
J Optim Theory Appl (2016) 168:884–900
DOI 10.1007/s10957-015-0794-9

Extension of Completely Positive Cone Relaxation to
Moment Cone Relaxation for Polynomial Optimization

Naohiko Arima1 · Sunyoung Kim2 ·
Masakazu Kojima3

Received: 27 July 2015 / Accepted: 4 August 2015 / Published online: 13 August 2015
© Springer Science+Business Media New York 2015
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1 Introduction

The copositive programming (CP) and completely positive programming (CPP) relax-
ation [1–5] for quadratic optimization problems (QOPs) have attracted considerable
attention in recent years. The class of QOPs considered by Burer in [4] was binary and
continuous nonconvex QOPs with linear constraints, and a QOP with an additional
constraint u ∈ D in its variable vector u, where D is a closed (not necessarily convex)
set, was represented in a CPP by Eichfelder and Povh [5], extending Burer’s results.
More recently, it was shown in [1] that a QOP model with quadratic constraints could
be reformulated as a CPP under the hierarchy of copositivity and zeros at infinity
conditions. In [6], QOPs with linear and complementarity constraints were shown to
be formulated as CPPs. All of these results show that the proposed CP and CPP relax-
ations are exact for the given QOP. That is, the optimal value of the CPP relaxation is
equivalent to that of the given QOP.

For polynomial optimization problems (POPs), semidefinite programming (SDP)
relaxations proposed by [7] have been very popular as solution methods. Noting the
CPP relaxations are stronger thanSDP relaxations forQOPs, it is natural to askwhether
the results on the CP and CPP relaxations for QOPs can be extended to a class of
POPs. Peña et al. [8] proposed a canonical convexification procedure for POPs under
the hierarchy of copositivity and zeros at infinity conditions, and formulated a class
of POPs as an equivalent conic program over the cone of completely positive tensors
under certain conditions in [9].

The main goal of this paper was to propose the moment cone relaxation for a class
of POPs as an extension of the CPP relaxation given in [1]. We present the moment
cone relaxation for a POP as an extension of the CPP relaxation, and show under
certain conditions that the optimal value of the POP coincides with that of the moment
cone relaxation of the POP.

The POP considered in this paper is quite general in that it includes various types
of QOPs and POPs. We refer to [1,3,4,9] for the QOPs and POPs that can be trans-
formed into POPs of the form in this paper satisfying the required conditions for the
equivalence to its moment cone relaxation.

In Sect. 2, we summarize the notation and describe the POP considered in this paper.
The illustrative example described in Sect. 2 is used throughout for better understand-
ing of the discussions in this paper. The main results showing the equivalence of the
optimal value of the POP and its moment cone relaxation are stated in Sect. 3 and
their proofs in Sect. 4. In Sect. 5, we describe how to transform a general POP into
the form of POP in this paper and discuss some similarities and differences between
the proposed moment cone relaxation and the completely positive reformation [9]. We
conclude in Sect. 6.

2 Preliminaries

2.1 Notation and Symbols

Let R denote the set of real numbers, R+ the set of nonnegative real numbers, and
Z+ the set of nonnegative integers. We denote the i th coordinate unit as ei ∈ R

n ,
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and the vector of all elements 1 as 1 ∈ R
n . Let |β|1 = ∑n

i=1 βi for each β ∈ Z
n+.

R[x] is the set of real-valued multivariate polynomials in n variables x1, . . . , xn ∈ R.
A polynomial f ∈ R[x] is represented as f (x) = ∑

β∈H fβxβ , where H ⊂ Z
n+ is

a nonempty finite set, fβ (β ∈ H) are real coefficients, xβ = xβ1
1 xβ2

2 · · · xβn
n , and

β = (β1, β2, . . . , βn) ∈ Z
n+. We note that if 0 ∈ H, then x0 = 1 for any x ∈ R

n and
f0x0 represents the constant term f0 of the polynomial f ∈ R[x]. The support of f and
the degree of f are defined by supp( f ) := {β ∈ H : fβ �= 0} ⊂ Z

n+ and deg( f ) :=
max{|β|1 : β ∈ supp( f )}, respectively. LetH be a nonempty finite subset of Zn+. |H|
stands for the number of elements of H. R[x,H] := { f ∈ R[x] : supp( f ) ⊂ H}.
Let RH denote the |H|-dimensional Euclidean space whose coordinates are indexed
by β ∈ H. For A ⊂ R

H, conv A denotes the convex hull of A, cone A the cone
generated by A and closure A the closure of A; hence, closure conv A is the closure
of the convex hull of A. For the definitions of cone A and closure A, we refer to [10].
Each vector of RH with elements zβ (β ∈ H) is denoted as (zβ : H). We assume that
(zβ : H) is a column vector when it is multiplied by a matrix. If x ∈ R

n , (xβ : H)

denotes the |H|-dimensional (column) vector with elements zβ = xβ (β ∈ H). We
frequently write a polynomial f ∈ R[x,H] as f (x) = ( fβ : H) · (xβ : H) for some
( fβ : H) ∈ R

H, where ( fβ : H) · (xβ : H) denotes the inner product
∑

β∈H fβxβ of

( fβ : H) ∈ R
H and (xβ : H) ∈ R

H.

2.2 Polynomial Optimization Problems

LetR[x] be the set of real-valuedmultivariate polynomials in n variables x1, . . . , xn ∈
R, where x = (x1, x2, . . . , xn) ∈ R

n . As a theoretical framework for themoment cone
relaxation, we consider the following POP:

minimize ψ(x) subject to h0(x) = 1, h j (x) = 0 ( j ∈ J ), x ∈ L, (1)

where J = {1, . . . , �}, J0 = {0}⋃ J = {0, 1, . . . , �}, ψ, h j ∈ R[x] ( j ∈ J0)
and L is a closed (not necessarily convex) cone in R

n . This model is an extension
of the standard QOP model [3] of minimizing a quadratic form over the simplex{
x ∈ R

n : x ≥ 0,
(∑n

i=1 xi
)2 = 1

}
and the QOP model studied in [1,2]. We assume

throughout the paper that

ψ, h j ∈ R[x] ( j ∈ J0) are homogeneous polynomials with degree τ ≥ 1. (2)

Here f ∈ R[x] is called a homogeneous polynomial with degree τ if

f (λx) = λτ f (x) for every x ∈ R
n and λ ∈ R.

Let K ⊂ R
m denote a closed cone, J = {1, . . . , �} and ϕ, g j ∈ R[w] ( j ∈ J ). We

can handle a more general POP of the form:

minimize ϕ(w) subject to g j (w) = 0 ( j ∈ J ), w = (w1, . . . , wm) ∈ K. (3)
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Wenote that the homogeneity of the polynomialsϕ, g j ∈ R[w] ( j ∈ J ) is not assumed
in POP (3), but (3) is easily transformed into POP (1) satisfying the homogeneity
condition (2) on the polynomials ϕ, g j ∈ R[w] ( j ∈ J ) by introducing an auxiliary
variablew0 ∈ R+ fixed to 1, which corresponds to the equality constraint h0(w0,w) =
1, with x = (w0,w) in (1) and the cone L = R+ × K.

The conditions include the hierarchy of copositivity and a variation of the zeros at
infinity introduced in [8] and later used in [1]. For every j = 1, . . . , �, the hierarchy
of copositivity for (1) is described as

h0(x) ≥ 0 for every x ∈ L,

h j (x) ≥ 0 for every x ∈ G̃ j−1 ( j ∈ J ),
(4)

where

G̃0 = {x ∈ L : h0(x) = 1} ,

G̃ j = {
x ∈ G̃ j−1 : h j (x) = 0

}

= {x ∈ L : h0(x) = 1 and hk(x) = 0 (k = 1, 2, . . . , j)} . (5)

We note that a simple copositivity condition

h j (x) ≥ 0 for every x ∈ L ( j ∈ J0), (6)

is a stronger version of the hierarchy of copositivity (4), and

x = 0 if x ∈ L and h j (x) = 0 ( j ∈ J0) (7)

is a stronger version of the zero at infinity condition since x = 0 is required. Condi-
tion (6) is not very restrictive theoretically because ψ(x) can always be replaced by
h0(x)ψ(x) and h j (x) by h j (x)2 ( j ∈ J0) in POP (1) to satisfy both (2) and (6). This,
however, may destroy the sparsity of the polynomials. Condition (7), together with
(2), requires that the feasible region of POP (1) is bounded, while the zeros at infinity,
a weaker condition, allows that the feasible region is unbounded.

A popular choice for the closed cone L in (1) is the Cartesian product of Rn1 and
R
n2+ for n1 and n2 satisfying n = n1 + n2. More generally, we can choose a second-

order cone, the vectorization of a positive semidefinite symmetric matrix cone and the
vectorization of a cone of nonnegative symmetric matrices for L. We also note that
if L1 and L2 in R

n are cones, so are their intersection, union, difference, symmetric
difference and Minkowski sum.

For (homogeneous) QOPs, two different descriptions of the completely positive
cone are known: the convex cone generated by

{
xxT : x ∈ R

n+
}
and

⎧
⎨

⎩

q∑

p=1

x pxTp : x p ∈ R
n+ (p = 1, . . . , q), q ≥ 0

⎫
⎬

⎭
.
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These twodescriptions are equivalent. In [9], the completely positive cone in the former
description is generalized to the cone of completely positive tensors. The completely
positive cone described in the latter can be generalized similarly.When their procedure
is applied to nonhomogeneous POPs of the form (3), the two generalized descriptions
are different. In particular, the latter is neither convex nor conic. On the one hand, the
two descriptions remain equivalent in our homogeneous POP model (1) satisfying (2)
(see Lemma 3.1).

This difference is a fundamental and essential feature of our POP model, which
makes it possible to (a) allow a straightforward extension from the CPP relaxation for
the QOP model [1] to POP (1), (b) make the derivation of an equivalent moment cone
relaxation of (1) simple, (c) directly handle cases where the closed cone L is neither
convex nor pointed and (d) naturally take account of sparsity of the polynomials
ψ, h j ∈ R[x] ( j ∈ J0) in POP (1). We note that the last advantage is important for
developing efficient approximation of themoment cone relaxation problem in practice,
such as the doubly nonnegative relaxation. More detailed comparison between our
moment cone relaxation and the completely positive reformulation in [9] is in Sect. 6.

2.3 An Illustrative Example

We consider a polynomial optimization problem

minimize (x41 + 2x21 x
2
2 − 4x43 )

subject to x41 + x42 + x43 = 1, x1x2 − x23 ≥ 0, xi ≥ 0 (i = 1, 2, 3).
(8)

By introducing a slack variable x4 ∈ R and a variable vector x = (x1, x2, x3, x4), we
convert the problem into

minimize ψ(x) subject to h0(x) = 1, h1(x) = 0, x ∈ R
4+, (9)

whereψ(x) = x41 +2x21 x
2
2 −4x43 , h0(x) = x41 + x42 + x43 , h1(x) = (x1x2− x23 − x24 )

2.

In addition to condition (2) with τ = 4, the problem (9) satisfies conditions (6) and
(7) with J0 = {0, 1} and L = R

4+. This problem serves as an illustrative example in
the subsequent discussions. We see that

deg(ϕ) = deg(h0) = deg(h1) = 4, supp(ψ) = {(4 0 0 0), (2 2 0 0), (0 0 4 0)},
supp(h0) = {(4 0 0 0), (0 4 0 0), (0 0 4 0)},

supp(h1) =
{

(2 2 0 0), (1 1 2 0), (1 1 0 2), (0 0 4 0), (0 0 2 2),

(0 0 0 4)

}

.

Let Hmin = supp(ψ)
⋃

supp(h0)
⋃

supp(h1)

=
{

(4 0 0 0), (2 2 0 0), (1 1 2 0), (1 1 0 2), (0 4 0 0),

(0 0 4 0), (0 0 2 2), (0 0 0 4)

}

.
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Then, we can regard ψ, h0, h1 ∈ R[x,H] for any H ⊃ Hmin. For example, if we
take H = Hmin, ψ ∈ R[x,H] is represented as follows:

(ψβ : H) = (
ψ(4000), ψ(2200), ψ(1120), ψ(1102), ψ(0400), ψ(0040), ψ(0022), ψ(0004)

)
,

= (1, 2, 0, 0, 0,−4, 0, 0) ∈ R
H,

(xβ : H) =
(
x41 , x

2
1 x

2
2 , x1x2x

2
3 , x1x2x

2
4 , x

4
2 , x

4
3 , x

2
3 x

2
4 , x

4
4

)
∈ R

H,

ψ(x) = (ψβ : H) · (xβ : H) ∈ R[x,H].

(10)

3 Main Results

We consider POP (1) satisfying condition (2). Recall that L denotes a closed (not
necessarily convex) cone. Let T∗ denote the feasible region of POP (1);

T∗ = {
x ∈ L : h0(x) = 1,h j (x) = 0 ( j ∈ J )

}
.

Condition (2) can be restated as

ψ(λx) = λτψ(x), h j (λx) = λτh j (x) ( j ∈ J0)

for some integer τ ≥ 1, every x ∈ R
n and every λ ∈ R+. (11)

Let Hmin = supp(ψ)
⋃(⋃

j∈J0 supp(h j )
)

. Then, (11) is equivalent to

|β|1 = τ for some positive integer τ ≥ 1 and every β ∈ Hmin. (12)

LetHmax = {
β ∈ Z

n+ : |β|1 = τ
}
. ChooseH ⊂ Z

n+ asHmin ⊂ H ⊂ Hmax. Then,
the polynomials ψ, h j ∈ R[x] ( j ∈ J0) are written as

ψ(x) = (ψβ : H) · (xβ : H), h j (x) = ((h j )β : H) · (xβ : H) ( j ∈ J0),

for some (ψβ : H), ((h j )β : H) ∈ R
H ( j ∈ J0). Let

T̃ (H) =
{
(xβ : H) ∈ R

H : x ∈ T∗
}

=
{

(xβ : H) ∈ R
H : x ∈ L, ((h0)β : H) · (xβ : H) = 1,

((h j )β : H) · (xβ : H) = 0 ( j ∈ J )

}

.

Then, we can rewrite POP (1) as

minimize (ψβ : H) · (zβ : H) subject to (zβ : H) ∈ T̃ (H).

Since the objective function is linear with respect to (zβ : H) ∈ R
H, the problem

above is equivalent to

minimize (ψβ : H) · (zβ : H) subject to (zβ : H) ∈ conv T̃ (H). (13)
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In the case of POP (9), we see that

T̃ (H) =
{(

x41 , x
2
1 x

2
2 , x1x2x

2
3 , x1x2x

2
4 , x

4
2 , x

4
3 , x

2
3 x

2
4 , x

4
4

) : x ∈ R
4+,

h0(x) = x41 + x42 + x43 = 1, h1(x) = (x1x2 − x23 − x24 )
2 = 0

}

,

(zβ : H) = (
z(4000), z(2200), z(1120), z(1102), z(0400), z(0040), z(0022), z(0004)

)
.

See also (10) for (ψβ : H) and (xβ : H).
Define the moment cone generated by H and L as

M(H,L) :=
⎧
⎨

⎩

q∑

p=1

((x p)
β : H) : x p ∈ L (p = 1, 2, . . . , q) and q ∈ Z+

⎫
⎬

⎭
. (14)

M(H,L) forms a convex cone by the following lemma. Hence, by Carathéodory’s
Theorem the nonnegative integer q to which the summation is taken in the description
of M(H,L) can be fixed to q∗ = |H|;

M(H,L) =
⎧
⎨

⎩

q∗
∑

p=1

((x p)
β : H) : x p ∈ L (p = 1, 2, . . . , q∗)

⎫
⎬

⎭
.

Lemma 3.1 Suppose that L is a closed cone in Rn and Hmin ⊂ H ⊂ Hmax .

(a) M(H,L) is a convex cone.
(b) Assume that {τe1, . . . , τen} ⊂ H. If τ is even or L = R

n+, then M(H,L) is
closed, where ei denotes the i th coordinate unit vector of Rn.

Proof See Sections 5.1 and 5.2. �	
If the assumption in (b) is not satisfied,M(H,L) is not necessarily closed. For example,
let n = 2,L = R

2+, τ = 2,H = {(2, 0), (1, 1)} �
 (0, 2). Then

M(H,R2+) =
{
(x21 , x1x2) + (y21 , y1y2) : x = (x1, x2), y = (y1, y2) ∈ R

2+
}

.

If we take a sequence
{
xr = (1/r, r) ∈ R

2+ : r = 1, 2, . . .
}
, then the sequence

{
((xr )β : H) = ((1/r)2, 1) ∈ M(H,R2+) : r = 1, 2, . . . ,

}

converges to (0, 1) /∈ M(H,R2+).
Define

T̂ (H) :=
{

(zβ : H) ∈ R
H : (zβ : H) ∈ M(H,L), ((h0)β : H) · (zβ : H) = 1,

((h j )β : H) · (zβ : H) = 0 ( j ∈ J )

}

.
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We introduce the moment cone relaxation of POP (1).

minimize (ψβ : H) · (zβ : H) subject to (zβ : H) ∈ T̂ (H). (15)

Recall that H can be an arbitrary subset of Zn+ satisfying

Hmin = supp(ψ)
⋃

⎛

⎝
⋃

j∈J0

supp(h j )

⎞

⎠ ⊂ H ⊂ Hmax , or

Hmin

⋃
{τe1, . . . , τen} ⊂ H ⊂ Hmax ,

for the closedness ofM(H,L) when L = R
n+. If the polynomials ψ, h j ∈ R[x] ( j ∈

J0) of POP (1) are sparse or they involve a small number of monomials, the dimension
|H| of the variable vector (zβ : H) of the problem (15) can be small. Thus, the moment
cone relaxation (15) naturally inherits such sparsity from POP (1).

We note that the problems (13) and (15) have the same linear objective function
(ψβ : H) · (zβ : H). Let

T0 = {x ∈ L : h0(x) ≥ 0} , Tj = {
x ∈ Tj−1 : h j (x) = 0

}
( j ∈ J )

= {x ∈ L : h0(x) ≥ 0, hi (x) = 0 (i = 1, . . . , j)} ( j ∈ J ).

We consider the following conditions to ensure that (13) and (15) have equivalent
feasible regions in the sense that closure conv T̃ (H) = closure T̂ (H).

h0(x) ≥ 0 for every x ∈ L, i.e., T0 = L, (16)

h j (x) ≥ 0 for every x ∈ Tj−1( j ∈ J ), (17)

T∞∗ ⊃ {
x ∈ L : h j (x) = 0( j ∈ J0)

}
. (18)

Here, for every A ⊂ R
n , A∞ denotes the horizon cone defined by

A∞ :=
{

x ∈ R
n : there exists (μr , yr ) ∈ R+ × A (r = 1, 2, . . . )

such that (μr , μryr ) → (0, x) as r → ∞

}

(see, for example, [11]). If τ = 2 (i.e., (1) represents a homogeneous QOP), conditions
(16), (17) and (18) are equivalent to the set of conditions (A)’, (B̃), (C̃) and (D)
assumed in [1]. These conditions will be compared to the conditions imposed in [9]
on the nonhomogeneous POP of the form (3) for the equivalence to its completely
positive reformulation in Sect. 6. It is easily verified that the converse inclusion of
(18) always holds.

The following theorem asserts that the closures of feasible regions conv T̃ (H) of
POP (13) and T̂ (H) of the moment cone relaxation problem (15) coincide with each
other. Thus, (13) and (15) are equivalent. Since POPs (1) and (13) have a same optimal
value, (15) attains the exact optimal value of (1).
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Theorem 3.1 Assume thatL is a closed cone and conditions (11), (16), (17) and (18)
hold. If Hmin ⊂ H ⊂ Hmax, then closure conv T̃ (H) = closure T̂ (H) and

inf {ψ(x) : x ∈ T∗} = inf
{
(ψβ : H) · (zβ : H) : (zβ : H) ∈ T̂ (H)

}
. (19)

Proof See Sections 5.3 and 5.4.

We conclude this section by extending the previous discussions to more general
cases.

Corollary 3.1 Assume that L is a closed cone and that conditions (11), (16), (17) and
(18) hold. IfHmin ⊂ H (but not necessarily H ⊂ Hmax), then (19) holds.

Proof We first observe that conditions (11), (16), (17) and (18) do not depend on any
choice of H ⊃ Hmin and that all definitions of (ψβ : H), M(H,L), ((h j )β : H) ∈
R
H ( j ∈ J0), T̃ (H) and T̂ (H) remain consistent, although Lemma 3.1 may not be

true. We can easily verify that T̃ (H) ⊂ T̂ (H). Hence,

inf {ψ(x) : x ∈ T∗} = inf
{
(ψβ : H) · (zβ : H) : (zβ : H) ∈ T̃ (H)

}

≥ inf
{
(ψβ : H) · (zβ : H) : (zβ : H) ∈ T̂ (H)

}
.

On the other hand, if (z̄β : H) ∈ T̂ (H), then (z̄β : H⋂Hmax) ∈ T̂ (H⋂Hmax)) and
(ψβ : H) · (z̄β : H) = (ψβ : H⋂Hmax) · (z̄β : H⋂Hmax). Therefore,

inf
{
(ψβ : H) · (zβ : H) : ·(zβ : H) ∈ T̂ (H)

}

≥ inf
{
(ψβ : H

⋂
Hmax) · (zβ : H

⋂
Hmax) :

(zβ : H
⋂

Hmax) ∈ T̂ (H
⋂

Hmax)
}

= inf {ψ(x) : x ∈ T∗} .

Here the last equality follows from Theorem 3.1. �	

4 Proof

4.1 Proof of (a) in Lemma 3.1

Suppose that
∑q

p=1((x p)
β : H) ∈ M(H,L), x p ∈ L (p = 1, . . . , q),

∑q̄
p=1(x̄

β
p :

H) ∈ M(H,L), x̄ p ∈ L (p = 1, . . . , q̄), λ ≥ 0 and λ̄ ≥ 0. Since L is a cone, we see
that λ1/τ x p ∈ L (p = 1, . . . , q) and λ̄1/τ x̄ p ∈ L (p = 1, . . . , q̄). By H ⊂ Hmax ={
β ∈ Z

n+ : |β|1 = τ
}
,
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λ

q∑

p=1

((x p)
β : H) + λ̄

q̄∑

p=1

((x̄ p)
β : H)

=
q∑

p=1

((λ1/τ x p)
β : H) +

q̄∑

p=1

((λ̄1/τ x̄ p)
β : H) ∈ M(H,L).

Thus, we have shown that M(H,L) is a convex cone. �	

4.2 Proof of (b) in Lemma 3.1

Consider a sequence

M(H,L) 
 ((zr )β : H) =
q∑

p=1

((xrp)β : H)

with xrp ∈ L (p = 1, 2, . . . , q) (r = 1, 2, . . .), (20)

which converges to some (z̄β : H) as r → ∞. We show that the sequence{
xrp ∈ L : r = 1, 2, . . . } is bounded (p = 1, 2, . . . , q). From (20), we observe

q∑

p=1

(xrp)β = (zr )β → z̄β as r → ∞ (β ∈ H).

By the assumption, we know that {τe1, . . . , τen} ⊂ H. As a result, the above relation
holds for β = τei ∈ H (i = 1, . . . , n). If each xrp is denoted as (xrp1, . . . , xrpn),
then (xrp)(τei ) = (xrpi )τ ≥ 0 since τ is a even integer or L = R

n+ by the assumption.
Hence, we obtain by induction on j that

0 ≤ (xrpi )
τ ≤

q∑

q=1

(xrqi )
τ =

q∑

q=1

(xrq)(τei ) = (zr )(τei ) → z̄(τei ) as r → ∞

for i = 1, . . . , n and p = 1, 2, . . . , q (r = 1, 2, . . . , ).

(21)

This implies that all sequences {xrp ∈ L : r = 1, 2, . . . , } (p = 1, 2, . . . , q) are
bounded. Thus, we can take a subsequence of (20) along which xrp ∈ L converges to
some x̄ p ∈ L as r → ∞ (p = 1, 2, . . . , q). Therefore,

(z̄β : H) =
q∑

p=1

((x̄ p)
β : H) ∈ M(H,L).

�	
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4.3 Proof of Closure conv ˜T (H) ⊂ Closure ̂T (H) in Theorem 3.1

Assume that (zβ : H) = (xβ : H) ∈ T̃ (H). Then, (zβ : H) ∈ T̂ (H) by definition. As
closure T̂ (H) is convex and closed, closure conv T̃ (H) ⊆ closure T̂ (H) follows. �	

4.4 Proof of Closure ̂T (H) ⊂ Closure conv ˜T (H) in Theorem 3.1

It suffices to show that T̂ (H) ⊂ closure conv T̃ (H). Suppose (zβ : H) ∈ T̂ (H). Then,
((h0)β : H) · (zβ : H) = 1, ((h j )β : H) · (zβ : H) = 0 ( j ∈ J ),

(zβ : H) =
q∑

p=1

(
(x p)

β : H
)

for some x p ∈ L (p = 1, . . . , q).

It follows that

1 = (
(h0)β : H) ·

⎛

⎝
q∑

p=1

(
(x p)

β : H
)
⎞

⎠

=
q∑

p=1

(
(h0)β : H) ·

(
(x p)

β : H
))

=
q∑

p=1

h0(x p),

0 = (
(h j )β : H) ·

⎛

⎝
q∑

p=1

(
(x p)

β : H
)
⎞

⎠

=
q∑

p=1

(
(h j )β : H) ·

(
(x p)

β : H
))

=
q∑

p=1

h j (x p) ( j ∈ J = {1, . . . , �}) . (22)

We will show by induction that

x p ∈ Tj (p = 1, . . . , q) ( j = 0, . . . , �). (23)

It follows from x p ∈ L and (16) that x p ∈ T0. Now assume that x p ∈ Tj−1 for some
j with j ∈ J (p = 1, . . . , q). By (17), we see that h j (x p) ≥ 0 (p = 1, . . . , q).
Hence, (22) implies that h j (x p) = 0, and x p ∈ Tj (p = 1, . . . , q). Thus, we have
shown (23).

From x p ∈ T0, we know that λp = h0(x p) is nonnegative (p = 1, 2, . . . , q).
Let I+ = {p : λp = h0(x p) > 0}, I0 = {p : λp = h0(x p) = 0} and x̄ p =
x p/(λp)

1/τ ∈ L (p ∈ I+). By (11), (12) and Hmin ⊂ H ⊂ Hmax that

(
(x p)

β : H
)

=
((

(λp)
1/τ x̄ p

)β : H
)

= λp

((
x̄ p
)β : H

)
(p ∈ I+),

h0(x̄ p) = h0(x p/λ
1/τ
p ) = h0(x p)/λp = 1 (p ∈ I+),

h j (x̄ p) = h j

(
x p/λ

1/τ
p

)
= h j (x p)/λp = 0 (p ∈ I+) ( j ∈ J ).
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Hence, ((x̄ p)
β : H) ∈ T̃ (H) (p ∈ I+)

1 =
q∑

p=1

h0(x p) =
∑

p∈I+
h0(x p) =

∑

p∈I+
λp, λp > 0 (p ∈ I+),

(zβ : H) =
q∑

p=1

((x p)
β : H) =

∑

p∈I+
λp((x̄ p)

β : H) +
∑

p∈I0
((x p)

β : H),

x p ∈ {
x ∈ L : h j (x) = 0 ( j ∈ J0)

}
(p ∈ I0).

By (18), for each p ∈ I0, there exists a sequence
{
(μpr , ypr ) ∈ R+ × T∗

}
such that

(μpr , μprypr ) → (0, x p) as r → ∞. Let p̃ ∈ I+ and Ĩ+ = I+\{ p̃}. Then, for
sufficiently large r such that λ p̃ −∑

p∈I0(μrp)
τ > 0,

conv T̃ (H)



⎛

⎝λ p̃ −
∑

p∈I0
(μrp)

τ

⎞

⎠ ((x̄ p̃)
β : H) +

∑

p∈ Ĩ+
λp((x̄ p)

β : H)

+
∑

p∈I0
(μrp)

τ ((ypr )
β : H)

=
⎛

⎝λ p̃ −
∑

p∈I0
(μrp)

p

⎞

⎠ ((x̄ p̃)
β : H) +

∑

p∈ Ĩ+
λp((x̄ p)

β : H)

+
∑

p∈I0
((μrpypr )

β : H)

→
∑

p∈I+
λp((x̄ p)

β : H) +
∑

p∈I0
((x p)

β : H) = (zβ : H) as r → ∞.

Therefore, we have shown that (zβ : H) ∈ closure conv T̃ (H). �	

5 Nonhomogeneous Model

The discussions up to this point have been focused on POP (1) described by homo-
geneous polynomials ψ, h j ∈ R[x] ( j ∈ J0) characterized by condition (2). In
this section, we deal with POP of the form (3) described by general (nonhomoge-
neous) polynomials ϕ, g j ∈ R[w] ( j ∈ J = {1, . . . , �}) with any degrees, where
w = (w1, . . . , wm) ∈ R

m . Peña et al. [9] formulated this type of POP (3)withK = R
m+

as a linear optimizationproblemover the coneof completely positive tensors equivalent
to POP (3) in Theorem 5 of [9].We impose conditionswithw ∈ K, which are similar to
but more general than theirs in the sense thatK can be any cone, not necessarily convex
or pointed. Then, we convert POP (3) into POP (1) satisfying conditions (11), (16),
(17) and (18). Hence, Theorem 3.1 holds. Let τ = max{deg(ϕ), deg(g j ) ( j ∈ J )},
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Gmin = supp(ϕ)
⋃

⎛

⎝
⋃

j∈J

supp(g j )

⎞

⎠ , Gmax = {
α ∈ Z

m+ : |α|1 ≤ τ
}
.

Choose G ⊂ Z
m+ such that Gmin

⋃{0} ⊂ G ⊂ Gmax. Then, ϕ, g j ∈ R[w] ( j ∈ J ) can
be represented as

ϕ(w) = (ϕα : G) · (wα : G) for some (ϕα : G) ∈ R
G,

g j (w) = ((g j )α : G) · (wα : G) for some ((g j )α : G) ∈ R
G ( j ∈ J )

Let Copos(G,K)∗ = cone conv
{
(wα : G) ∈ R

G : w ∈ K
}
. We now consider the

linear conic program over the cone Copos(G,K)∗

minimize (ϕα : G) · (yα : G) subject to (yα : G) ∈ Ŝ(G), (24)

where

Ŝ(G) =

⎧
⎪⎨

⎪⎩
(yα : G) ∈ R

G :
(yα : G) ∈ Copos(G,K)∗,
((g0)α : G) · (yα : G) = 1,

((g j )α : G) · (yα : G) = 0 ( j ∈ J )

⎫
⎪⎬

⎪⎭
,

g0(w) = ((g0)α : G) · (wα : G), where (g0)α =
{
1, if α = 0 ∈ G,

0, if α ∈ G and α �= 0,
.

We note that g0 ∈ R[w,G] has been consistently defined since 0 ∈ G.
Let S∗ denote the feasible region of POP (3). By construction, if w ∈ R

m is a
feasible solution of POP (3), then (yα : G) = (wα : G) is a feasible solution of the
problem (24), and the objective value (ϕα : G) · (yα : G) coincides with the objective
value ϕ(w) at w ∈ R

m . Therefore, the problem (24) serves as a relaxation problem of
POP (3), and

inf {ϕ(w) : w ∈ S∗} ≥ inf
{
(ϕα : G) · (yα : G) : (yα : G) ∈ Ŝ(G)

}
. (25)

We now convert POP (3) into POP (1), and the problem (24) into the moment cone
problem (15), respectively, then, show the identity (19) by applying Theorem 3.1. Let
n = 1 + m, L = R+ × K and J0 = {0}⋃ J . Define θ : G → Z

n+ by θ(α) :=
(τ − |α|1 ,α) for every α ∈ G. It is obvious that θ is one-to-one mapping from G onto
its image H = θ(G) = {θ(α) : α ∈ G}. Observe that ((1,w)β : H) = (wα : G).

Thus, the |G|-dimensional space R
G can be identified with the |H|-dimensional

space RH; the coordinate index α ∈ G of the space RG corresponds to the coordinate
index θ(α) ∈ H of the space R

H and vice vera. Specifically, the coordinate index
0 ∈ G corresponds to θ(0) = (τ, 0) ∈ H. As a result, the polynomials ψ, h j ∈
R[x,H] ( j ∈ J0) can be consistently defined by
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ψ(x) := (ψβ : H) · (xβ : H), where (ψβ : H) = (ϕθ(α) : G) ∈ R
H,

h j (x) := (ψβ : H) · (xβ : H), where
(
(h j )β : H)=((g j )θ(α) : G) ∈ R

H ( j ∈ J0).

We observe that, by construction,

h0(x) = (w0)
τ for every x = (w0,w) ∈ L = R+ × K,

ψ(x) = ϕ(w), h j (x) = g j (w) ( j ∈ J ) (26)

if x = (w0,w) ∈ L satisfies h0(x) = wτ
0 = 1.

Therefore, POP (3) is equivalent to POP (1) with these polynomials ψ, h j ∈
R[x,H] ( j ∈ J0) and the cone L = R+ × K. Thus,

inf {ϕ(w) : w ∈ S∗} = inf {ψ(x) : x ∈ T∗} . (27)

Define Mo(H,L) :=
⎧
⎨

⎩

q∗
∑

p=1

((wp0,wp)
β : H) : wp0 > 0, (wp0,wp) ∈ L

(p = 1, . . . , q), q ≥ 0

⎫
⎬

⎭
.

Lemma 5.1 Cops(G,K)∗ = M
o(H,L) ⊂ M(H,L).

Proof Suppose that wp0 > 0 and (wp0,wp) ∈ L (p = 1, . . . , q). Then

q∑

p=1

((wp0,wp)
β : H) =

q∑

p=1

(wp0)
τ ((1,wp/wp0)

β : H)

=
q∑

p=1

(wp0)
τ ((wp/wp0)

α : G) ∈ Copos(G,K)∗.

Now suppose that (yα : G) ∈ Copos(G,K)∗. Then there exist λp > 0 and wp ∈
K (p = 1, . . . , q) such that (yα : G) = ∑q

p=1 λp((wp)
α : G). Hence,

(yα : G) =
q∑

p=1

λp((1,wp)
β : H) =

q∑

p=1

(((λp)
1/τ , (λp)

1/τwp)
β : H)

∈
⎧
⎨

⎩

q∑

p=1

((wp0,wp)
β : H) : wp0 > 0, (wp0,wp) ∈ L (p = 1, . . . , q)

⎫
⎬

⎭
.

Thus, we have shown the desired identity. The latter inclusion relation follows directly
from definition. �	
By Lemma 5.1, we can rewrite the problem (24) as

minimize (ψβ : H) · (zβ : H) subject to (zβ : H) ∈ T̂ o(H), (28)
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where

T̂ o(H) =

⎧
⎪⎨

⎪⎩
(zβ : H) ∈ R

H :
(zβ : H) ∈ M

o(H,L),

((h0)α : H) · (zβ : H) = 1,

((h j )α : H) · (zβ : H) = 0 ( j ∈ J )

⎫
⎪⎬

⎪⎭
.

Since T̂ o(H) ⊂ T̂ (H), we obtain that

inf
{
(ϕα : G) · (yα : G) : (yα : G) ∈ Ŝ(G)

}

= inf
{
(ψβ : H) · (zβ : H) : (zβ : H) ∈ T̂ o(H)

}

≥ inf
{
(ψβ : H) · (zβ : H) : (zβ : H) ∈ T̂ (H)

}
. (29)

For the conditions imposed on POP (3), we need to introduce some nota-
tion and symbols. Let S j = {w ∈ K : gi (w) = 0 (i < j)} ( j ∈ J ) and Ĝ =
{α ∈ G : |α|1 = τ } . For each j ∈ J , the homogeneous component of g j with degree
τ is written as ĝ j (w) = ((g j )α : Ĝ) · (wα : Ĝ). We assume the following conditions.

g j (w) ≥ 0 for every w ∈ S j ( j ∈ J ), (30)

S∞∗ ⊃ {
w ∈ K : ĝ j (w) = 0 ( j ∈ J )

}
. (31)

Note that these conditions do not depend on any choice of G ⊂ Z
m+ such that

Gmin
⋃{0} ⊂ G ⊂ Gmax. Condition (30) is equivalent to the one assumed in The-

orem 5 of [9] if Rn+ is chosen for K. Condition (31) is more general than the one
assumed there, since the convexity of the cone is not required. In fact, we can take any
closed (even nonconvex and/or nonpointed) cone in Rm in POP (3), while the coneK
is restricted to Rm+ in Theorem 5 of [9].

If Hmin := supp(ψ)
⋃(⋃

j∈J supp(h j )
)
and Hmax := {

β ∈ Z
n+ : |β|1 = τ

}
,

then Hmin ⊂ H ⊂ Hmax obviously holds. In addition, condition (11) holds by con-
struction. In the remaining of this section, we show that conditions (16), (17) and (18)
are satisfied to apply Theorem 3.1.

By definition, h0(x) = wτ
0 for every x = (w0,w) ∈ L = R+ × K. Thus, (16)

follows. Let j ∈ J . By (11), we observe that the identity

h j (w0,w) = (w0)
τh j (1,w/((w0)

τ ))) = (w0)
τ g j (w/((w0)

τ )))

holds for every x = (w0,w) ∈ L with w0 > 0. Hence,

h j (w0,w) ≥ or = 0 for every x = (w0,w) ∈ L = R+ × Kwith w0 > 0

if and only if g j (w) ≥ or = 0 for every w ∈ K, respectively.

By the continuity, we can relax the restriction w0 > 0 into w0 ≥ 0, and obtain

h j (w0,w) ≥ or = 0 for every x = (w0,w) ∈ L = R+ × K

if and only if g j (w) ≥ or 0 for every w ∈ K, respectively.
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This relation holds for every j ∈ J . Therefore, (17) follows from (30).
Assume that x = (w0,w) ∈ {x ∈ L : h j (x) = 0 ( j ∈ J0)

}
. Then w ∈ K, w0 = 0

and 0 = h j (0,w) = ĝ j (w) ( j ∈ J ). By condition (31), there exists a sequence
{(μr , vr ) ∈ R

n} such that (μr , vr ) ∈ R+×K, g j (vr ) = 0 ( j ∈ J ) and (μr , μrvr ) →
(0,w) as r → ∞. By letting yr = (1, vr ) ∈ L ((r = 1, 2, . . . , ), we have

(μr , yr ) ∈ R+ × L, h0(yr ) = 1, h j (yr ) = g j (vr ) = 0 ( j ∈ J ),

(μr , μryr ) = (μr , (μr , μrvr )) → (0, (0,w)) = (0, x) as r → ∞.

This implies that x ∈ T∞∗ . Consequently, we have shown (18).
By applyingTheorem3.1,we know that the identity (19) is satisfied. Taking account

of all equalities and inequalities in (19), (25), (27) and (29), we finally conclude that
the equality holds in the inequality (25), i.e., POP (3) and its relaxation (24) have a
same optimal objective value.

6 Conclusions

We have shown that the results on the CPP relaxation for QOPs [1] can be extended
to POP (1) satisfying conditions (11), (16), (17) and (18). For this extension, we have
introduced the moment cone (14) and the moment cone relaxation (15) of the POP,
which provides the exact optimal value of the POP. We note that implementing the
moment cone relaxation computationally is quite difficult.

When compared with the conditions used in [9], the conditions for the equivalence
presented in this paper are weaker as the convexity of the cone is not required.

Another difference between the proposed moment cone relaxation for POP (1)
and the completely positive reformulation in [9] is that the proposed relaxation takes
account of sparsity of POP (1), instead of using all the monomials with degree up to τ .
As a result, a much smaller moment cone relaxation can be obtained by the proposed
method.

The doubly nonnegative relaxation, a further relaxation of the moment cone relax-
ation for POPs, can be considered for implementation. The moment cone relaxation
in this paper has been derived in a manner that the sparsity of the polynomial is pre-
served. As a result, its doubly nonnegative relaxation that requires each variable to be
nonnegative involves a smaller number of variables and the sparsity can be exploited.
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