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Abstract An evenly convex function on a locally convex space is an extended real-
valued function, whose epigraph is the intersection of a family of open halfspaces. In
this paper, we consider an infinite-dimensional optimization problem, for which both
objective function and constraints are evenly convex, and we recover the classical
Lagrange dual problem for it, via perturbational approach. The aim of the paper was
to establish regularity conditions for strong duality between both problems, formulated
in terms of even convexity.

Keywords Evenly convex function · Generalized convex conjugation · Lagrange
dual problem
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1 Introduction

A subset of a locally convex space is called evenly convex (e-convex,in brief) iff it is
the intersection of an arbitrary family (possibly empty) of open halfspaces. This class
of sets was introduced in the finite-dimensional case by Fenchel [1] in order to extend
the polarity theory to non-closed and convex sets. Some characterizations of this kind
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of convex sets were given in [2,3]. E-convex sets have been applied in the geometric
analysis of linear inequality systems containing strict inequalities [3,4], while their
basic properties, related with sections and projections, have been studied in [5].

In a usual way, e-convex sets allow the definition of e-convex functions, which
were introduced in [6] as those extended real-valued functions, whose epigraphs are
e-convex. In [7], it was defined an appropriate conjugation scheme (the c-conjugation)
for such a kind of functions, in the sense of getting the equality of a proper e-
convex function and its double conjugate. The inspiration came from the survey
of Martínez-Legaz [8], where generalized convex duality theory, based on Fenchel–
Moreau conjugation, is applied to quasiconvex programming.

As any closed and convex set is e-convex, the class of lower semicontinuous and
convex functions (whose epigraphs are closed and convex sets) is a subclass of the
e-convex functions. In [9], some well-known results for lower semicontinuous and
convex functions were extended to the more general framework of e-convex func-
tions, and moreover, thanks to the c-conjugation pattern, it was built a new kind of
Fenchel-type dual problem for optimization problems, in which both feasible set and
objective function are e-convex. Optimization problems for which both objective func-
tion and feasible sets are e-convex are called e-convex and have potential applications
in mathematical economics in the same way that evenly quasiconvex optimization is
used in [10].

In the recent paper [11], via perturbational approach, an alternative dual problem
for a general infinite-dimensional optimization primal one was built by means of the
new conjugation pattern, introduced in [7] , and two sufficient regularity conditions
for strong duality were achieved. In particular, an interior point regularity condition
was obtained by exploiting the existing relationship between e-convexity and other
closedness-type notions. Fenchel duality was derived as a particular case, and the
regularity conditions were compared with another one obtained in [9].

In this paper, we consider an infinite-dimensional e-convex optimization problem,
and using c-conjugation, we obtain the Lagrange dual problem for it. Moreover, we
establish three regularity conditions for strong duality between both problems.

In [12], Goberna et al. characterized strong Lagrange duality in terms of the Farkas-
Minkowski property for convex optimization problems, which have infinitely many
convex inequalities as constraints. That property turned out to be a version, in that
particular case, of the closed cone constraint qualification (CCCQ) introduced in [13]
and formulated later in an alternative way in [14]. In this paper, we give a regularity
condition, the so-called e-convex cone constraint qualification (ECCQ), for strong
Lagrange duality, which can be presented as the version of the (CCCQ) in our setting,
since it is formulated in terms of the epigraphs of the c-conjugates of the indicator
function of the feasible set, and the involved functions in the constraints. On the
other hand, we present two more regularity conditions, obtained by particularizing the
general approach in [11], being one of them weaker than the (ECCQ) condition.

The organization is as follows. In Sect. 2, we summarize the basic properties for
e-convex sets and functions, as well as all the necessary tools and results, in order
to make the paper self-contained. In particular, the conjugation scheme for e-convex
functions will be reminded, as well as its most important properties. In Sect. 3, we
consider an e-convex optimization problem and obtain its Lagrange dual problem. The
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(ECCQ) regularity condition for strong duality will be derived in Sect. 4. In Sect. 5, the
two general regularity conditions obtained in [11] will be reformulated and compared
with the one introduced in Sect. 4.

2 Preliminaries

Let X be a separated locally convex space and X∗ its topological dual space endowed
with the weak* topology induced by X . For a set D ⊆ X (D ⊆ X∗, respectively), the
closure of D (the weak* closure of D, respectively) is denoted by cl D, and the nota-
tion δD will stand for the indicator function of D. By 〈x, x∗〉, we denote x∗ (x) for all
(x, x∗) ∈ X × X∗. According to [2], a set C ⊆ X is e-convex if and only if, for every
x0 /∈ C , there exists x∗ ∈ X∗ such that 〈x − x0, x∗〉 < 0, for all x ∈ C.An application
of Hahn–Banach theorem leads to claim that every open or closed and convex set is
e-convex. Given K ⊆ X , the e-convex hull of K , denoted by econv K , is the smallest
e-convex set that contains K . This operator is well defined because X is e-convex, and
the class of e-convex sets is closed under intersection. Moreover, if K is convex, then
K ⊆ econv K ⊆ cl K . Another property, which appears in [3] for finite-dimensional
spaces and can also be shown easily in the infinite-dimensional case, is that the
cartesian product of a finite number of e-convex sets is also an e-convex set in
the product space. For a function f : X → R := R ∪ {±∞}, we denote by
dom f := {x ∈ X : f (x) < +∞} and epi f := {(x, r) ∈ X × R : f (x) ≤ r} the
effective domain and the epigraph of f , respectively. We say that f is proper iff
dom f �= ∅ and f (x) > −∞, for all x ∈ X. The lower semicontinuous (lsc, in short)
hull of f , cl f : X → R, is defined such that epi (cl f ) := cl (epi f ), and f is said to
be lsc at x ∈ X iff f (x) = (cl f ) (x). On the other hand, we define the e-convex hull
of f , econv f : X → R, as the largest e-convex minorant of f , that is,

econv f := sup {g : g is e-convex and g ≤ f } .

This function is e-convex since the class of e-convex functions is closed under point-
wise supremum. According to [6, Prop. 3.1], if f : X → R is an e-convex function
and α > 0 , then α f is an e-convex function, and by [6, Prop. 3.3] , if f, g : X → R

are two proper e-convex functions with dom f ∩ dom g �= ∅, then f + g is also an
e-convex function.

Definition 2.1 A function a : X → R is said to be e-affine iff there exists x∗, y∗ ∈ X∗
and α, β ∈ R such that

a (x) =
{ 〈x, x∗〉 − β, if 〈x, y∗〉 < α,

+∞, otherwise.

For any f : X → R, E f denotes the set of all the e-affine functions minorizing f , that

is, E f :=
{
a : X → R : a is e-affine and a ≤ f

}
.

From [7, Prop. 5], we have that any e-affine function is an e-convex function. In the
same way that, by the biconjugation theorem, any proper, lsc and convex function is
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the pointwise supremum of a family of continuous and affine functions, any proper
e-convex function is the pointwise supremum of a family of e-affine functions.

Lemma 2.1 ([7, Th. 16]) Let f : X → R, f not identically +∞ or −∞. Then, f is
a proper e-convex function if and only if f = sup

{
a : a ∈ E f

}
.

The Fenchel conjugate of f , f ∗ : X∗ → R, is defined by

f ∗ (
x∗) := sup

x∈X
{〈
x, x∗〉 − f (x)

}
. (1)

From (1), the so-called Fenchel–Young inequality can be obtained

f (x) + f ∗ (
x∗) ≥ 〈

x, x∗〉 , ∀x ∈ X and ∀x∗ ∈ X∗.

The classical Fenchel biconjugation theorem establishes the equivalence between a
function f to be lsc convex, and the equality f = f ∗∗. This theorem is not true for
e-convex functions because if we take any e-convex non-lsc function f , then its bicon-
jugate f ∗∗ is lsc convex and f �= f ∗∗. Based on the generalized convex conjugation
theory, introduced by Moreau [15], a suitable conjugation scheme is provided in [7]
for e-convex functions. Consider the space W := X∗ × X∗ × R with the coupling
functions c : X × W → R and c′ : W × X → R given by

c(x, (x∗, y∗, α)) = c′ ((x∗, y∗, α), x
) :=

{ 〈x, x∗〉 , if 〈x, y∗〉 < α,

+∞, otherwise.

For a function f : X → R, its c-conjugate f c : W → R is defined by

f c((x∗, y∗, α)) := sup
x∈X

{
c(x, (x∗, y∗, α)) − f (x)

}
.

Similarly, the c′-conjugate of a function g : W → R is the function gc
′ : X → R,

given by
gc

′
(x) := sup

(x∗,y∗,α)∈W
{
c′ ((x∗, y∗, α), x

) − g(x∗, y∗, α)
}
.

Throughout the paper, we adopt the conventions

(+∞) + (−∞) = (−∞) + (+∞) = (+∞) − (+∞) = (−∞) − (−∞) := −∞.

Functions of the form x ∈ X �→ c(x, (x∗, y∗, α)) − β ∈ R, with
(x∗, y∗, α) ∈ W and β ∈ R are called c-elementary; in the same way, c′-elementary
functions are those of the form

(x∗, y∗, α) ∈ W �→ c(x, (x∗, y∗, α)) − β ∈ R,

with x ∈ X and β ∈ R. Note that c-elementary functions are actually e-affine func-
tions.
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In [7], it is shown that the family of the proper e-convex functions from X to R

along with the function identically equal to −∞ is actually the family of pointwise
suprema of sets of c-elementary functions. Using an analogous terminology, a function
g : W → R is said e′-convex iff it is the pointwise supremum of sets of c′-elementary
functions. Moreover, the e′-convex hull of any function k : W → R is the largest
e′-convex minorant of k, and it is denoted by e′ -conv k.

Lemma 2.2 ([16, Prop. 6.1 and 6.2, and Cor. 6.1]) Let f : X → R and g : W → R.
Then,

(i) f c is e′-convex; gc′
is e-convex.

(ii) If f has a proper e-convex minorant, then econv f = f cc
′ ; e′ -conv g = gc

′c.
(iii) If f does not take on the value −∞, then f is e-convex if and only if f = f cc

′ ; g
is e′-convex if and only if g = gc

′c.
(iv) f cc

′ ≤ f ; gc′c ≤ g.

Definition 2.2 A set D ⊆ W × R is e′-convex iff there exists an e′-convex function
k : W → R such that D = epi k. The e′-convex hull of an arbitrary set D ⊆ W × R

is defined as the smallest e′-convex set containing D, and it is denoted by e′-convD.

Definition 2.3 Consider two functions f, g : X → R. A function a : X → R belongs
to the set Ẽ f,g iff there exists a1 ∈ E f , a2 ∈ Eg such that, if

a1(·) =
{ 〈·, x∗

1

〉 − β1, if
〈·, y∗

1

〉
< α1,

+∞, otherwise,
and a2(·) =

{ 〈·, x∗
2

〉 − β2, if
〈·, y∗

2

〉
< α2,

+∞, otherwise,

then

a (·) =
{ 〈·, x∗

1 + x∗
2

〉 − (β1 + β2) ,

+∞,

if
〈·, y∗

1 + y∗
2

〉
< α1 + α2,

otherwise.

We also associate with Ẽ f,g the function h f,g : X → R, given by

h f,g := sup
{
a : a ∈ Ẽ f,g

}
. (2)

Lemma 2.3 ([9, Cor. 5]) Let f, g : X → R be proper e-convex functions such
that dom f ∩ dom g �= ∅, and let h f,g be the function defined in (2). Then,
e′-conv (epi f c + epi gc) = epi ( f + g)c if and only if f + g = h f,g.

One of the central objectives in optimization theory is the formulation of conditions,
which guarantee strong duality between the primal problem

inf F(x) s.t. x ∈ X, (GP)

where F : X → R is a proper function, and a dual one, whose definition can be given
by means of the perturbational approach described first by Ekeland and Teman [17].
The key is to consider a perturbation function � : X × � → R, where � is also
a separated locally convex space, named the perturbation variable space, such that
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�(x, 0) = F (x), for all x ∈ X. In what we shall call a classical framework, a dual
problem for (GP) can be built as follows:

sup −�∗ (
0, z∗

)
s.t. z∗ ∈ �∗, (GD)

where �∗ : X∗ × �∗ → R is the Fenchel conjugate of �, and �∗ is the dual space of
�.

A direct consequence of the Fenchel–Young inequality is that weak duality always
holds, which means that the optimal value of (GP), denoted by v(GP), is greater
than or equal to the optimal value of (GD), denoted by v(GD). Then, the challenge
is to give conditions for the fulfillment of strong duality, the situation where both
optimal values are equal and the dual problem is solvable. These conditions are called
regularity conditions.

In the literature, there exist two main classes of this kind of conditions, named gen-
eralized interior point and closedness-type conditions. In [18], it provides an overview
on some classical interior point regularity conditions from [17,19,20], as well as sev-
eral new ones. We also mention [13] and [21], where we can find closedness-type
regularity conditions for particular cases of (GP) and (GD) (see also [22] for a com-
plete overview in this field). In most of these conditions, the lower semicontinuity and
convexity of the proper function � are required, allowing that the Fenchel–Moreau
theorem (or biconjugation theorem) can be applied.

As announced, this paper deals with Lagrange duality for e-convex optimization
problems, continuing the work of weakening the requirement for the perturbation
function to be lower semicontinuous and convex in the regularity conditions, which
started in [9,11].

3 Lagrange Dual Problem

Let us consider the optimization problem

(P) inf f (x) s.t. gt (x) ≤ 0, t ∈ T, (3)

where f, gt : X → R, t ∈ T , are proper e-convex functions defined on X , T is an
arbitrary index set, and the feasible set, denoted by

A := {x ∈ X : gt (x) ≤ 0, t ∈ T } ,

is non-empty. Since the sublevel sets of an e-convex function are e-convex and the
class of e-convex sets is closed under intersection, the feasible set of (P) is an e-convex
set.

We consider the perturbation function � : X × R
T → R, defined by

�(x, b) :=
{
f (x) , if gt (x) ≤ bt ∀t ∈ T,

+∞, otherwise,
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where b ∈ R
T is the perturbation variable. Letting σ := {gt (x) ≤ 0, t ∈ T } , we can

reformulate σ as
{
g (x) ∈ −R

T+
}
,where g : X → R

T
is defined as g (x) (t) := gt (x)

for all t ∈ T , and x ∈ X . Then, the perturbation function � can be rewritten as

�(x, b) =
{
f (x) , if g (x) − b ∈ −R

T+,

+∞, otherwise.
(4)

C-conjugating � makes possible to associate with (P) a dual problem verifying
weak duality. Let us observe that the c-conjugation pattern can be applied in a more
general framework than the Fenchel one, in the sense that it is based on a chosen
coupling function which is defined on X × Y , where Y is an arbitrary set. In our case,
Y = R

T , and we take the so-called space of generalized finite sequences, denoted by
R

(T ), as the dual space of R
T . Recall that λ = (λt )t∈T belongs to R

(T ) iff λ has finite
support, which means that only finitely many λt are different from zero. We consider
the following dual product for λ ∈ R

(T ) and b ∈ R
T , λb := ∑

t∈T λt bt . Hence, letting
Z := X × R

T , the appropriate coupling function for building the c-conjugate of �

will be c1 : Z × Z∗ × Z∗ × R → R such that

c1
(
(x, b) ,

((
x∗, λ

)
,
(
y∗, β

)
, α

)) :=
{ 〈x, x∗〉 + λb, if 〈x, y∗〉 + βb < α,

+∞, otherwise.

We have �c : Z∗ × Z∗ × R → R and

�c ((
x∗, λ

)
,
(
y∗, β

)
, α

) = sup
(x,b)∈Z

{
c1

(
(x, b) ,

((
x∗, λ

)
,
(
y∗, β

)
, α

)) − �(x, b)
}
.

It is easy to see that, for all x ∈ X, λ, β ∈ R
(T ) and α > 0, it holds

�(x, 0) ≥ −�c ((0, λ) , (0, β) , α) ,

leading us to formulate the dual problem

sup −�c ((0, λ) , (0, β) , α) s.t. λ, β ∈ R
(T ), α > 0, (DL )

which verifies v(DL) ≤ v(P). Defining the infimum value function, p : R
T → R,

p (b) := inf
x∈X �(x, b) ,

it holds p (0) = v(P), whereas �c ((0, λ) , (0, β) , α) = pc (λ, β, α), for all α > 0
and λ, β ∈ R

(T ), where pc : R
(T )×R

(T )×R → R is built using the coupling function
c2 : R

T × R
(T ) × R

(T ) × R → R such that

c2 (b, (λ, β, α)) :=
{

λb, if βb < α,

+∞, otherwise.
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Then, (DL) can be rewritten as

(DL) sup −pc (λ, β, α) s.t. λ, β ∈ R
(T ), α > 0, (5)

Now, for all λ, β ∈ R
(T ) and α > 0, we have

pc (λ, β, α) = sup
b∈RT

{c2 (b, (λ, β, α)) − p (b)}
= sup

x∈X, b∈RT ,

g(x)−b∈−R
T+

{c2 (b, (λ, β, α)) − f (x)} .

Denoting by s := b − g (x) ∈ R
T+, we get

pc (λ, β, α) = sup
x∈X, s∈RT+

{c2 (s + g (x) , (λ, β, α)) − f (x)} .

Since

c2 (s + g (x) , (λ, β, α)) =
{

λs + λg (x) , if βs + βg (x) < α,

+∞, otherwise,

we consider the following three cases:

Case 1: If dom f ⊆ {x ∈ X : βg (x) < α} and β ∈ −R
(T )
+ then, for all λ ∈ R

(T ),

pc (λ, β, α) = sup
x∈X,s∈RT+

{λs + λg (x) − f (x)} .

Case 2: If dom f � {x ∈ X : βg (x) < α}, then there exists x0 ∈ dom f such that
βg (x0) ≥ α, and denoting the null vector of R

T as 0T , we have β0T +
βg (x0) ≥ α so that c2 (s + g (x0) , (λ, β, α)) = +∞, while f (x0) ∈ R and,
for all λ ∈ R

(T ), pc (λ, β, α) = +∞.
Case 3: If dom f ⊆ {x ∈ X : βg (x) < α} but β /∈ −R

(T )
+ , then there exists t0 ∈ T

such that βt0 > 0. Taking any point x0 ∈ dom f and s0 ∈ R
T+, verifying that

βs0 is large enough to get βs0 + βg (x0) ≥ α, we have, for all λ ∈ R
(T ),

pc (λ, β, α) = +∞.

Now, for all (λ, β, α) verifying Case 1, we get

pc (λ, β, α) = sup
s∈RT+

{λs} + sup
x∈X

{λg (x) − f (x)}

=
{
supx∈X {λg (x) − f (x)} , if λ ∈ −R

(T )
+ ,

+∞, otherwise,

and therefore,

pc (λ, β, α) =
⎧⎨
⎩
supx∈X {λg (x) − f (x)} , if βg (x) < α ∀x ∈ dom f

and λ, β ∈ −R
(T )
+ ,

+∞, otherwise.
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Then, we have

sup
λ,β∈R(T ),

α>0

−pc (λ, β, α) = sup
λ∈−R

(T )
+

{−supx∈X {λg (x) − f (x)}}

= sup
λ∈R(T )

+
{infx∈X { f (x) + λg (x)}} ,

obtaining, finally, from (5) the Lagrange dual problem

sup {infx∈X { f (x) + λg (x)}} s.t. λ ∈ R
(T )
+ . (DL )

4 A Strong Duality Theorem for Evenly Convex Optimization

In the classical framework, Jeyakumar et al. in [13] introduced the so-called closed
cone constraint qualification (CCCQ) in order to obtain strong duality between a
convex optimization problem and its Lagrange dual problem. Later, in [14], (CCCQ)
was reformulated in terms of the epigraphs of the Fenchel conjugates of the indicator
function of the feasible set and the involved functions in the constraints, and it was
proved that (CCCQ) implies strong Lagrange duality under weaker conditions than
those considered in [13]. In this section, we introduce the so-called e-convex cone
constraint qualification (ECCQ), which can be viewed as a version of the (CCCQ) in
our setting, and we prove that, under conditions related with e-convexity, (ECCQ) is a
regularity condition for the dual pair (P) − (DL). From now on, W denotes the space
X∗ × X∗ × R.

Proposition 4.1 epi δcA is the e′-convex hull of
⋃

λ∈R(T )
+

epi (λg)c .

Proof First of all, it is easy to see that

epi δcA =
⋂
x∈A

epi c (x, ·) . (6)

Let K := ⋃
λ∈R(T )

+

epi (λg)c . Observe that, if x ∈ A, then λg (x) ≤ 0, for all

λ ∈ R
(T )
+ . Therefore, λg ≤ δA and epi (λg)c ⊆ epi δcA, for all λ ∈ R

(T )
+ , which means

that K ⊆ epi δcA. We shall show that epi δcA ⊆ e′ -conv K , and since epi δcA is an
e′-convex set, we shall get epi δcA = e′ -conv K .

We have that e′ -conv K = epi H, where H is an e′-convex function, which, by
definition, is the pointwise supremum of a certain set of c′-elementary functions, i.e.,
H = sup(x,γ )∈X1×B {c (x, ·) − γ }, being X1×B a non-empty subset of X×R.Hence,

epi H =
⋂

(x,γ )∈X1×B

epi {c (x, ·) − γ } . (7)
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Since K ⊆ epi H, taking (x∗, y∗, α, β) ∈ K , we have c (x, (x∗, y∗, α))− γ ≤ β, for
all (x, γ ) ∈ X1 × B, which means that 〈x, x∗〉 − γ ≤ β, for all (x, γ ) ∈ X1 × B.

Observing that, for all δ > 0, δ (x∗, y∗, α, β) ∈ K , we have

δ
〈
x, x∗〉 − γ ≤ δβ, (8)

for all (x, γ ) ∈ X1 × B. Letting δ → 0+, we get γ ≥ 0, for all γ ∈ B, and
epi c (x, ·) ⊆ epi {c (x, ·) − γ } , for all x ∈ X1, implying that

⋂
x∈X1

epi c (x, ·) ⊆ epi H. (9)

On the other hand, dividing in (8) by δ, we get 〈x, x∗〉 − γ
δ

≤ β, for all
(x, γ ) ∈ X1 × B, or, equivalently, c (x, (x∗, y∗, α)) − γ

δ
≤ β. Letting δ → +∞,

we get c (x, (x∗, y∗, α)) ≤ β, for all x ∈ X1. Then, K ⊆ ⋂
x∈X1

epi c (x, ·), and, since
⋂

x∈X1

epi c (x, ·) is an e′-convex set, we obtain

epi H = e′ -conv K ⊆
⋂
x∈X1

epi c (x, ·). (10)

Combining (10) with (9), we get

epi H =
⋂
x∈X1

epi c (x, ·). (11)

So, if we show that X1 ⊆ A, from (6), then we shall arrive to the announced result
epi δcA = ⋂

x∈A
epi c (x, ·) ⊆ ⋂

x∈X1

epi c (x, ·) = epi H .

Take any point x ∈ X1, and consider also a generalized sequence λ ∈ R
(T )
+ . Since

K ⊆ epi H, from (11) , we get epi (λg)c ⊆ epi c (x, ·) , and

c
(
x,

(
x∗, y∗, α

)) − (λg)c
(
x∗, y∗, α

) ≤ 0,

for all (x∗, y∗, α) ∈ dom (λg)c , getting to (λg)cc
′
(x) ≤ 0, and sinceλg is an e-convex

function, according to Proposition 2.2, (λg) (x) ≤ 0. The choice of the generalized
sequence λ is indifferent, meaning that x ∈ A. ��
Definition 4.1 σ verifies (ECCQ) iff

⋃
λ∈R(T )

+

epi (λg)c is an e′-convex set.

Remark 4.1 According to Proposition 4.1, we can reformulate

⋃
λ∈R(T )

+

epi (λg)c = epi δcA. (ECCQ)
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Proposition 4.2 σ verifies (ECCQ) if and only if, for all (x∗, y∗, α) ∈ W such that
A ⊆ {x ∈ X : 〈x, y∗〉 < α}, it holds

inf
x∈A

c
(
x,

(
x∗, y∗, α

)) = max
λ∈R(T )

+

{
inf
x∈X

{
c
(
x,

(
x∗, y∗, α

)) + λg (x)
}}

, (12)

and there exists λ ∈ R
(T )
+ such that

inf
x∈A

c
(
x,

(
x∗, y∗, α

)) = inf
x∈dom λg

{−c
(
x,

(−x∗, y∗, α
)) + λg (x)

}
. (13)

Proof Let us suppose that σ verifies (ECCQ) and take a point (x∗, y∗, α) ∈ W such
that A ⊆ {x ∈ X : 〈x, y∗〉 < α} . Then, we consider the primal problem

inf c
(
x,

(
x∗, y∗, α

))
s.t. x ∈ A, (P1)

and its Lagrange dual problem

sup
{
infx∈X

{
c
(
x,

(
x∗, y∗, α

)) + λg (x)
}}

s.t. λ ∈ R
(T )
+ . (D1L )

Since v(P1) ≥ v(D1L ), if v(P1) = −∞, then (12) holds, because v(D1L ) = −∞ and
infx∈X {c (x, (x∗, y∗, α)) + λg (x)} = −∞ for all λ ∈ R

(T )
+ . Taking into account that

−c (x, (−x∗, y∗, α)) ≤ c (x, (x∗, y∗, α)), for all x ∈ dom λg, we obtain

inf
x∈dom λg

{−c
(
x,

(−x∗, y∗, α
)) + λg (x)

} ≤ inf
x∈dom λg

{
c
(
x,

(
x∗, y∗, α

)) + λg (x)
}
,

with infx∈dom λg {c (x, (x∗, y∗, α)) + λg (x)} = −∞. Hence, (13) also holds.
Let us assume that v(P1) ∈ R. Since A ⊆ {x ∈ X : 〈x, y∗〉 < α} , we have

(−x∗, y∗, α,−v(P1)) ∈ epi δcA.

According to (ECCQ) , there exists λ ∈ R
(T )
+ such that

sup
x∈dom λg

{
c
(
x,

(−x∗, y∗, α
)) − λg (x)

} ≤ −v(P1),

and, in addition, dom λg ⊆ {x ∈ X : 〈x, y∗〉 < α} , which allow us to write

v(P1) ≤ inf
x∈dom λg

{−c
(
x,

(−x∗, y∗, α
)) + λg (x)

}

= inf
x∈dom λg

{
c
(
x,

(
x∗, y∗, α

)) + λg (x)
} ≤ v(D1L ) ≤ v(P1).

Then, v(P1) = v(D1L ) and v(D1L ) = inf x∈X
{
c (x, (x∗, y∗, α)) + λg (x)

}
, so that

(12) fulfills. Moreover, v(P1) = inf x∈dom λg

{−c (x, (−x∗, y∗, α)) + λg (x)
}
, in such

a way that (13) is also true.
For the converse statement, we shall prove that epi δcA ⊆ ⋃

λ∈R(T )
+

epi (λg)c.
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Take any point (x∗, y∗, α, β) ∈ epi δcA. Then, δcA (x∗, y∗, α) ≤ β, and moreover,
δcA (x∗, y∗, α) < +∞. We can write

− β ≤ − sup
x∈A

c
(
x,

(
x∗, y∗, α

)) = inf
x∈A

c
(
x,

(−x∗, y∗, α
))

. (14)

Clearly, A ⊆ {x ∈ X : 〈x, y∗〉 < α}, whence

inf
x∈A

{−c
(
x,

(
x∗, y∗, α

))} = inf
x∈A

c
(
x,

(−x∗, y∗, α
))

.

By hypothesis, there exists λ ∈ R
(T )
+ such that, from (12) and (13) ,

inf
x∈A

c
(
x,

(−x∗, y∗, α
)) = inf

x∈X
{
c
(
x,

(−x∗, y∗, α
)) + λg (x)

}
(15)

= inf
x∈dom λg

{−c
(
x,

(
x∗, y∗, α

)) + λg (x)
}
.

Since

inf
x∈dom λg

{−c
(
x,

(
x∗, y∗, α

)) + λg (x)
} = − sup

x∈dom λg

{
c
(
x,

(
x∗, y∗, α

)) − λg (x)
}

= − (
λg

)c (
x∗, y∗, α

)
, (16)

combining (14), (15), and (16) , we get −β ≤ − (
λg

)c
(x∗, y∗, α) and, consequently,

(x∗, y∗, α, β) ∈ epi
(
λg

)c
. ��

Next theorem represents the main result of this section.

Theorem 4.1 If σ verifies (ECCQ) , f +δA = h f,δA and epi f
c+epi δcA is e

′-convex,
then

inf
x∈A

f (x) = max
λ∈R(T )

+

{
inf
x∈X { f (x) + λg (x)}

}
.

Proof If v(P) = −∞, the result holds trivially. Let v(P) ∈ R. We write

v(P) = inf
x∈A

f (x) = inf
x∈X { f (x) + δA (x)} . (17)

According to [9, Cor. 15], we obtain

inf
x∈X { f (x) + δA (x)} = − f c

(
x∗, y∗, α1

) − δcA
(−x∗,−y∗, α2

)
, (18)

for certain x∗, y∗ ∈ X∗, α1, α2 ∈ R such that α1 + α2 > 0.
As v(P) ∈ R, by (17) and (18), f c (x∗, y∗, α1) and δcA (−x∗,−y∗, α2) are also

finite, whence

δcA
(−x∗,−y∗, α2

) = sup
x∈A

c
(
x,

(−x∗,−y∗, α2
))

< +∞, (19)
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and
A ⊆ {

x ∈ X : 〈
x,−y∗〉 < α2

}
, (20)

implying that c (x, (−x∗,−y∗, α2)) = −c (x, (x∗,−y∗, α2)) , for all x ∈ A. Thus,

δcA
(−x∗,−y∗, α2

) = sup
x∈A

{− 〈
x, x∗〉} = − inf

x∈A
c
(
x,

(
x∗,−y∗, α2

))
. (21)

Now, since (ECCQ) and (20) hold, we apply Proposition 4.2 to obtain

inf
x∈A

c
(
x,

(
x∗,−y∗, α2

)) = inf
x∈dom λg

{−c
(
x,

(−x∗,−y∗, α2
)) + λg (x)

}
,

for a certain λ ∈ R
(T )
+ , and since this infimum is finite, we have that dom λg is

contained in {x ∈ X : 〈x,−y∗〉 < α2} and

inf
x∈dom λg

{−c
(
x,

(−x∗,−y∗, α2
)) + λg (x)

} = inf
x∈X

{〈
x, x∗〉 + λg (x)

}
. (22)

Recalling f c (x∗, y∗, α1) is finite, dom f ⊆ {x ∈ X : 〈x, y∗〉 < α1} and

f c
(
x∗, y∗, α1

) = sup
x∈dom f

{
c
(
x,

(
x∗, y∗, α1

)) − f (x)
}

(23)

= − inf
x∈dom f

{
f (x) − 〈

x, x∗〉} = − inf
x∈X

{
f (x) − 〈

x, x∗〉} .

From (17), (18), (21), (22), and (23), we get

v(P) = inf
x∈X

{
f (x) − 〈

x, x∗〉} + inf
x∈X

{〈
x, x∗〉 + λg (x)

}
≤ inf

x∈X
{
f (x) + λg (x)

} ≤ v (DL) .

��

5 Comparing Regularity Conditions

Let us denote the obtained regularity condition

(C1L ) σ verifies (ECCQ) , f + δA = sup
{
a | a ∈ Ẽ f,δA

}
and epi f c + epi δcA is

e′-convex.

In [11], two regularity conditions for strong duality for a general problem

inf �(x, 0) s.t. x ∈ X, (GP)

and its dual one obtained through c-conjugation

sup−�c ((
0, u∗) ,

(
0, v∗) , α

)
s.t. u∗, v∗ ∈ �∗, α > 0, (GDc)
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were found. One of them is a closedness-type condition, expressed in terms of the
projection operator on W×R, PrW×R : X∗ × �∗ × X∗ × �∗ × R → W×R, and
the second one, an interior point condition, is related to an extension of the classical
interior of a set. We recall that, if A ⊆ X is a non-empty and convex subset in X, then
the relative algebraic interior of A is the set of all the points a ∈ A verifying that
cone (A − a) is a linear subspace of X . It is denoted by iA. Moreover, a point a ∈ icA
iff cone (A − a) is a closed and linear subspace of X (i.e., icA = iA, if the affine hull
of A is closed, and icA = ∅, otherwise).

The conditions are the following, keeping the numeration used in [11]:

(C4) X , � are Fréchet spaces, � is proper e-convex and 0 ∈ ic (Pr� (dom�)) .

(C5) � is a proper e-convex function, and PrW×R (epi�c) is e′-convex.

Our aimnowwas to reformulate (C4) and (C5) for the dual pair (P)−(DL) analyzed
in this paper. In that setting,� = R

T . This space is metrizable, and moreover, Fréchet
with the product topology if and only if T is at most countable (see [23,24] for more
details). In order to reformulate condition (C4) and (C5), we give the following result.

Proposition 5.1 Let � : X × R
T → R be the perturbation function, defined as in

(4). Then, � is proper and e-convex, and

Pr RT (dom�) = g (dom f ) + R
T+ :=

⎧⎨
⎩

⋃
x∈dom f,g(x)∈RT

g (x)

⎫⎬
⎭ + R

T+.

Proof Since dom f ∩ A �= ∅, there exists x ∈ A such that f (x) < +∞, and then
�(x, 0) < +∞. Due to f is proper, � cannot take the value −∞. Hence, it is proper.

We shall see that epi� is an e-convex set by expressing it in a convenient way. We
have epi� = {

(x, b, β) ∈ X × R
T × R : f (x) ≤ β, g (x) − b ∈ −R

T+
}
.

If we define the sets C := {
(x, b, β) ∈ X × R

T × R : (x, β) ∈ epi f
}
and D :={

(x, b) ∈ X × R
T : gt (x) ≤ bt , t ∈ T

}
, then epi� = C ∩ (D × R). Since epi f and

R
T are e-convex, it is easy to see that C is e-convex.
On the other hand, if we take any point (x0, b0) /∈ D, then there exists t ∈ T

such that
(
x0, b0t

)
/∈ epi gt , which is an e-convex set in X × R. Hence, there exists

(x∗, α) ∈ X∗ × R such that 〈x − x0, x∗〉 + (
bt − b0t

)
α < 0, for all

(
x, bt

) ∈ epi gt .
If we take λ ∈ R

(T ) as

λt =
{

α, if t = t,
0, otherwise,

then it holds that 〈x − x0, x∗〉 + (b − b0) λ < 0, for all (x, b) ∈ D. Thus, D is
e-convex, D × R is e-convex, and epi� = C ∩ (D × R) is e-convex. Finally,

Pr RT (dom�) =
{
b ∈ R

T : ∃x ∈ dom f such that b ∈ g (x) + R
T+
}

= g (dom f ) + R
T+.

��
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The aboveproposition and the product topologyonR
T ,whenT is atmost countable,

allow us to particularize the regularity conditions (C4) and (C5) for the dual pair
(P) − (DL) in the following way:

(C4L ) T is at most countable, X is a Fréchet space, and 0 ∈ ic
(
g (dom f ) + R

T+
)
.

(C5L ) PrW×R (epi�c) is e′-convex.

Remark 5.1 According to Proposition 5.1 in [11], condition (C5) can alternatively be
formulated as �(·, 0)c = minλ,β∈R(T ) �c (·, (λ, β)).

Our objective in this sectionwas to compare the regularity conditions (C4L) , (C5L)

and (C1L) .Aswe shall see, the unique relationship between them is that (C1L) implies
(C5L).

Proposition 5.2 Regularity condition ( C1L) implies ( C5L).

Proof Following the same steps than in the proof of [11, Prop. 6.2], it holds
Pr W×R (epi�c) ⊆ epi f c + epi δcA. Hence, proving the opposite inclusion, we con-
clude that PrW×R (epi�c) is e′-convex, since, by hypothesis, epi f c + epi δcA is
e′-convex.

Take any two points
(
x∗
1 , y

∗
1 , α1, β1

) ∈ epi f c and
(
x∗
2 , y

∗
2 , α2, β2

) ∈ epi δcA. Since

(ECCQ) holds, we have
⋃

λ∈R(T )
+

epi (λg)c = epi δcA. Hence, there exists λ ∈ R
(T )
+ such

that
(
x∗
2 , y

∗
2 , α2, β2

) ∈ epi
(
λg

)c
. We obtain, for all x ∈ X,

c
(
x,

(
x∗
1 , y

∗
1 , α1

)) + c
(
x,

(
x∗
2 , y

∗
2 , α2

)) − f (x) − λg (x) ≤ β1 + β2.

Taking into account that, for all x ∈ X,

c
(
x,

(
x∗
1 + x∗

2 , y
∗
1 + y∗

2 , α1 + α2
)) ≤ c

(
x,

(
x∗
1 , y

∗
1 , α1

)) + c
(
x,

(
x∗
2 , y

∗
2 , α2

))
,

we obtain that, for all x ∈ X,

c
(
x,

(
x∗
1 + x∗

2 , y
∗
1 + y∗

2 , α1 + α2
)) − f (x) − λg (x) ≤ β1 + β2. (24)

Let
(
x, b

) ∈ dom�. We have to find γ, δ ∈ R
(T )
+ such that

c1
((
x, b

)
,
(
x∗
1 + x∗

2 , γ
)
,
(
y∗
1 + y∗

2 , δ
)
, α1 + α2

) − �
(
x, b

) ≤ β1 + β2, (25)

which means that �c
((
x∗
1 + x∗

2 , γ
)
,
(
y∗
1 + y∗

2 , δ
)
, α1 + α2

) ≤ β1 + β2, and then(
x∗
1 + x∗

2 , y
∗
1 + y∗

2 , α1 + α2, β1 + β2
) ∈ PrW×R (epi�c) .

Let us observe that if
(
x, b

)
/∈ dom�, then inequality (25) will hold for all

γ, δ ∈ R
(T )
+ .

Now, since
(
x, b

) ∈ dom�, we have x ∈ dom f and g (x) − b ∈ −R
T+. Then,

gt (x) ≤ bt , for all t ∈ T and λg (x) ≤ λb. Using this inequality in (24), we get

c
(
x,

(
x∗
1 + x∗

2 , y
∗
1 + y∗

2 , α1 + α2
)) − f (x) − λb ≤ β1 + β2.
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Taking γ = −λ and δ = 0, we have

c1
((
x, b

)
,
(
x∗
1 + x∗

2 , γ
)
,
(
y∗
1 + y∗

2 , δ
)
, α1 + α2

) − f (x) ≤ β1 + β2,

and f (x) = �
(
x, b

)
, so (25) fulfills. ��

The following example shows that (C5L) does not imply (C1L) .

Example 5.1 Let us take X = R, f = δ[0,+∞[ and σ = {t x ≤ 0, t ∈ T } , where
T = [0,+∞[. We have A =] − ∞, 0]. In [11, Ex. 6.1], it was shown the equalities
f +δA = h f,δA and epi f

c+epi δcA = R×R×R++×R+, being the last set e′-convex.
We shall see that (ECCQ) does not hold, i.e.,

⋃
λ∈R(T )

+

epi (λg)c � epi δcA.

Since epi δcA = R+×R+×R++×R+ (see again [11, Ex. 6.1]), a point (α, β, γ, δ) ∈
epi δcA verifies α ≥ 0, β ≥ 0, γ > 0 and δ ≥ 0. This point will be in epi (λg)c for

some λ ∈ R
(T )
+ , if c (x, (α, β, γ )) − λg (x) ≤ δ, for all x ∈ dom (λg) = R, which

implies that βx < γ, for all x ∈ R, and this is impossible if β �= 0. Hence, (C1L)

does not fulfill.
We now show that (C5L) holds. The set PrW×R (epi�c) is e′ -convex if and only if

epi�(·, 0)c ⊆ Pr
W×R

(epi�c) , since epi�(·, 0)c is its e′ -convex hull, according to

[11, Lemma 5.3]. Applying Lemma 2.3, we have that epi�(·, 0)c = epi ( f + δA)c =
epi f c + epi δcA. Hence, we will see that

R × R × R++ × R+ = epi f c + epi δcA ⊆ Pr
W×R

(
epi�c) .

Let (α, β, γ, δ) ∈ epi f c + epi δcA, i.e., α ∈ R, β ∈ R, γ > 0 and δ ≥ 0.
We will prove that (α, β, γ, δ) ∈ PrW×R (epi�c), finding λ1, λ2 ∈ R

(T ) such that
�c ((α, λ1) , (β, λ2) , γ ) ≤ δ. Therefore, we have to find λ1, λ2 ∈ R

(T ) such that, for
all (x, b) ∈ dom�, c1 ((x, b) , (α, λ1) , (β, λ2) , γ ) ≤ δ, or equivalently,

βx + λ2b < γ and αx + λ1b ≤ δ. (26)

Since dom� = {
(x, b) ∈ R × R

T : x ≥ 0, bt ≥ t x,∀t ≥ 0
}
, taking in particular

x = 0 and b ∈ R
T+, from (26), we deduce that λ1, λ2 ∈ −R

(T )
+ . Now, for x > 0 and

bt ≥ t x, for all t ≥ 0,

βx + λ2b = βx +
∑
t≥0

λ2,t bt ≤ βx +
∑
t≥0

λ2,t t x = x

⎛
⎝β +

∑
t≥0

tλ2,t

⎞
⎠ .

Forcing
(
β + ∑

t≥0 tλ2,t
) ≤ 0, we will have βx + λ2b < γ, and the question is if

there exists λ2 ∈ −R
(T )
+ verifying that. However,

⎛
⎝β +

∑
t≥0

tλ2,t

⎞
⎠ ≤ 0 if and only if

∑
t≥0

tλ2,t ≤ −β,
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so that the choice of λ2 only depends on the chosen β, which is fixed, and clearly,
λ2 ∈ −R

(T )
+ can be found. If we now take the second inequality in (26), we also deduce

that the choice of λ1 only depends on the chosen α, which is fixed, and λ1 ∈ −R
(T )
+

can be calculated. We conclude that (α, β, γ, δ) ∈ PrW×R (epi�c) .

We continue with an example showing that (C1L) does not imply (C4L). Note that,
with this example and Proposition 5.2, we also have that (C5L) does not imply (C4L).

Example 5.2 Take X = R, f = δ[0,+∞[ and σ = {
t x + δ]−∞,t] (x) ≤ 0, t ∈ T

}
,

being T = N ∪ {0} . We have A =] − ∞, 0]. Then, as in the previous example,
f + δA = h f,δA and epi f c + epi δcA is e′-convex. For the fulfillment of (C1L), we
only need to show that (ECCQ) holds, i.e.,

epi δcA = R+ × R+ × R++ × R+ ⊆
⋃

λ∈R(T )
+

epi (λg)c .

Take any point (α, β, γ, δ) ∈ epi δcA, with α ≥ 0, β ≥ 0, γ > 0 and δ ≥ 0. Then,

(α, β, γ, δ) ∈ epi (λg)c for some λ ∈ R
(T )
+ , if c (x, (α, β, γ )) − λg (x) ≤ δ, for all

x ∈ R, i.e., dom (λg) ⊆ {x ∈ R :βx < γ } and αx−λg (x) ≤ δ, for all x ∈ dom (λg).
We distinguish two cases.

Case 1: If β = 0, it is enough to take λ ∈ R
(T )
+ such that

λt =
{

α, if t = 1,
0, otherwise.

Then, dom (λg) = dom g1 =]−∞, 1] ⊆ {x ∈ R : βx < γ } = R.Moreover,
αx − λg (x) = (α − α) x = 0 ≤ δ, for all x ≤ 1, since δ ≥ 0.

Case 2: If β > 0, then we will take λ ∈ R
(T )
+ such that

λt =
{
1, if t = 0,
0, otherwise.

Then, dom (λg) = dom g0 =] − ∞, 0] ⊆ {x ∈ R : βx < γ } . Moreover, it
holds αx − λg (x) = αx ≤ δ, for all x ∈ dom (λg) , since α ≥ 0 and δ ≥ 0.

Then, we conclude that epi δcA ⊆ ⋃
λ∈R(T )

+

epi (λg)c . Now, we shall prove that (C4L)

does not hold, i.e., cone
(
g (dom f ) + R

T+
)
is not a linear subspace of R

T . Since
dom f = [0,+∞[, x = 0 is the only point verifying g (0) ∈ R

T , then g (dom f ) +
R
T+ = R

T+.

As (C5L) does not imply (C4L), from Proposition 5.2, we obtain that (C4L) does
not imply (C1L). We finish with an example showing that (C4L) does not imply
(C5L) .
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Example 5.3 Take X = R
2, σ = {x1 − t x2 ≤ 0, t ∈ T } , T = { 1

n , n ∈ N
}
. From the

following function f : X → R

f (x1, x2) =

⎧⎪⎨
⎪⎩

x22
2x1

, if x1 > 0,
0, if x1 = x2 = 0,
+∞, otherwise,

defined in [25, p. 51], where it is shown its properness and e-convexity, we build
f := 2 f , a function which preserves both properties from f . We have

A =
{
(x1, x2) ∈ R

2 : x1 ≤ 0, x1 ≤ x2
}

.

Clearly, (C4L) holds, since dom f = (]0,+∞[×R) ∪ {02} and, taking into account
that gt (x1, x2) = x1 − t x2, for all t ∈ T, g (dom f ) + R

T+ = R
T . Now, we shall

use the equivalent condition to (C5L), which appears in Remark 5.1, and we shall
see that there exists at least a point (x∗, y∗, α) ∈ W such that �(·, 0)c (x∗, y∗, α) <

minλ,β∈R(T ) �c ((x∗, λ) , (y∗, β) , α).
Let y∗ = (1, 0), any x ∈ R

2 and α = 1. Then,

�(·, 0)c (
x∗, y∗, α

) = sup
x∈A∩dom f

{
c
(
x,

(
x∗, y∗, α

)) − �(x, 0)
}

= sup
x=02

{〈
x, x∗〉} = 0.

Now, take any (λ, β) ∈ R
(T ) × R

(T ). Then,

�c ((
x∗, λ

)
,
(
y∗, β

)
, α

) = sup
x∈dom f

g(x)−b∈−R
T+

{
c1

(
(x, b) ,

(
x∗, λ

)
,
(
y∗, β

)
, α

) − f (x)
}
.

Clearly, c1 ((x, b) , (x∗, λ) , (y∗, β) , α) < +∞ only if

〈
x, y∗〉 + ∑

t∈T
βt bt < α, (27)

for all (x, b) such that x ∈ dom f and g (x) − b ∈ −R
T+. Since the point (x0, b0) ,

where x0 = (1, 0) and b0 = (
b0,t

)
, with b0,t = 1 for all t ∈ T , belongs to the set{

(x, b)
∣∣x ∈ dom f, g (x) − b ∈ −R

T+
}
, the fulfillment of (27) will force β not to be

0T , and moreover, since bt can be as large as we want, for all t ∈ T, it is also necessary
for the fulfillment of (27) that β ∈ −R

(T )
+ .

Define Tβ := {t ∈ T : βt < 0} and δβ := max
{ 1
t : t ∈ Tβ

}
> 0. Let us observe

that δβ is well defined, since Tβ is a non-empty finite set. Now, we take the point(
xβ, bβ

)
, where xβ = (

1, δβ

)
and bβ = (

bβ,t
)
is defined

bβ,t =
{
gt

(
xβ

)
, if t /∈ Tβ,

0, otherwise.
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It belongs to the set
{
(x, b)

∣∣x ∈ dom f, g (x) − b ∈ −R
T+

}
, and (27) will hold only

if 1 + ∑
t∈T βt bβ,t < 1, which is impossible, since

∑
t∈T βt bβ,t = 0. Hence,

c1 ((x, b) , (x∗, λ) , (y∗, β) , α) = +∞, for all (λ, β) ∈ R
(T ) × R

(T ), and

min
λ,β∈R(T )

�c ((
x∗, λ

)
,
(
y∗, β

)
, α

) = +∞.

6 Conclusions

In this paper,wehaveobtained theLagrangedual problem for an e-convexoptimization
problem via perturbational approach by means of c-conjugation. We have established
three regularity conditions for strong duality between both problems, formulated in
terms of even convexity. The first condition we state can be viewed as the e-convex
counterpart of the so-called closed cone constrained qualification related to a convex
optimization problem in the classical context. Another two conditions are derived as
particular cases of two already existing regularity conditions which were obtained in
a previous work. We finally compare the three regularity conditions.
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