some α ∈ R

l , then 0+(A ∩ Fα) = {0};
(iv) epi F is closed. Then, we have

MinHP Fn(An)
P.K.−→ MinHP F(A).

4 Stability of the Minimizer Sets

In this section, we investigate the P.K. convergence of three kinds of minimizer sets
in the given space.

Theorem 4.1 Suppose that all conditions of Theorem 3.4 hold. Then we have

(a) Eint P (An, Fn)
P.K.−→ Eint P (A, F); (b)EP (An, Fn)

P.K.−→ EP (A, F).

Proof (a) Firstly, we show lim supn Eint P (An, Fn) ⊆ Eint P (A, F). Let (x, y) in
lim supn Eint P (An, Fn), hence there exists a subsequence {(xk , yk)} inEint P (Ank , Fnk )
such that (xk, yk) → (x, y). We claim that (x, y) ∈ Eint P (A, F). Otherwise, there
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exist x ′ ∈ A and y′ ∈ F(x ′) such that 0 �= y′ − y ∈ −int P . Then we can choose
ε ∈ int P such that

y′ − y + 2ε ∈ −int P. (23)

By the fact y′ ∈ F(x ′) and (An, Fn)
P.K.−→ (A, F), there exists a sequence (x ′

k, y
′
k) ∈

epi Fnk such that (x ′
k, y

′
k) → (x ′, y′). As yk → y and y′

k → y′, then for sufficiently
large k and the above ε, we have yk ∈ y − ε + int P and y′

k ∈ y′ + ε − int P, which
together with (23) yields that y′

k − yk ∈ −int P . As (x ′
k, y

′
k) ∈ epi Fnk for any k, there

exists wk ∈ Fnk (x
′
k) such that wk ∈ y′

k − P . So, wk − yk ∈ −int P , which contradicts
(xk, yk) ∈ Eint P (Ank , Fnk ).

Secondly, we prove Eint P (A, F) ⊆ lim infn Eint P (An, Fn). Taking (x, y) in
Eint P (A, F), we have y ∈ F(x) and y ∈ Minint P F(A). By Theorem 3.2, there exists
a sequence {yn} in Minint P Fn(An) such that yn → y. We can choose a sequence {xn}
in An such that yn ∈ Fn(xn) and (xn, yn) ∈ Eint P (An, Fn). Let ε ∈ int P be any ele-
ment. From the fact Fn(xn) � yn → y, it follows that y + ε ∈ yn + P ⊆ Fn(xn) + P
for sufficiently large n. This means that xn ∈ An ∩ Fy+ε

n . By Lemma 2.4 and Propo-
sition 3.2, the sequence {xn} is bounded and has a convergent subsequence. Without

loss of generality, we assume that xn → x̂ ∈ A. Since (An, Fn)
P.K.−→ (A, F), we have

that lim supn epiF̄n ⊆ epiF̄ . According to (xn, yn) ∈ epiF̄n and (xn, yn) → (x̂, y),
we get that (x̂, y) ∈ epiF̄ . That is, there exists ŷ ∈ F(x̂) such that y ∈ ŷ + P .

Now we show that x = x̂ . Suppose to the contrary that x �= x̂ . As F is P-SNQF
on A and y ∈ F(x) and ŷ ∈ F(x̂), for any λ ∈]0, 1[, there exists η ∈ [0, 1] such that
η ŷ + (1 − η)y ∈ F(λx + (1 − λ)x̂) + int P which together with the fact y ∈ ŷ + P
yields y ∈ F(λx + (1− λ)x̂)+ int P. This contradicts the fact (x, y) ∈ Eint P (A, F).
Thus, every possible convergent subsequence of {xn} converges to x and hence the
entire sequence {xn} converges to x . So, (xn, yn) ∈ Eint P (An, Fn), (xn, yn) → (x, y)
and Eint P (A, F) ⊆ lim infn Eint P (An, Fn).

(b) The proof follows on similar lines of (a). �
Theorem 4.2 Suppose that all conditions of Theorem 3.5 hold. Then we have

EH
P (An, Fn)

P.K.−→ EH
P (A, F).

Proof As the proof is similar to the one of Theorem 4.1, we omit it. �

5 Conclusions

This paper considered the stability of a P-NQF set-valued optimization problem based
on the concept of P.K. convergence of the feasible sets and objective set-valued map-
pings. The results improved and extended the corresponding results of the recent
papers. The generalization is threefold: The objective mappings are extended from
vector-valued mappings to set-valued ones; the convexity of objective mappings is
weakened to P-NQF; the convergence of the sequences of objective mappings is
weakened to P.K. convergence.
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15. Khan, A.A., Tammer, C., Zǎlinescu, C.: Set-Valued Optimization: An Introduction with Applications.

Springer, Berlin (2015)
16. López, R.: Variational convergence for vector-valued functions and its applications to convex multi-

objective optimization. Math. Meth. Oper. Res. 78, 1–34 (2013)
17. Kuroiwa, D.: Convexity for set-valued maps. Appl. Math. Lett. 9, 97–101 (1996)
18. Chinaie, M., Zafarani, J.: Image space analysis and scalarization for epsilon-optimization of multi-

functions. J. Optim. Theory Appl. 157, 685–695 (2013)
19. Aubin, J.P., Ekland, I.: Applied Nonlinear Analysis, Pure and Applied Mathematics. Wiley, New York

(1984)
20. Holmes, R.B.: Geometric Functional Analysis and Its Applications, Grad Texts in Mathematics 24.

Springer, New York (1975)
21. Miglierina, E., Molho, E.: Convergence of minimal sets in convex vector optimization. SIAM J. Optim.

15, 513–526 (2005)
22. Auslender,A., Teboulle,M.:AsymptonicCones andFunctions inOptimization andVariational Inequal-

ities. Springer, New York (2003)

123


	Stability of Set-Valued Optimization Problems with Naturally Quasi-Functions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Stability of the Minimal Point Sets
	4 Stability of the Minimizer Sets
	5 Conclusions
	Acknowledgments
	References




