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Abstract In this paper, we deal with the semivectorial bilevel problem in the Rie-
mannian setting. The upper level is a scalar optimization problem to be solved by the
leader, and the lower level is a multiobjective optimization problem to be solved by
several followers acting in a cooperative way inside the greatest coalition and choos-
ing among Pareto solutions with respect to a given ordering cone. For the so-called
optimistic problem, when the followers choice among their best responses is the most
favorable for the leader, we give optimality conditions. Also for the so-called pes-
simistic problem, when there is no cooperation between the leader and the followers,
and the followers choicemay be theworst for the leader, we present an existence result.
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1 Introduction

The aim of this paper was to study a semivectorial bilevel optimization problem on
Riemannian manifolds.

A semivectorial bilevel optimization problem is a bilevel problem, where the upper
level is a scalar optimization problem, and the lower level is a multiobjective opti-
mization problem.

Multiobjective optimization finds its origin in the nineteenth century in the eco-
nomic works of Edgeworth [1] and Pareto [2], but, in mathematics, this branch
commenced in 1951 with the famous paper of Kuhn and Tucker [3]. Due to its various
applications in real-life problems, intensively researches have been made in vector
optimization in the last 50years. Dealing with several conflicting objectives, a Pareto
solution (called also efficient) is such that none of the objective values can be improved
further without deteriorating another.

The lower level of the semivectorial bilevel optimization problem is a paramet-
ric multiobjective (vector) optimization problem and may be considered as a single
follower having to optimize several objectives, or as several followers each of them
having to optimize one (scalar) objective. The last situation corresponds to the so-called
greatest coalition multiplayers game. The parameter in the lower level problem is the
(vector) variable chosen by the leader, and, for each choice of the leader’s variable,
the followers choose a Pareto solution.

In a semivectorial bilevel optimization problem, the upper level is a scalar optimiza-
tion problem to be solved by the leader. The leader objective depends on two (vector)
variables: one chosen by the leader, and the second one represents the response of the
followers.

If for each choice of the leader the followers choose among their best responses
(Pareto solutions) onewhich is the best for the leader, so, when the followers cooperate
with the leader, we deal with the so-called optimistic problem.

In the case when there is no cooperation between the leader and the followers, the
leader may consider the worst scenario, i.e., the situation when, for each choice of
the leader, the followers choose, among their best responses, one which is the most
unfavorable for the leader, leading to the so-called pessimistic problem.

The study of semivectorial optimization problems in Euclidean or Hilbert spaces
has begun in 2006; see papers [4,5], and it was continued by several authors; see papers
[6–10]. The case of semivectorial bilevel optimal control problems was considered in
[11,12].

The semivectorial bilevel optimization problem includes as particular cases the
following problems which have been intensively studied in the last decades so we will
give essentially a few earlier references,

– Optimizing a scalar function over the Pareto set (introduced in [13] and investigated
in [14–29] and [30] for a survey);

– Bilevel optimization problems where the upper level and lower level are scalar
optimization problems (e.g., [31–36] for an extensive bibliography).
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Extension of optimization problem fromEuclidean spaces toRiemannianmanifolds
is natural and nontrivial (see, e.g., [37–41] and the references therein). Such extensions
have different advantages. For example, some constrained optimization problems can
be seen as unconstrained ones from the Riemannian geometry viewpoint. Moreover,
some nonconvex optimization problems in the Euclidean setting may become convex
introducing an appropriate Riemannian metric (see, e.g., [37–41]).

In the last years, researchers began the study of the multiobjective optimization
problems on Riemannian manifolds [42–44].

It seems that our paper is the first approach in the literature for a semivectorial bilevel
problem on Riemannian manifolds. Moreover, with difference of the multiobjective
problems on Riemannian manifolds presented in several papers (see, e.g., [42,43]),
we consider the multiobjective lower level problem in the more general setting when
the partial order is given by an arbitrary closed, convex and pointed cone, and not only
by the positive orthant (Pareto cone). This generalization is motivated by the fact that
many application problems need the use of arbitrary closed, convex and pointed cones
(see, for instance, [45–50] and the references therein).

It is worth to note that some of our results are new also for the Euclidean case.
Thus, in our approach in finite dimensions, inspired by the technics used in [11,
12] for semivectorial bilevel convex optimal control problems, where the optimality
conditions are related only with the linear-quadratic case for the lower level, we deal
now on one hand with the general nonlinear case for both upper and lower level
obtaining more explicit optimality conditions, and on the other hand with an arbitrary
convex, closed and pointed ordering cone.

Our paper is organized as follows. In Sect. 2, we present first some basic facts in
Riemannian geometry and then some aspects of vector optimization on Riemannian
manifolds. We deal with weakly as well as properly Pareto solutions with respect to an
arbitrary partial order and introduce different kinds of convexity on Riemannian man-
ifolds with respect to the ordering cone. The classical convex scalarization theorem
is now proved for the Riemannian setting.

Section 3 contains the main results. It is divided into six subsections. First, we state
the optimistic andpessimistic semivectorial bilevel problems. In the second subsection,
based on the scalarization theorem for convex multiobjective problems presented in
the previous section, we rewrite our problems as bilevel optimization problems with
a scalar lower-level problem which has a unique solution. Moreover, we show that
under our hypotheses, the weakly Pareto set coincides with the Pareto set. In the third
subsection, we give optimality conditions for this scalar lower-level problem. In the
fourth subsection, we present optimality conditions for the optimistic semivectorial
problem for the case of (weakly) Pareto case as well as for the properly Pareto one.
In the fifth subsection, we give an existence result for the more difficult case of the
semivectorial bilevel pessimistic problem. In the last subsection, we give an illustrative
example, where the lower level is given by a nonconvex multiobjective problem on the
initial Euclidean space, but becomes convex for a suitable Riemannian metric. Thus,
taking advantage of our results presented in Sects. 2, 3 and 4, we are able to find the
optimal solution.

Some concluding remarks are presented the last section.
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2 Preliminaries

2.1 Basics in Riemannian Geometry

An n-dimensional Riemannian manifold is a pair (M, g), where M stands for an n-
dimensional smooth manifold and g stands for a smooth, symmetric positive definite
(0, 2)-tensor field on M , called a Riemannian metric on M . If (M, g) is a Riemannian
manifold; then, for any point p ∈ M , the restriction gp : Tp M × Tp M −→ R is an
inner product on the tangent space Tp M .

The tangent bundle T M over M is T M := ⋃
x∈M Tx M , and a vector field on M

is a section of the tangent bundle, that is a map X : M −→ T M such that for any
p ∈ M , X (p) ≡ X p ∈ Tp M . The set of all C∞ vector fields on M is denoted Γ (T M)

or χ(M).
By identifying a vector field with its image set, the sets Γ (T M) and T M can be

identified. In all the paper, we use the Einstein summation convention: that is, the
summation symbol is omitted when the same index occurs twice in a product, once as
an upper index and once as a lower index. Moreover, we will consider only connected
Riemannian manifolds.

In local coordinates (x1, . . . , xn) around the point x on M , the Riemannianmetric g
is written g = gi jdxidx j with gi j = gx (

∂
∂xi ,

∂
∂x j ), where ( ∂

∂x1
, . . . , ∂

∂xn ) is the natural

basis of Tx M , and (dx1, . . . , dxn) is the corresponding dual basis on the cotangent
vector space T ∗x M .

The length of a tangent vector v ∈ Tp M is defined by ‖v‖p := gp(v, v)
1
2 .

If γ : [a, b] ⊂ R −→ M is a piecewise smooth curve in M , then its length is
defined by L(γ ) := ∫ b

a ‖γ̇ (t)‖γ (t)dt , where γ̇ means the first derivative of γ w.r.t to
t .

Let p and q be two points in (M, g) and Γpq the set of all piecewise smooth curves
joining p and q. The function

d : M × M → R, d(p, q) := inf{L(γ ) : γ ∈ Γpq}

is a distance on M , and the induced metric topology on M coincides with the topology
of M as manifold.

Let M1 and M2 be two manifolds. The tangent bundle of the product manifold
M1 × M2 can be written as T (M1 × M2) = T M1 × T M2, and if g1 and g2 are two
Riemannian metrics on M1 and M2, respectively, then the corresponding Riemannian
metric product g on M1 × M2 is defined by

g((X1, X2), (Y1, Y2)) = g1(X1, Y1)+ g2(X2, Y2)

for all X1, Y1 ∈ T M1 and X2, Y2 ∈ T M2.

A linear connection or equivalently a covariant derivative on a n-dimensional
smooth manifold M is a map D : T M × T M −→ T M such that, by putting
D(X, Y ) = DX Y , we have
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DX+ f Y Z = DX Z+ f DY Z , DX (Y+Z) = DX Y+DX Z and DX f Y = d f (X).Y+
f.DX Y , for any X, Y, Z ∈ T M and any f ∈ C∞(M), the set of smooth real functions
on M .

Let x ∈ M , (x1, . . . , xn) be a local coordinates system on M around the point x and
let ( ∂

∂x1
, . . . , ∂

∂xn ) be the induced basis of Tx M . Then for i, j = 1, . . . , n, D ∂

∂xi

∂
∂x j

is a tangent vector to M at the point x . Thus, there exist n3 smooth functions Γ k
i j ,

i, j, k = 1, . . . , n on M , such that: D ∂

∂xi

∂
∂x j = Γ k

i j
∂

∂xk .

The functions Γ k
i j are called the Christoffel symbols of the connexion D.

If (M, g) is a Riemannian manifold, there exists only one connexion ∇ on M and
such that∇X Y = ∇Y X and X.g(Y, Z) = g(∇X Y, Z)+g(Y,∇X Z), ∀ X, Y, Z ∈ T M .
This privileged connexion is called Levi-Civita connexion and its Christoffel symbols
contain all the geometric information on the Riemannian manifold (M, g). In a local
coordinates system (x1, . . . , xn), the Christoffel symbols of the Levi-Civita connexion
on (M, g) are given by:

Γ k
i j = 1

2gkl
(

∂g jl

∂xi + ∂gil
∂x j − ∂gi j

∂xl

)
, where thematrix (gkl) is the inverse of thematrix

(gi j ).
A piecewise smooth curve γ : [a, b] −→ M is said to be parametrized by arclength

if ‖γ̇ (t)‖γ (t) is constant on [a, b], and γ is called a geodesic joining the points γ (a)

and γ (b) if for any t ∈ [a, b], ∇γ̇ (t)γ̇ (t) = 0. If moreover the length L(γ ) is equal
to the distance between the points γ (a) and γ (b), then γ is said to be a minimizing
geodesic. A geodesic curve is always parametrized by arclength. In a local coordinates
system (x1, . . . , xn), the curve t �→ γ (t) = (γ 1(t), . . . , γ n(t)) is a geodesic if and
only if

γ̈ k(t)+ Γ k
i j (γ (t))γ̇ i (t)γ̇ j (t) = 0, ∀ t ∈ [a, b], ∀ k = 1, . . . , n,

where γ̇ k means the first derivative of γ k w.r.t to t .
Given a point p ∈ M and a tangent vector v ∈ Tp M , there exists ε > 0 and

precisely one geodesic γv : [0, ε] −→ M , depending smoothly on p and v, such that
γv(0) = p and γ̇v(0) = v.

Let p ∈ M and Vp := {v ∈ TM : γv is defined on [0, 1]}. Then, the map expp :
Vp −→ M defined by expp(v) = γv(1), ∀v ∈ Vp, is called the exponential map of
M at the point p. The exponential map expp maps a neighborhood of the null tangent
vector 0 ∈ Tp M diffeomorphically onto a neighborhood of p in M .

The Riemannian manifold (M, g) is said to be geodesically complete if for any
point p ∈ M , the exponential map expp is defined on all of Tp M , that is if any
geodesic γ containing the point p is defined on all R. We have the following result
known as the theorem of Hopf–Rinow.

Theorem 2.1 (Hopf-Rinow) Let M be a connected Riemannian manifold. The fol-
lowing statements are equivalent:

(i) M is complete as metric space.
(ii) M is geodesically complete.
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(iii) The closed and bounded subsets of M are compact. Furthermore, each of the
statements (i) − (i i i) implies that any two points of M can be joined by a
minimizing geodesic.

Let (M, g) and (N , h) be two Riemannian manifolds and F : M −→ N be a
differentiable map between M and N . The differential d F(p) of F at a point p ∈ M
is a linear map from Tp M into TF(p)N . The map F is said to be conformal if there
exists a positive function α : M −→ R, called conformal factor, such that for any
p ∈ M and any u, v ∈ Tp M , hF(p)(d F(p)(u), dF(p)(v)) = α(p)gp(u, v).

A conformal map preserves angles between tangent vectors.
If the conformal factor is a constant function equal to one, then F is called an

isometry.
The gradient of a differentiable function f : M −→ Rw.r.t. the Riemannian metric

g is the vector field grad f defined by g(grad f, X) = d f (X), ∀X ∈ T M , where d f
denotes the differential of the function f .
The Hessian of a smooth function f : M −→ R is the 2-form Hess( f ) defined by
Hess( f )(X, Y ) = ∇d f (X, Y ) = g(∇Xgrad f, Y ), ∀X, Y ∈ T M .

In local coordinates (x1, . . . , xn) around p ∈ M , we can write:

grad f (p) = gi j ∂ f

∂xi

∂

∂x j
,

Hess( f ) = ∇d f =
( ∂2 f

∂xi∂x j
− Γ k

i j
∂ f

∂xk

)
dxidx j .

Let p ∈ M be fixed. The inverse of the exponential map exp−1p maps diffeomorphi-
cally a neighborhood of p onto a neighborhood of the origin of Tp M . Considering an
orthonormal basis ( ∂

∂x1
, . . . , ∂

∂xn ) in Tp M with respect to the scalar product gp(·, ·),
this diffeomorphism establishes a local coordinate system (x1, . . . , xn) around the
point p called normal coordinate system. In this normal coordinates system, the geo-
desics through p are represented by lines passing through origin. Moreover, the matrix
(gi j ) associatedwith the bilinear form g at the point p in this orthonormal basis reduces
to the identity matrix and the Christoffel symbols vanish. Thus, for any smooth func-
tion f : M → R, in normal coordinates around p, we obtain

grad f (p) =
∑

i

∂ f

∂xi
(p)

∂

∂xi
,

and, for all u = ui ∂
∂xi , v = vi ∂

∂xi ∈ Tp M ,

Hessp( f )(u, v) = ∂2 f

∂xi∂x j
(p)uiv j .

Now consider a smooth function f : M → R and the real-valued function Tp M �
v �→ f p(v) := f (expp v) defined around 0 in Tp M .
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It is easy to see that

∂ f p

∂xi
(0) = ∂ f

∂xi
(p),

∂2 f p

∂xi∂x j
(0) = ∂2 f

∂xi∂x j
(p).

The Taylor–Young formula (for Euclidean spaces) applied to f p around the origin can
be written using matrices as

f p(v) = f p(0)+ J f p (0)v +
1

2
vT H f p (0)v + o(‖v‖2), (1)

where

v = [v1 . . . vn]T , J f p (0) =
[ ∂ f

∂x1
(p) . . .

∂ f

∂xn
(p)

]
,

H f p (0) =
( ∂2 f

∂xi∂x j
(p)

)
.

In other words, we have the following Taylor–Young expansion for f around p

f (expp v) = f (p)+ gp(grad f, v)+ 1

2
Hessp f (v, v)+ o(‖v‖2p) (2)

which holds in any coordinate system.
A function f : M −→ R is said to be (strictly or strongly) convex if its restriction

to any geodesic curve γ : [a, b] −→ M is convex in the classical sense; that the one
real variable function f ◦ γ : [a, b] −→ R is (strictly) convex.

A function f on M is (strictly) convex if and only if its Hessian is (positive definite)
positive.

For more detailed and complete information on the fundamentals in Riemannian
geometry, we refer to [51,52].

2.2 Basics in Vector Optimization on Riemannian Manifolds

Let (M, g) be a complete Riemannian manifold of dimension n; hence, from Hopf-
Rinow theorem, for any two points p and q in M , there exists a length minimizing
geodesic connecting these two points.

Throughout the paper, C ⊂ R
r will denote a convex and pointed cone (i.e.,R+C ⊂

C, C + C ⊂ C, C ∩ (−C) = {0}). We suppose that C is closed and int (C) �= ∅,
where int (A) stands for the the topological interior of any subset A ⊂ R

r .
For any y, y′ ∈ R

r , we denote

y � y′ ⇐⇒ y′ − y ∈ C;
y ≺ y′ ⇐⇒ y′ − y ∈ int (C); y � y′ ⇐⇒ y′ − y ∈ C \ {0}.

Obviously,

y ≺ y′ �⇒ y � y′ �⇒ y � y′.
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Note that � is a partial order relation on R
r , i.e., a reflexive, antisymmetric and

transitive binary relation. Also ≺ and � are transitive relations.
Consider a vector function G = (G1, . . . , Gr ) : M → R

r , and the multiobjective
optimization problem1

(MOP) MINC G(x) s.t. x ∈ M.

For (MOP), the point a ∈ M is called:

– Pareto solution iff there is no x ∈ M such that G(x) � G(a);
– weakly Pareto solution iff there is no x ∈ M such that G(x) ≺ G(a);
– properly Pareto solution iff a is a Pareto solution, and there exists a pointed convex
cone K such that C \ {0} ⊂ int (K ) and a is a Pareto solution for the problem
MINK G(x) s.t. x ∈ M , i.e., G(M) ∩ (G(a)− K ) = {G(a)}.
When C = R

r+ := {λ = (λ1, . . . , λr ) ∈ R
r : λi ≥ 0, i = 1, . . . , r} (the Pareto

cone), the previous definitions can be stated as follows.

– Pareto solution iff there is no x ∈ M such that, for all i ∈ {1, . . . , r}, Gi (x) ≤
Gi (a), and G(x) �= G(a);

– Weakly Pareto solution iff there is no x ∈ M such that, for all i ∈ {1, . . . , r},
Gi (x) < Gi (a);

– Properly Pareto solution (provided that G(M) + R
r+ is convex) iff a is a Pareto

solution, and there exists a real number μ > 0 such that for each i ∈ {1, . . . , r}
and every x ∈ M with Gi (x) < Gi (a) at least one j ∈ {1, . . . , r} exists with
G j (x) > G j (a) and

Gi (a)− Gi (x)

G j (x)− G j (a)
≤ μ.

We denote the set of all Pareto (resp. weakly Pareto and properly Pareto) solutions
by ARGMINC G(x)

x∈M
(resp. w-ARGMINC G(x)

x∈M
and p-ARGMINC G(x)

x∈M
). Obviously,

we have

p-ARGMINC G(x)
x∈M

⊂ ARGMINC G(x)
x∈M

⊂ w-ARGMINC G(x)
x∈M

.

In order to simplify the notations, we will use the symbol σ ∈ {w, p} for weak
(if σ = w) or proper (if σ = p), i.e., we write σ -ARGMINC G(x)

x∈M
for the weakly or

properly Pareto solutions set.
We recall that a real function h : M → R is called convex if for any two distinct

points a and b in M , and for any geodesic segment γ : [0, 1] → M with γ (0) =
a, γ (1) = b, the function h ◦ γ is convex in the usual way, i.e., for all t ∈]0, 1[

h(γ (t)) ≤ (1− t)h(a)+ th(b).

1 We use the notations “MIN” and “ARGMIN” for vector-valued functions to distinguish from the notations
“min” and “argmin” used for scalar-valued functions.
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If the last inequality is strict, we say that h is strictly convex.
Now, the vector-valued function G = (G1, . . . , Gr ) : M → R

r is called C-convex
(resp. w-strictly C-convex or p-strictly C-convex) iff for any two distinct points a
and b in M , and for any geodesic segment γ : [0, 1] → M with γ (0) = a, γ (1) = b,
we have, respectively,

∀t ∈]0, 1[ G(γ (t)) � (1− t)G(a)+ tG(b), (3)

∀t ∈]0, 1[ G(γ (t)) ≺ (1− t)G(a)+ tG(b), (4)

∀t ∈]0, 1[ G(γ (t)) � (1− t)G(a)+ tG(b). (5)

In the case C = R
r+, it is easy to see that

– G is R
r+-convex iff Gi is convex for all i = 1, . . . , r ;

– G is w-strictly R
r+-convex iff Gi is strictly convex for all i = 1, . . . , r ;

– G is p-strictly R
r+-convex if G is R

r+-convex, and there exists i ∈ {1, . . . , r} such
that Gi is strictly convex.

Throughout the paper, R
r is considered with its usual Euclidean structure and

identified to its dual space, and we denote by 〈·, ·〉 its usual inner product (which
coincides with the duality product with our identification) and by ‖ · ‖ the induced
norm.

The dual cone of C (or positive polar cone) is the set

C∗ := {λ ∈ R
r : 〈λ, y〉 ≥ 0 ∀y ∈ C},

and its quasi-interior is given by

C∗
 := {λ ∈ R
r : 〈λ, y〉 > 0 ∀y ∈ C \ {0}}.

Note that

(Rr+)∗ = R
r+, and (Rr+)∗
 = int (Rr+) = {λ ∈ R

r | λi > 0 i = 1, . . . , r}.

Let us denote

�σ =
{ {λ ∈ C∗ : ‖λ‖1 = 1}, if σ = w,

C∗
 , if σ = p.
(6)

Proposition 2.1 The following properties hold.

A. The dual cone C∗ is a closed set in R
r .

B. The set C∗
 (the quasi-interior of C∗) is a nonempty open set,2 and it is in fact the
topological interior of C∗.
C. The set �w is compact.

2 This fact is not true in general, i.e., when C is a cone in a topological vector space, but in our setting, we
take advantage of the finite dimension of Rr .
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Proof A. We can write C∗ as an intersection of a family of closed sets:

C∗ =
⋂

y∈C

{λ ∈ R
r : 〈λ, y〉 ≥ 0}.

B. Let λ0 ∈ C∗
 . Let K = C ∩ {y ∈ R
r : ‖y‖ = 1}. Obviously, K is a compact

set; hence, by Weierstrass’ theorem, there is some real α > 0 such that 〈λ0, y〉 ≥ α

for all y ∈ K . Let R = α/2. For any λ ∈ B(λ0; R) (the open ball centered in λ0 and
of radius r ), and for any y ∈ C \ {0}, by Cauchy–Schwarz inequality, we have

〈

λ,
y

‖y‖
〉

=
〈

λ0,
y

‖y‖
〉

+
〈

λ− λ0,
y

‖y‖
〉

≥ α − ‖λ− λ0‖ ≥ α − R > 0,

hence 〈λ, y〉 > 0; therefore B(λ0; R) ⊂ C∗
 . Thus, C∗
 is an open set included in C∗.
Let now λ0 ∈ int (C∗). Arguing by contradiction, if λ0 /∈ C∗
 , then 〈λ0, y〉 = 0 for
some y ∈ C \ {0}. There exists some real R > 0 such that λ0+ h ∈ C∗ for all h ∈ R

r

with ‖h‖ < R. Therefore,

0 ≤ 〈λ0 + h, y〉 = 〈h, y〉 ∀h ∈ R
r , ‖h‖ < R,

which implies the contradiction y = 0.
Finally, C∗
 is nonempty because C \ {0} is contained in an open half-space (using

a separation theorem since C is closed convex and pointed).
C. It is obvious. ��
Now we give a scalarization theorem on manifolds, which allows us to replace the

vector optimization problem with a family of scalar optimization problems.

Theorem 2.2 Let (M, g) be a complete and connected Riemannian manifold in R
n,

and consider a function G = (G1, . . . , Gr ) : M → R
r . Then, for each σ ∈ {w, p},

we have ⋃

λ∈�σ

argmin
x∈M

〈λ, G(x)〉 ⊂ σ -ARGMINC G(x)
x∈M

. (7)

Moreover, if G is C-convex on M, then the previous inclusion becomes an equality,
i.e.,

σ -ARGMINC G(x)
x∈M

=
⋃

λ∈�σ

argmin
x∈M

〈λ, G(x)〉. (8)

Proof Inclusion (7) is a standard result (see, e.g., [46,49]). However, for reader’s
convenience, we give a short proof here.

Let σ = p, λ ∈ �p, and a ∈ arg min
x∈M
〈λ, G(x)〉 . Let us consider the set K =

{y ∈ R
r | 〈λ, y〉 > 0} ∪ {0}. Obviously, K is pointed and convex cone, and C \ {0} ⊂

int (K ). We claim that a ∈ ARGMINK G(x)
x∈M

. Indeed, arguing by contradiction, if

a /∈ ARGMINK G(x)
x∈M

, then there is some x ∈ M such that G(a) − G(x) ∈ K \ {0};
hence, 〈λ, G(a)− G(x)〉 > 0 which contradicts the choice of a. Therefore, a ∈
p-ARGMINC G(x)

x∈M
.
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Let now σ = w, λ ∈ �w, and a ∈ arg min
x∈M
〈λ, G(x)〉 . Since λ ∈ C∗ \ {0}, it is easy

to see that λ(int (C)) ⊂]0,+∞[. If, by contradiction a /∈ w-ARGMINC G(x)
x∈M

, then

we can find x ∈ M such that G(x) ≺ G(a), i.e., G(a) − G(x) ∈ int (C); therefore,
〈λ, G(a)− G(x)〉 > 0 which contradicts the choice of a. Thus, inclusion (7) holds.

Suppose now that G is C-convex. Let us prove that

G(M)+ C is convex inR
r . (9)

Let y, y′ ∈ G(M)+ C , thus y = G(x)+ c, y′ = G(x ′)+ c′ for some x, x ′ ∈ M
and c, c′ ∈ C . There is a geodesic segment γ : [0, 1] → M with γ (0) = x , γ (1) = x ′.
Then, for each t ∈]0, 1[, we have G(γ (t)) � (1− t)G(x)+ tG(x ′), thus

c′′ := (1− t)(y − c)+ t (y′ − c′)− G(γ (t)) ∈ C.

Therefore,

(1− t)y + t y′ = G(γ (t))+ (1− t)c + tc′ + c′′ ∈ G(M)+ C,

hence (9) holds.
Let σ = w, a ∈ w-ARGMINC G(x)

x∈M
. Thus, (G(a) − int (C)) ∩ G(M) = ∅. Since

int (C)+C ⊂ int (C), it follows that the convex sets (G(a)− int (C) and G(M)+C
are disjoints. Using the separation theorem, we can find λ ∈ R

r \ {0} such that

∀x ∈ M, c ∈ int (C), c′ ∈ C 〈λ, G(a)− c〉 ≤ 〈
λ, G(x)+ c′

〉
. (10)

Taking above x = a, c′ = 0, we obtain that 〈λ, c〉 ≥ 0 for all c ∈ int (C), hence
for all c ∈ C , because cl (int (C)) = cl (C), where cl (A) stands for the topological
closure of a set A. Thus, λ ∈ C∗ \ {0}. Finally, 〈λ, G(a)〉 ≤ 〈λ, G(x)〉 for all x ∈ M ,
and replacing without loss of generality λ by λ

‖λ‖1 we find that a ∈ arg min
x∈M
〈λ, G(x)〉

with λ ∈ �w.
Take now σ = p. Let a ∈ p-ARGMINC G(x)

x∈M
. There exists a pointed convex

cone K such that C \ {0} ⊂ int (C), and a ∈ ARGMINK G(x)
x∈M

. Obviously, a ∈
w-ARGMINK G(x)

x∈M
. Using the case σ = w with K instead of C , we can find λ ∈

K ∗ \ {0} such that a ∈ arg min
x∈M
〈λ, G(x)〉 . Since C \ {0} ⊂ int (K ), and λ �= 0, we

have 〈λ, c〉 > 0 for all c ∈ C \ {0}, hence λ ∈ C∗
 . ��
For more details about vector optimization in Euclidean spaces see, e.g., the mono-

graphs [45–47,49].

3 The Semivectorial Bilevel Problem

3.1 Statement of the Problem

Let (M1, g1) (the leader decision variables set) and (M2, g2) (the follower decision
variables set) be two connected Riemannian manifolds of dimension m and n, respec-
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tively. Moreover, (M2, g2) is supposed to be complete. The correspondingRiemannian
metricswill be denoted by g1(·, ·) and g2(·, ·), respectively. Let also f : M1×M2 → R

be the leader objective function, and let F = (F1, . . . , Fr ) : M1 × M2 → R
r be the

follower multiobjective function.
For each x ∈ M1, we denote by ψ(x) the weakly or properly Pareto solution set of

the follower multiobjective optimization problem, i.e.,

ψ(x) := σ -ARGMINC F(x, y)
y∈M2

.

Thus, ψ : M1 ⇒ M2 is a set-valued function.
We deal with two semivectorial bilevel problems.

– The “optimistic semivectorial bilevel problem”

(OSB) min
x∈M1

min
y∈ψ(x)

f (x, y).

In this case, the follower cooperates with the leader; i.e., for each x ∈ M1, the follower
chooses among all its σ -Pareto solutions (his best responses) one which is the best for
the leader (assuming that such a solution exists).

– The “pessimistic semivectorial bilevel problem”

(PSB) min
x∈M1

sup
y∈ψ(x)

f (x, y).

In this case, there is no cooperation between the leader and the follower, and the leader
expects the worst scenario; i.e., for each x ∈ M1, the follower may choose among all
its σ -Pareto solutions (his best responses) one which is unfavorable for the leader (in
this case we prefer to use “sup” instead of “max”).

Consider the following hypotheses:

(HC)σ For each x ∈ M1, the function F(x, ·) is σ -strictly C-convex on M2, σ ∈
{w, p}.

(HCC)σ For all x ∈ M1 and λ ∈ �σ , the function y �→ 〈λ, F(x, y)〉 has bounded
sublevel sets, i.e, for all reals α, the set

{y ∈ M2 : 〈λ, F(x, y)〉 ≤ α}

is bounded.

3.2 A Useful Equivalent Form

Proposition 3.1 If (HC)σ holds, then, for any x ∈ M1 and any λ ∈ �σ , where �σ

is given in (6), the real-valued function M2 � y �→ 〈λ, F(x, y)〉 is strictly convex.
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Proof Let a, b ∈ M2 a �= b, and γ : [0, 1] → M2 be the geodesic segment with
γ (0) = a, γ (1) = b. Let t ∈]0, 1[.

If σ = w, then λ ∈ C∗ \ {0}, and F(x, γ (t)) ≺ (1 − t)F(x, a) + t F(x, b), i.e.,
(1− t)F(x, a)+ t F(x, b)− F(x, γ (t)) ∈ int (C), hence

〈λ, (1− t)F(x, a)+ t F(x, b)− F(x, γ (t))〉 > 0.

If σ = p, then λ ∈ C∗
 , and F(x, γ (t)) � (1 − t)F(x, a) + t F(x, b), i.e., (1 −
t)F(x, a)+ t F(x, b)− F(x, γ (t)) ∈ C \ {0}, hence

〈λ, (1− t)F(x, a)+ t F(x, b)− F(x, γ (t))〉 > 0.

��
Proposition 3.2 Assume that (HC)w holds. Then the set of weakly Pareto solutions
coincides with the set of Pareto solutions, i.e., for each x ∈ M1,

w-ARGMINC F(x, y)
y∈M2

= ARGMINC F(x, y)
y∈M2

Proof Let x ∈ M1 be fixed, and let ŷ ∈ w-ARGMINC F(x, y)
y∈M2

. Theorem 2.2 and

Proposition 3.1 imply that there exists λ ∈ �w such that ŷ is a unique global min-
imizer of the function M2 � y �→ 〈λ, F(x, y)〉. If ŷ /∈ ARGMINC F(x, y)

y∈M2
,then

we can find ȳ ∈ M2 such that F(x, ȳ) � F(x, ŷ). It follows that ȳ �= ŷ and
〈λ, F(x, ȳ)〉 ≤ 〈

λ, F(x, ŷ)
〉
which contradicts the fact that ŷ is the uniqueminimizer of

〈λ, F(x, ·)〉. ��
From now on, we assume for the rest of the paper that (HC)σ and (HCC)σ are

satisfied.

Proposition 3.3 For each x ∈ M1 and λ ∈ �σ , the minimization problem

min
y∈M2

〈λ, F(x, y)〉

admits a unique solution, which will be denoted hereafter y(x, λ).

Proof Uniqueness is provided by Proposition 3.1. Since any convex function on a
Riemannian manifold is continuous, and closed bounded sets on a complete and
connected Riemannian manifold are compact, by the hypothesis (HCC)σ and Weier-
strass’ theorem, we can find a minimizer over a nonempty sublevel set of the function
y �→ 〈λ, F(x, y)〉 which in fact is a minimizer over M2. ��

Thus, we obviously have the following.

Corollary 3.1 For each fixed x ∈ M1, the map λ �→ y(x, λ) is a surjection from �σ

to ψ(x), hence

ψ(x) =
⋃

λ∈�σ

{y(x, λ)}. (11)
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Finally, we obtain the following equivalent formwith scalar bilevel problemswhere
the lower level has a unique response.

Theorem 3.1 Problem (OSB) is equivalent to the following problem

min
x∈M1

min
λ∈�σ

f
(
x, y(x, λ)

)
,

where y(x, λ) is the unique solution to the problem

min
y∈M2

〈λ, F(x, y)〉 . (12)

Problem (PSB) is equivalent to the following problem

min
x∈M1

sup
λ∈�σ

f
(
x, y(x, λ)

)
,

where y(x, λ) is the unique solution to the problem

min
y∈M2

〈λ, F(x, y)〉 . (13)

3.3 Optimality Conditions for the Problem min
y∈M2

〈λ, F(x, y)〉

From now on, we suppose that F(·, ·) is a smooth fonction.
Let us denote by gradi the gradient operator on (Mi , gi ), i = 1, 2, and by Fa (resp.

λa), a = 1, . . . , r , the components functions of the map
F : M1 × M2 −→ R

r (resp. the canonical coordinates of the vector λ ∈ R
r ).

The proof of the following result is well known.

Proposition 3.4 (Necessary and sufficient conditions for y(x, λ)) Let λ ∈ �σ and x ∈
M1 be given. Then y = y(x, λ) is the unique solution of the problem min

y∈M2
〈λ, F(x, y)〉

iff (if and only if)

λa grad2 Fa(x, y) = 0. (14)

��
Now let us consider the map

G : Rr × M1 × M2 −→ T M2, G(λ, x, y) = λagrad2Fa(x, y).

Note that, for each (λ, x) ∈ �σ × M1, the solution y = y(x, λ) to the problem
min
y∈M2

〈λ, F(x, y)〉 satisfies the equation G(λ, x, y) = 0.

Denote by δ2G(λ, x, y) : Ty M2 −→ Ty M2 the partial differential of G w.r.t. to y
at the point (λ, x, y).

The following is a direct consequence of the implicit functions theorem.
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Proposition 3.5 Let (λ0, x0) ∈ �σ × M1, and let y0 = y(x0, λ0) be the unique
solution of the problem min

y∈M2
〈λ0, F(x0, y)〉.

Suppose that δ2G(λ0, x0, y0) is an isomorphism.3 Then, in a neighborhood of
(λ0, x0), the function y(·, ·) is smooth and

∂

∂λ
y(λ, x) = −(δ2G(λ, x, y))−1 ◦ ∂G

∂λ
(λ, x, y)

and
δ1y(λ, x) = −(δ2G(λ, x, y))−1 ◦ δ1G(λ, x, y),

where δ1 denotes the partial differential operator w.r.t. x ∈ M1.

Remark 3.1 Note that for a tangent vector u ∈ Tx M1, we have

δ1G(λ, x, y)(u) = (δ1G1(λ, x, y)(u), . . . , δ1Gn(λ, x, y)(u)),

with
δ1Gα(λ, x, y)(u) = g1(grad1Gα(λ, x, y), u),

and for a tangent vector v ∈ Ty M2, we have

δ2G(λ, x, y)(v) = (d2G1(λ, x, y)(v), . . . , d2Gn(λ, x, y)(v),

with

d2Gα(λ, x, y)(v) = g2(grad2Gα(λ, x, y), v),

where Gα , α = 1, . . . , n, are the component functions of G.
In local coordinates (xi )m

i=1 on M1 and (yα)n
α=1 on M2, we can write

grad1Gα(λ, x, y) = gi j
1

∂Gα

∂xi
(λ, x, y)

∂

∂x j
,

and

grad2Gα(λ, x, y) = gβμ
2

∂Gα

∂yβ
(λ, x, y)

∂

∂yμ
.

3.4 Optimality Conditions for the Optimistic Problem

In the sequel, we denote for all x ∈ M1 and λ ∈ �σ

ϕ(x, λ) = f
(
x, y(x, λ)

)
.

In this subsection, we suppose that f (·, ·) is a smooth function.

3 This hypothesis holds, for example, if we assume that G is a conformal map, or, for example, if there
exists a real number c > 0 such that g2(δ2G(λ0, x0, y0)(v), v) ≥ cg2(v, v), ∀v ∈ Ty M2.
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Theorem 3.2 (Necessary optimality conditions for the optimistic problem when we
deal with properly Pareto solutions) Let (x∗, λ∗) ∈ M1 × �p be a (local 4) solution
of the problem

min
x∈M1

min
λ∈�p

f
(

x, y(x, λ)
)
.

Let y∗ = y(x∗, λ∗). Then

grad1 f (x∗, y∗)+ grad2 f (x∗, y∗) ◦ δ1y(x∗, λ∗) = 0

grad2 f (x∗, y∗) ◦ ∂y

∂λ
(x∗, λ∗) = 0,

where δ1y(x∗, λ∗) and
∂y

∂λ
(x∗, λ∗) are given in Proposition 3.5.

Moreover, the point (x∗, λ∗) has the property that the quadratic form associated
with the bilinear form Hess(ϕ)(x∗, λ∗) is positive semidefinite.

Proof Note that our problem written in short minx∈M1 minλ∈�p ϕ(x, λ) is (locally)
equivalent to the problem

min
(x,λ)∈M1×�p

ϕ(x, λ),

and the set M1 × �p is open in M1 × R
r according to Proposition 2.1. Then, using

Fermat’s rule, chain rule and the necessary second-order optimality conditions (which
can be justified as in the Euclidean case using Taylor–Young formula (2) around
(x∗, λ∗)), we obtain easily the result. ��
Theorem 3.3 (Necessary optimality conditions for the optimistic problem when we
deal with (weakly) Pareto solutions) Let (x∗, λ∗) ∈ M1 ×�w be a (local) solution of
the problem

min
x∈M1

min
λ∈�w

f
(

x, y(x, λ)
)
.

Let y∗ = y(x∗, λ∗). Then

grad1 f (x∗, y∗)+ grad2 f (x∗, y∗) ◦ δ1y(x∗, λ∗) = 0 (15)

grad2 f (x∗, y∗) ◦ ∂y

∂λ
(x∗, λ∗)+ N C

�w
(λ∗) � 0, (16)

where N C
�w

(λ∗) is the Clarke normal cone to the set �w at the point λ∗ (see [53, page

212]), and δ1y(x∗, λ∗), ∂y

∂λ
(x∗, λ∗) are given in Proposition 3.5.

4 i.e., there exists an open neighborhood N = N1 × N ′ ⊂ M1 × �p of (x∗, λ∗) such that, for each
x ∈ N1, the function N ′ � λ �→ f (x, y(x, λ)) admits local minimizers, and for all x ∈ N1, f (x∗, λ∗) ≤
minλ∈N ′ f (x, y(x, λ)).
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Proof Note that �w is compact according to Proposition 2.1; hence for each fixed
x ∈ M1, the minimum minλ∈�w ϕ(x, λ) is attained. Thus, our problem is equivalent
to

min
(x,λ)∈M1×�w

ϕ(x, λ).

The function ϕ is smooth; hence, we can find an open and bounded neighborhood
O1 × O2 of (x∗, λ∗) with �w ⊂ O2 (because �w is compact) and a positive real k
such that ϕ is Lipschitz of rank k on O1 × O2.

Thus, (x∗, λ∗) solves the unconstrained problem

min
(x,λ)∈O1×O2

(
ϕ(x, λ)+ kd�w(λ)

)
,

where

d�w(λ) = inf
μ∈�w

‖λ− μ‖

is the distance function associated with the set �w. Then using Clarke’s subgradient
calculus (see [53, Proposition 10.36]), we obtain the result. ��
Remark 3.2 In the particular and important case when C = R

r+ (the Pareto cone),
the set �w is convex and closed, so the Clarke normal cone is given by (see [53,
Theorem10.39])

N C
�w

(λ∗) = {α ∈ R
r | 〈α, λ− λ∗

〉 ≤ 0 ∀λ ∈ �w}.

Then it is easy to see that,

N C
�w

(λ∗) = {α ∈ R
r | αi = α j ∀i, j ∈ I+(λ∗); αk ≤ αi ∀(k, i) ∈ I0(λ

∗)× I+(λ∗)},

where I+(λ∗) = {i |λ∗i > 0} and I0(λ∗) = {k|λ∗k = 0}. Therefore, (16) becomes:
there exists a real ν such that

grad2 f (x∗, y∗) ◦ ∂y

∂λi
(x∗, λ∗) = ν ∀i ∈ I+(λ∗) (17)

grad2 f (x∗, y∗) ◦ ∂y

∂λk
(x∗, λ∗) ≥ ν ∀k ∈ I0(λ

∗). (18)

These relations can also be obtained by using Karush–Kuhn–Tucker Theorem.

3.5 An Existence Result for the Pessimistic Problem

For the more difficult case of the pessimistic problem, wewill deal only with (weakly)
Pareto solutions.
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Theorem 3.4 Suppose that the function (x, y) �→ f (x, y) is continuous on M1×M2
and sublevel bounded in x uniformly in y, i.e., there exists a bounded set B ⊂ M1
such that for each α ∈ R, {x ∈ M1 : f (x, y) ≤ α} ⊂ B for all y ∈ M2 (see [54,
Definition1.16]). Then the pessimistic problem

min
x∈M1

sup
λ∈�w

f
(

x, y(x, λ)
)

has at least one global solution.

Proof According toProposition 2.1, the set�w is compact, and, byProposition 3.5, the

function (x, λ) �→ f
(

x, y(x, λ)
)
is continuous; hence for each fixed x , the supremum

supλ∈�w
f
(

x, y(x, λ)
)
is finite and attained by Weierstrass’ theorem.

On the other hand, the function x �→ supλ∈�w
f
(

x, y(x, λ)
)
is lower semicontin-

uous as a supremum of a family of (lower semi)continuous functions. Moreover, the

function x �→ supλ∈�w
f
(

x, y(x, λ)
)
has bounded sublevel sets by the hypothesis

about f ; hence, by Rockafellar [54, Theorem1.9], we obtain the conclusion. ��

3.6 An Illustrative Example

With the notations used in the Sect. 3.1, we consider in this subsection the particular
case C = R

2+, M1 = R++ :=]0,+∞[ with the Euclidean metric, and M2 = R
2++ :=

{(y1, y2) ∈ R
2| y1 > 0, y2 > 0} with the metric g2 given in Cartesian coordinates

(y1, y2) around the point y ∈ M2 by the matrix

M2 � y �→ (gi j )y =
(

g2

(
∂

∂yi
,

∂

∂y j

))

:= diag
(

y−21 , y−22

)
.

In other words, for any vectors u = (u1, u2) and v = (v1, v2) in the tangent plane
at y ∈ M2, denoted Ty M2, which coincides with R

2, we have

g2(u, v) = u1v1

y21
+ u2v2

y22
.

Let a = (a1, a2) ∈ M2 and v = (v1, v2) ∈ Ta M2. It is easy to see that the (minimizing)
geodesic curve t �→ γ (t) verifying γ (0) = a, γ̇ (0) = v is given by

R � t �→ (
a1e

v1
a1

t
, a2e

v2
a2

t)
.

Hence, M2 is a complete Riemannian manifold. Also, the (minimizing) geodesic
segment γ : [0, 1] → M2 joining the points a = (a1, a2) and b = (b1, b2), i.e.,
γ (0) = a, γ (1) = b is given by γi (t) = a1−t

i bt
i , i = 1, 2. Thus, the distance d on the

metric space (M2, g2)
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d(a, b) =
∫ 1

0
‖γ̇ (t)‖γ (t)dt =

∫ 1

0

√
( γ̇1(t)

γ1(t)

)2 +
( γ̇1(t)

γ2(t)

)2
dt

=
√

(
ln

a1
b1

)2 +
(
ln

a2
b2

)2
.

For more details about this particular Riemannian manifold, see for instance [38,39,
42].

It follows easily that the closed ball B(a; R) centered in a ∈ M2 of radius R ≥ 0
verifies

[a1e
− R√

2 , a1e
R√
2 ] × [a2e

− R√
2 , a2e

R√
2 ] ⊂ B(a; R), (19)

thus every closed rectangle [ρ1, η1] × [ρ2, η2] (ρ1 > 0, ρ2 > 0) is bounded in the
metric space (M2, g2) with the distance d.

Consider now the functions F : M1×M2 → R
2 and f : M1×M2 → R given for

any (x, y) ∈ M1 × M2 by

F(x, y) = (
F1(x, y), F2(x, y)

) = (
ln2(y1)+ x

√
y2, x ln(y1)− ln(y2)

)
,

f (x, y) = 1

x
ln(y1)− x − 1√

y2
(1+ y2) ln(y1).

Let us solve the optimistic semivectorial bilevel optimization problem in the prop-
erly Pareto case

(O SB)p min
x∈M1

min
y∈ψ(x)

f (x, y),

where, for each x ∈ M1,

ψ(x) := p-ARGMINC F(x, y)
y∈M2

.

It is obvious that for each fixed x ∈ M1, none of the functions F1(x, ·) and F2(x, ·)
is convex on M2 with the Euclidean metric. Therefore, the vector function F(x, ·) is
not C-convex on R

2++ with the Euclidean metric.
It is easy to see that, for any geodesic segment γ : [0, 1] → M2 with γ (0) =

a, γ (1) = b, the functions Fi (x, ·)◦γ : [0, 1] → R are convex (i = 1, 2). Moreover,
the function F1(x, ·) ◦ γ is strictly convex; hence, the function F(x, ·) is p-strictly
C-convex on the Riemannian manifold (M2, g2) (see Sect. 2.2). So the hypothesis
(HC)p holds.

On the other hand, �p = int (C∗) = R
2++, so for every λ = (λ1, λ2) ∈ �p and

(x, y) ∈ M1 × M2, we have

〈λ, F(x, y)〉 = λ1F1(x, y)+ λ2F2(x, y).
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Let α ∈ R, x ∈ M1 and λ ∈ �p be fixed and consider the sublevel set

A := {y ∈ M2| 〈λ, F(x, y)〉 ≤ α}.

The inequality 〈λ, F(x, y)〉 ≤ α can be written φ1(y1)+ φ2(y2) ≤ α, with

φ1(y1) := λ1 ln
2(y1)+ λ2x ln(y1); φ2(y2) = λ1x

√
y2 − λ2 ln(y2).

A simple computation shows that the variations of φ1 and φ2 are given by

y 0 ξ1 +∞ y 0 ξ2 +∞
φ′1(y) − 0 + φ′2(y) − 0 +
φ1(y) +∞↘ μ1 ↗ +∞ φ2(y) +∞↘ μ2 ↗ +∞

where ξ1 = e
− λ2x

2λ1 , μ1 = φ1(ξ1), ξ2 = 4λ22
λ21x2

, μ2 = φ2(ξ2). Thus, if y ∈ A, then

φ1(y1) ≤ α − μ2 and φ2(y2) ≤ α − μ1. Hence, if α < μ1 + μ2, the set A is empty;
otherwise, A ⊂ [η1, ν1]× [η2, ν2] with 0 < ηi ≤ ξi ≤ νi , φi (ηi ) = φi (νi ) = α−μ j ,
j = i + (−1)i−1, i = 1, 2. Hence, A is bounded with respect to the distance d of
the metric space (M2, g2). Therefore, the hypothesis (HCC)p is satisfied. Notice also
that the functions φ1 and φ2 are not convex on R++ in the usual sense, but the scalar
function y �→ 〈λ, F(x, y)〉 = φ1(y1) + φ2(y2) is strictly convex on the Riemannian
manifold (M2, g2). Since f and F are smooth, all the hypotheses of the previous
sections are fulfilled.

So we can take advantage of the fact that the lower level (followers) objective
is convex on this suitable Riemannian manifold, and therefore, we can transform
equivalently our semivectorial bilevel problem into a usual bilevel problem (i.e., upper
level and lower level are scalar problems) such that, for each choice of the new leader,
the best response of the new lower level is unique (Theorem 3.1)!

Let us nowfind the function (x, λ) �→ y(x, λ), which represents the unique solution
of the problemminy∈M2 〈λ, F(x, y)〉. To simplify the computations, let us remark that
this minimization problem is equivalent to the problem

min
y∈M2

1

λ1 + λ2
〈λ, F(x, y)〉 = min

y∈M2

(
θ F1(x, y)+ (1− θ)F2(x, y)

)
,

where θ := λ1
λ1+λ2

∈]0, 1[.
Thus, y(x, λ) = y(x, θ), where y(x, θ) is the unique solution of the problem

miny∈M2

(
θ F1(x, y)+ (1− θ)F2(x, y)

)
.

Since {( λ1
λ1+λ2

, λ2
λ1+λ2

)∣
∣ λ ∈ �p} = {(θ, 1−θ)| θ ∈]0, 1[}, by Theorem 3.1 problem

(O SB)p is equivalent to the problem

min
x∈M1

min
θ∈]0,1[ f

(
x, y(x, θ)

)
. (20)
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So y(x, θ) solve the equation grad(y �→ (
θ F1(x, y)+ (1− θ)F2(x, y)

) = 0, i.e.,

y21

(
θ
∂ F1

∂y1
(y)+ (1− θ)

∂ F2

∂y1
(y)

) ∂

∂y1
+ y22

(
θ
∂ F1

∂y2
(y)+ (1− θ)

∂ F2

∂y2
(y)

) ∂

∂y2
= 0.

Thus, y(x, θ) = (
y1(x, θ), y2(x, θ)

)
solves the systems of equations

θ
∂ F1

∂y1
(y)+ (1− θ)

∂ F2

∂y1
(y) = 0

θ
∂ F1

∂y2
(y)+ (1− θ)

∂ F2

∂y2
(y) = 0,

and some simple computations give

y(x, θ) =
(
exp

(− 1− θ

2θ
x
)
,
4(1− θ)2

θ2x2

)
.

To simplify notations, put η = 1−θ
2θ and notice that the function θ �→ η is a bijection

from ]0, 1[ to ]0,+∞[. Thus, if we denote

ŷ(x, η) = y(x, θ) = (
e−ηx ,

16η2

x2
)
,

problem (20) becomes

min
x∈M1

min
η∈]0,+∞[ f

(
x, ŷ(x, η)

) = min
(x,η)∈M1×]0,+∞[

f
(
x, ŷ(x, η)

)
.

But

f
(
x, ŷ(x, η)

) = x2

4
+ 4η2 − x − η,

which obviously has (2, 1
8 ) as unique global minimizer over M1×]0,+∞[= R

2+.
Finally, the global minimizer of our original problem (O SB)p is given by

(x, y1, y2) =
(
2, e−

1
4 ,

1

16

)
.

4 Conclusions

We have considered the generalization in three directions of the technics presented
in [11,12] for the semivectorial bilevel convex optimal control problems. Thus, our
problem has nonlinear upper and lower level obtaining more explicit optimality condi-
tions, the order given by a convex pointed closed cone, and, the most important thing,
we deal nowwith the Riemannian manifolds setting. The different results obtained are
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closely related to the geometric structure of leader’s Riemannian manifold as well as
the followers one. Thus, explicit solutions could be obtained on specific Riemannian
manifolds. The results presented are also important for the Euclidean case.

Even if some constrained optimization problem on linear spaces may become
unconstrained for a suitable Riemannian manifold, we consider that further research
avenues should include the case of explicit constraints in the upper and lower level.

Acknowledgments The authors are very grateful to the anonymous referees for their useful comments
and suggestions which have improved the quality of the paper.
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