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Abstract We formulate a search-trajectory optimization problem, with multiple
searchers looking for multiple targets in continuous time and space, as a parameter-
distributed optimal control model. The problem minimizes the probability that all of
the searchers fail to detect any of the targets during a planning horizon. We construct
discretization schemes and prove that they lead to consistent approximations in the
sense of E. Polak.
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1 Introduction

We formulate a search-trajectory optimization problem, with multiple searchers look-
ing for multiple targets. The searchers could be manned or unmanned aircraft and
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surface vessels with sensors designed to detect targets, such as pirates or terrorists,
that pose a threat to commercial shipping and capital naval vessels. The searchers
may be coast guard cutters and aircraft seeking survivors after a shipwreck. They may
also be maritime patrol aircraft looking for drug smugglers in go-fast boats and self-
propelled semi-submersible vessels. Regardless of the nature of the objects sought,
we designate them “targets” for consistency. There is typically significant uncertainty
about the characteristics of the targets such as their location, heading, intent, and pos-
sibly even their existence. In this environment of uncertainty, we aim at optimizing the
trajectories of a given set of searchers such that the probability of detecting the targets,
as defined precisely below, is maximized and dynamical constraints on the searchers
are obeyed.

The problem is a parameter-distributed optimal control model, where the searcher
dynamics are given by ordinary differential equations (ODEs) and the targets fol-
low conditionally deterministic trajectories. This means the target trajectories depend
on unknown parameters that we treat as random variables, but given a realization
of these parameters, the target trajectories are known.1 We focus on parame-
ters with continuous probability distributions, but our framework easily extends to
include discrete ones as well. Conditionally deterministic target trajectories result
in an objective function with integration across the parameters as well as time.
The parameter-distributed optimal control model is similar to those in [1–4], but
in contrast to these studies, we consider multiple targets. We refer to [3,5] for
target models based on diffusion. We find models that relax the requirement of
continuous searcher trajectories in [6–8]. These papers optimize a time-varying allo-
cation of search effort across an area of interest without concern for the difficulty
a real-world searcher may face in implementing this optimized plan. For a dis-
cussion of search in discrete time and space, we refer to [9,10] and references
therein.

In reality, targets may be intelligent and attempt to avoid or help the searchers,
which, if fully accounted for, may lead to a differential game [11]. However, the pres-
ence of uncertainty about the target’s characteristics, location, situational awareness,
and degree of rationality complicates the formulation of such games, and we opt,
as in [1–4], for a probabilistic formulation where targets follow conditionally deter-
ministic trajectories. However, this still allows for the modeling of some elements of
“intelligent” target behavior.

Studies of search-trajectory optimization problems and related problems focus
on the development of necessary optimality conditions (see, e.g., [2,12–15]) in
the tradition of Pontryagin and sufficient conditions for optimality (see, e.g.,
[5,16]) in the tradition of Hamilton, Jacobi, and Bellman. It is generally chal-
lenging determining search trajectories by solving these conditions directly. How-
ever, numerical approaches are proposed in [3,5,17–20]. Other studies on tra-
jectory optimization problems have used direct methods, including direct collo-
cation and direct shooting methods. For a survey of these methods, we refer

1 The target model in the US Coast Guard’s decision aid CASP is of this kind.
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to [21], while [22] considers direct collocation and [23] describes direct shoot-
ing.

We adopt a direct method for the solution of the parameter-distributed optimal
control model and discretize time as well as parameter space to obtain a nonlinear
program. With the exception of the recent efforts [1,15,24], we find no other attempt
at solving search-trajectory optimization problems in thismanner.We go beyond paper
[1], which focuses on modeling of a special target operating in a channel, and con-
sider multiple targets following more general conditionally deterministic trajectories.
In contrast to the exclusive focus on parameter-space discretization in [15,24], we
consider discretization of both time and parameter space.

We adopt an Euler discretization scheme for the solution of the ODEs governing
the searchers’ movement and the time integral in the objective function. Higher-order
methods such as Runge–Kutta [25,26] and pseudospectral [27,28] could also be con-
sidered, but the inclusion of both time and parameter discretization and the need to
consider stationary solutions add complications more easily overcome with an Euler
scheme. The objective function includes an integral over the parameter space, which
we handle using Simpson’s rule. We specifically deal with a two-dimensional para-
meter space, which is of particular interest in our naval application: The starting
location of the group of targets is an unknown (x, y) coordinate, or the starting time
and location along a coastal line are unknown. In principle, an analysis of higher-
dimensional parameter spaces follows similar arguments as those below. However,
high-dimensional integration adds to the computational burden and requires sparse-
grid and Monte Carlo methods beyond the scope of this paper; see, for example,
[29,30] for convergence of Monte Carlo approximations. We show that the discretiza-
tion schemes result in approximate nonlinear programs consistent in the sense of
Polak [31, Section 3.3]; see also “Appendix.” Consequently, optimal, as well as sta-
tionary points of the nonlinear programs, converge to corresponding points of the
parameter-distributed optimal control model, as the level of discretization tends to
infinity. Convergence of stationary solutions is particularly important for this non-
convex model, and in fact, we derive a convenient optimality condition for the
parameter-distributed optimal control model, which is closely related to the first-order
optimality conditions of the nonlinear programs. In our companion paper [32], we use
these results to develop an implementable, adaptive precision adjustment algorithm,
which ensures convergence to stationary points of the parameter-distributed optimal
control model.

The remainder of the paper is organized as follows. Section 2 defines the parameter-
distributed optimal control model. Section 3 gives our assumptions and optimality
conditions. Section 4 describes discretization schemes and shows consistency in the
sense of Polak. Finally, Sect. 5 provides our conclusions.

2 Model Formulation and Notation

We consider K searchers and L targets during a normalized planning horizon [0, 1].
The lth target’s state trajectory {yl(t;α) ∈ R

ny : 0 ≤ t ≤ 1} is conditional on a random
vector α, with probability density φ, which takes values in a compact set A ⊂ R

2.
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Consequently, given a realization α ∈ A, yl(·;α) is known.2 The target trajectories
may be the output from complicated simulations accounting for weather, intent, and
other factors. We could also augment α to include any number of discrete random
variables with only trivial changes in the development, but omit this extension here
for notational simplicity. The random vector α may represent uncertainty about the
targets’ initial locations, the time of their attack, their velocity, radar cross section, and
determination, as well as other factors. The distribution of α is established based on
intelligence and area analysis and may be rather “diffuse” in the absence of concrete
leads about the targets.

We seek to optimize the state trajectories {xk(t) ∈ R
nk : 0 ≤ t ≤ 1},

k = 1, 2, . . . , K , of the searchers with respect to an objective function described
next. We refer to xk(t) as the “physical state” of the kth searcher at time t . Since we
consider multiple searchers and targets, “probability of detection” becomes ambigu-
ous. In this paper, we adopt an objective function that gives the probability that all of
the searchers fail to detect any of the targets during the planning horizon. Alternative
formulations are also possible; see [33] for details.

The probability of detection of target l by searcher k depends on the corresponding
detection rate, which is denoted by rk,l :Rnk × R

ny → [0,∞[. Informally stated, the
detection rate is defined such that rk,l(xk, yl)Δt gives the probability that the kth
searcher in state xk ∈ R

nk detects the lth target in state yl ∈ R
ny during a small

time interval [t, t + Δt[. The states for the searchers and targets typically involve
their locations, headings, and velocities, but could also include other quantities that
influence the detection such as time of day. The detection rate reflects a searcher’s
effectiveness and often rk,l(xk, yl) decreases as the “distance” between xk and yl

increases. Given α ∈ A, {xk(t): 0 ≤ t ≤ 1}, {yl(t;α) : 0 ≤ t ≤ 1}, and t ∈ [0, 1], we
denote by qk,l(t;α) the probability that the kth searcher fails to detect the lth target
during [0, t]. Then, under the assumption that detection events in nonoverlapping time
intervals are independent, we find that3

qk,l(t + Δt;α) = qk,l(t;α)
(
1 −

(
rk,l(xk(t), yl(t;α))Δt + o(Δt)

))
,

with qk,l(0;α) = 1, which becomes the parameterized differential equation

q̇k,l(t;α) := d

dt
qk,l(t;α) = −qk,l(t;α)rk,l(xk(t), yl(t;α)), qk,l(0;α) = 1,

as Δt → 0, with solution

qk,l(t;α) = exp

(
−
∫ t

0
rk,l(xk(s), yl(s;α))ds

)
. (1)

2 We let α represent both the random vector and its realization, as the meaning should be clear from the
context.
3 Recall that, if a function f : R → R is o(x), then limx→0

f (x)
x = 0.
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We assume that the searchers make independent detection attempts and can simultane-
ously detect multiple targets. Then, it follows from (1) that the conditional probability
that no searcher detects any target during [0, 1], given α ∈ A, {xk(t): 0 ≤ t ≤ 1},
k = 1, 2, . . . , K , and {yl(t;α): 0 ≤ t ≤ 1}, l = 1, 2, . . . , L , is simply

K∏
k=1

L∏
l=1

qk,l(1;α) = exp

(
−
∫ 1

0

K∑
k=1

L∑
l=1

rk,l(xk(t), yl(t;α))dt

)
.

Then, the probability that all searchers fail to detect any targets during [0, 1] takes the
form ∫

A
exp

(
−
∫ 1

0

K∑
k=1

L∑
l=1

rk,l(xk(t), yl(t;α))dt

)
φ(α)dα. (2)

Although not discussed further here, (2) is easilymodified to account for the possibility
that a target may not exist with probability one.

With the objective function (2) in place, model formulation follows in a straight-
forward manner with the specification of searcher dynamics and control spaces. We
assume that the motion of the kth searcher is governed by the differential equation

ẋ k(t) = hk(xk(t), uk(t)), t ∈ [0, 1], xk(0) = ξ k, (3)

where hk :Rnk × R
mk → R

nk , ξ k ∈ R
nk is the initial condition and uk(t) ∈

R
mk is the control input for the kth searcher at t ∈ [0, 1]. Let n := ∑K

k=1 nk ,
m := ∑K

k=1 mk , ξ := ((ξ1)�, . . . , (ξ K )�)�, x(t) := (x1(t)�, . . . , x K (t)�)�,
u(t) := (u1(t)�, . . . , uK (t)�)�, and h(x(t), u(t)) := (h1(x1(t), u1(t))�, . . . , hK

(x K (t), uK (t))�)�. We handle time-varying systems by using standard transcriptions
of (3); see, for example, p. 493 in [31]. We carry out the analysis under the assumption
(formalized in Sect. 3) that (3) has a unique solution for all k = 1, 2, . . . , K . Given
η := (ξ, u), with ξ ∈ R

n being an initial condition and u : [0, 1] → R
m being the

control, we denote by xη,k that solution and let xη := ((xη,1)�, . . . , (xη,K )�)�.
We then arrive at the parameter-distributed optimal control model

P: min
η∈Hc

f (η),

where f :H → R, for any η ∈ H, is given by (2) with xk(t) replaced by xη,k(t).
Detailed definitions of the control spaces H and Hc are provided below. While not
dealt with in P , fixing the initial conditions or constraining them to a convex set
causes no complications, and the following analysis holds with minor changes. We
find it convenient analytically to work with P , which optimizes over initial condition
and control only, instead of an essentially equivalent model that optimizes over initial
condition, control, and state subject to the ODE constraints (3). Still, computational
solutions can be obtained from both a discretization of P and an augmented problem
with state variables and equality constraints.

As in [31, Chapts. 4 and 5], in order to establish continuity and differentiability of
solutions of (3) with respect to the control u, it is easiest to assume that the controls
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are in Lm∞[0, 1], the space of essentially bounded, measurable functions, from [0, 1]
into R

m . However, when we extend optimality functions from problems defined on
R

n , which is a Hilbert space, it is more natural to assume the controls are in Lm
2 [0, 1],

the space of Lebesgue square-integrable functions from [0, 1] into R
m . In order to

resolve these competing requirements, we conduct our analysis in a subspace of the
Hilbert space, where initial condition and control pairs are elements of the space
H2 := R

n × Lm
2 [0, 1]. For any η = (ξ, u) ∈ H2, with ξ ∈ R

n and u ∈ Lm
2 [0, 1],

and any η′ = (ξ ′, u′) ∈ H2, with ξ ′ ∈ R
n and u′ ∈ Lm

2 [0, 1], we define the inner
product and norm on H2, respectively, by 〈η, η′〉H2 := 〈ξ, ξ ′〉+〈u, u′〉2 and ‖η‖H2 :=
(‖ξ‖2 + ‖u‖22)1/2, where 〈·, ·〉2 and ‖ · ‖2 are the Lm

2 [0, 1] inner product and norm,
respectively. The only type of pointwise pure control constraint that we will examine
will be of the form u(t) ∈ Uc for all t ∈ [0, 1], whereUc ⊂ R

m is convex and compact.
This limits the control to a subset of Lm∞[0, 1]. We then define the subspace of H2,
which we will use to carry out our analysis, to be the pre-Hilbert space H∞,2 := R

n ×
Lm∞,2[0, 1], where Lm∞,2[0, 1] denotes the pre-Hilbert space with the same elements
as Lm∞[0, 1], but is equipped with 〈·, ·〉2 and ‖ · ‖2, the inner product and norm of
Lm
2 [0, 1]. Consequently, we optimize the initial condition and control pair η = (ξ, u)

over the feasible region

Hc := R
n × Uc ⊂ H∞,2, with Uc := {

u ∈ Lm∞,2[0, 1]: u(t) ∈ Uc, t ∈ [0, 1]} .

We avoid difficulties related to differentiability by ensuring that functions are well
defined on the slightly larger set

H := R
n × U, with U := {

u ∈ Lm∞,2[0, 1]: u(t) ∈ U, t ∈ [0, 1]} ,

with U ⊂ R
m being such that it strictly contains Uc.

We close this section with additional notation. Given t ∈ [0, 1], α ∈ A, and
{x(s): 0 ≤ s ≤ t}, let z(t;α) ∈ R be a parametric “information state” that represents
the cumulative detection rate up to time t ; i.e., z(·;α) is the solution of

ż(s;α) =
K∑

k=1

L∑
l=1

rk,l
(

xk(s), yl(s;α)
)

, s ∈ [0, t], z(0;α) = 0. (4)

Using tilde to denote a combination of the physical and information states, we obtain
for each α ∈ A the augmented system

˙̃z(t;α) := h̃(x(t), u(t);α), t ∈ [0, 1], (5)

in the augmented state

z̃(t;α) :=
(

x(t)
z(t;α)

)
∈ R

n+1
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with initial condition z̃(0;α) = ξ̃ := (ξ�, 0)� ∈ R
n+1 and

h̃(x(t), u(t);α) :=
(

h(x(t), u(t))∑K
k=1

∑L
l=1 rk,l(xk(t), yl(t;α))

)
.

We denote by z̃η(·;α) := ((xη)�, zη(·;α))� the solution of (5) for input η = (ξ, u) ∈
H (which we below ensure exists and is unique). In this notation, the inner integrand in
(2) simplifies to exp(−z(1;α)). Hence, with f̃ (·;α):H → R defined by f̃ (η;α) :=
exp(−zη(1;α)), we obtain the objective function

f (η) =
∫

A
f̃ (η;α)φ(α)dα. (6)

3 Assumptions and Optimality Conditions

We aim to construct a discretized approximation in both time and parameter spacewith
the property that if we obtain a stationary point for the approximating problem and
the discretization is refined, then the stationary point for the approximating problem
converges to a stationary point of the original problem P . One approach could have
been to develop a Pontryagin-type condition for the problem and then examine the
relationship between the KKT conditions of the discretized problem as the discretiza-
tion is refined to the Pontryagin condition on the original problem. This seems to be
a difficult approach, particularly in developing consistency results. For steps in this
direction, we refer to [15,24]. Instead, we develop a new optimality condition that
is easier to relate to standard nonlinear programming optimality conditions. Previ-
ous optimality conditions for search-trajectory optimization problems in the literature
(see, e.g., [2,5]) appear incompatible with first-order optimality conditions for non-
linear programs obtained by discretization of such problems. Hence, we are unable to
develop consistent approximations in the sense of Polak (see “Appendix”) using con-
ditions from the literature. We develop this new optimality condition for the limiting
case of the discretized problem, which is in the spirit of Polak [31, Chapts. 4 and 5].
We develop a necessary optimality condition for P based on the Gâteaux differential
of f , which as we show in the subsequent section relates to a necessary optimality
condition for a discretized version of P .

We first impose assumptions that ensure existence, uniqueness, and differentiability
of the solution of (5), and that f is well defined and differentiable. Here, we let hk

x
denote the nk × nk matrix function of partial derivatives with element (i, j) given
by ∂hk

i /∂xk
j , and let hk

u denote the nk × mk matrix function of partial derivatives

with element (i, j) given by ∂hk
i /∂uk

j . Moreover, let h̃x (x(t), u(t);α) be the (n +
1) × n block-diagonal matrix with h1

x (x1(t), u1(t))�, …, hK
x (x K (t), uK (t))� along

its main diagonal and
∑K

k=1
∑L

l=1 ∇xrk,l(xk(t), yl(t;α))� as its final row, and let
h̃u(x(t), u(t);α) be the (n + 1) × m block-diagonal matrix with h1

u(x1(t), u1(t))�,
…, hK

u (x K (t), uK (t))� along its main diagonal and 0 as its final row. For any matrix
M, we let ‖M‖ := max‖v‖=1 ‖Mv‖.
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Assumption 3.1 For all k = 1, 2, . . . , K and l = 1, 2, . . . , L ,

(i) hk , rk,l , φ, and yl are continuously differentiable and
(ii) there exists C ∈ [1,∞[ such that, for all x ′, x ′′ ∈ R

n , v′, v′′ ∈ U , and α ∈ A,

‖h̃(x ′, v′;α) − h̃(x ′′, v′′;α)‖ ≤ C
[‖x ′ − x ′′‖ + ‖v′ − v′′‖] ,

‖h̃x (x ′, v′;α) − h̃x (x ′′, v′′;α)‖ ≤ C
[‖x ′ − x ′′‖ + ‖v′ − v′′‖] ,

‖h̃u(x ′, v′;α) − h̃u(x ′′, v′′;α)‖ ≤ C
[‖x ′ − x ′′‖ + ‖v′ − v′′‖] . (7)

We note that (7) implies that there exists a C ′ < ∞ such that for all x ′ ∈ R
n , and

v ∈ U ,
‖h̃(x ′, v)‖ ≤ C ′ [‖x ′‖ + 1

]
. (8)

The assumptions about the detection rate function, rk,l(·, ·), in Assumption 3.1 are
not overly restrictive as they allow for the use of many types of sensor models and are
similar to those used in other studies (see, e.g., [1]). Assumption 3.1 includes standard
assumptions similar to those adopted in Assumption 5.6.2 in [31]. Assumption 3.1
(ii) guarantees a unique solution to the differential equations governing the searcher
dynamics given by (5). It suffices for Assumption 3.1 to hold on compact sets if the
state remains in a compact set. In Sect. 4, we impose further assumptions on the
detection rate function and attacker trajectories.

We next show that f is Gâteaux differentiable on Hc, and start with the following
intermediate result, that is deduced from results in [31, Chap. 5].

Lemma 3.1 Suppose that Assumption 3.1 holds. For any α ∈ A,

(i) f̃ (·;α) has a Gâteaux differential D f̃ (η;α; δη) at η ∈ Hc for all δη ∈ H∞,2,
which is given by

D f̃ (η;α; δη) =
〈
∇η f̃ (η;α), δη

〉
H2

,

where the gradient4 ∇η f̃ (η;α) := (∇ξ f̃ (η;α),∇u f̃ (η;α))� ∈ H∞,2 and

∇ξ f̃ (η;α) := pη(0;α), and ∇u f̃ (η;α)(t) := h̃u(xη(t), u(t);α)� pη(t;α),

t ∈ [0, 1], and pη(t;α) is the solution of the adjoint equation

ṗη(t;α) = −h̃x (xη(t), u(t);α)� pη(t;α), t ∈ [0, 1],
pη(1;α) = (

0, . . . , 0,− exp
(−zη(1;α)

))� ∈ R
n+1,

4 While Riesz representation theorem does not apply to the pre-Hilbert space H∞,2, as in [31, Chap. 5],
we here still obtain a gradient.
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(ii) f̃ (·;α) and ∇η f̃ (·;α) are Lipschitz H-continuous5 on bounded subsets of Hc with
Lipschitz constants

√
2CeC and eC ′

(exp(
√
2CeC )+C(

√
2CeC +1)), respectively,

where C is as in Assumption 3.1 and C ′ < ∞ is as in (8).

Proof Part (i) results from an application of Corollary 5.6.9 in [31]. For part (ii), we
deduce fromLemma 5.6.7 in [31] that zη(1;α) is LipschitzH-continuous as a function
of η with Lipschitz constant

√
2CeC . Since zη(1;α) ≥ 0 for all η ∈ Hc and α ∈ A,

it follows that f̃ (·;α) is Lipschitz H-continuous with Lipschitz constant
√
2CeC

because the magnitude of the slope of the exponential function with an argument in
the domain ] − ∞, 0] is bounded by one. The statement about the gradient follows
from an application of Corollary 5.6.9 and the proof of Lemma 5.6.7 in [31]. ��
Proposition 3.1 Suppose that Assumption 3.1 holds. Then, for any η ∈ Hc and
δη ∈ H∞,2, f has a Gâteaux differential D f (η; δη) = 〈∇ f (η), δη〉H2

at η, where the
gradient ∇ f (η) = (∇ξ f (η),∇u f (η))� ∈ H∞,2 is given by

∇ξ f (η) =
∫

A
∇ξ f̃ (η;α)φ(α)dα, and ∇u f (η)(t) =

∫

A
∇u f̃ (η;α)(t)φ(α)dα,

t ∈ [0, 1], and ∇ f :Hc → H∞,2 is Lipschitz H-continuous on bounded subsets of Hc.

Proof The expression for the gradient ∇ f (η) follows a standard application of the
dominated convergence theorem; see the proof of Proposition III.5 in [33].We consider
the Lipschitz result in more detail. Let η, η′ ∈ Hc be arbitrary. For any positive integer
M , wM

i ∈]0,∞[, and αi ∈ A, i = 1, 2, . . . , M , positive homogeneity, the triangle
inequality, and Lemma 3.1(ii) yield

∥∥∥∥∥
M∑

i=1

wM
i ∇η f̃ (η;αi ) −

M∑
i=1

wM
i ∇η f̃ (η′;αi )

∥∥∥∥∥
H2

≤
M∑

i=1

wM
i

∥∥∥∇η f̃ (η;αi ) − ∇η f̃ (η′;αi )

∥∥∥
H2

≤
M∑

i=1

wM
i eC ′ (

exp
(√

2CeC
)

+ C
(√

2CeC + 1
)) ∥∥η − η′∥∥

H2
. (9)

Since each component of ∇η f̃ (η;α) is continuously differentiable as a function of
α and those partial derivatives are bounded with a constant that holds for all α ∈ A
and all η in a bounded subset of Hc, numerical integration theory implies that for
appropriate choices of αi and wM

i , i = 1, . . . , M ,
∑M

i=1 wM
i is bounded and (9) tends

to ‖∇ f (η) − ∇ f (η′)‖H2 , as M → ∞. The conclusion then follows. ��

5 Since H∞,2 is not complete, questions of continuity must be handled with some care. As in [31, Sec-
tion 5.1], we say that a function f : H∞,2 → R is Lipschitz H-continuous iff there exists L < ∞ such
that | f (η) − f (η′)| ≤ L‖η − η′‖H2 for all η, η′ ∈ H. We adopt a similar definition for a function
f : H∞,2 → H∞,2.

123



J Optim Theory Appl (2016) 169:530–549 539

We state optimality conditions in terms of zeros of optimality functions (see Def-
inition 1 of “Appendix” and [31, Section 4.2]) and define the nonpositive optimality
function θ :Hc → R as

θ(η) := min
η′∈Hc

〈∇ f (η), η′ − η
〉
H2

+ 1

2

∥∥η′ − η
∥∥2

H2
.

This approach leads to the following optimality condition for P:

Proposition 3.2 Suppose that Assumption 3.1 is satisfied.

(i) θ is Hc-continuous.6

(ii) If η̂ ∈ Hc is a local minimizer of P, then θ(η̂) = 0.

Proof Results follow from same arguments in proof of Theorem 4.2.3 in [31]. ��

We note that θ is an extension, with a quadratic regularization term, of the clas-
sical optimality condition in finite dimensions that says if x∗ is a local minimizer
of a function f over X , where X is a nonempty and convex subset of Rn , then
minx∈X 〈∇ f (x∗), x − x∗〉 = 0.

4 Discretization and Consistency

In this section, we introduce discretization schemes that lead to a family of approxi-
mating problems. We show that these problems are consistent in the sense of Polak,
which we show in our companion paper [32] leads to an implementable algorithm
for P . We first deal with time discretization and follow closely the development in
Sections 4.3 and 5.6 of [31]. The development in this subsection leads to standard
results, but it is included here as a foundation for what follows. The second subsection
handles discretization of the parameter space.

4.1 Time Discretization

We let N denote the positive integers and N := {2 j }∞j=1. To begin our development,
we define an infinite set of finite-dimensional subspaces HN ⊂ H∞,2, whose union is
dense in H∞,2. For N ∈ N and j = 0, 1, . . . , N−1, let the functionsπN , j : [0, 1] → R

be defined by

πN , j (t) :=
⎧⎨
⎩

√
N ∀t ∈ [ j/N , ( j + 1)/N [, if j ≤ N − 2,√
N ∀t ∈ [ j/N , ( j + 1)/N ], if j = N − 1,

0, otherwise.
(10)

6 As in [31, Section 5.1], we say that a function f : H∞,2 → R is Hc-continuous at η ∈ Hc iff for every
{ηi }∞i=0, with ηi ∈ Hc for all i , such that ηi → η, as i → ∞, f (ηi ) → f (η), as i → ∞.
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We also define the subspace L N ⊂ Lm∞,2[0, 1], by

L N :=
⎧⎨
⎩u ∈ Lm∞,2[0, 1]: u(·) =

N−1∑
j=0

ū jπN , j (·), ū j ∈ R
m, j = 0, 1, . . . , N − 1

⎫⎬
⎭ ,

(11)
and let

HN := R
n × L N ⊂ H∞,2.

The functions πN , j (·) form a basis for L N and are defined such that the relation
between HN and the Euclidean space of coefficients used for numerical computation
is isometric. We use the function space HN for proofs of consistency of approxima-
tion, and the Euclidean space of coefficients to develop an implementable algorithm.
The definition of the Euclidean space of coefficients, H̄N , and presentation of the
implementable algorithm are provided in our companion paper [32]. We also define

HN := H ∩ HN and Hc,N := Hc ∩ HN .

From the definition ofN , we see that the subspaces {HN }N∈N have a desirable nested
structure; for any given N , N ′ ∈ N such that N ′ > N , HN ⊂ HN ′ .

We make use of Proposition 4.3.1 from [31], included here for completeness. We
use notation →N to indicate convergence of the subsequence defined by N .

Proposition 4.1 [31] Hc,N →N Hc, as N → ∞, where set convergence is in the
sense of Painlevé–Kuratowski.7

We now consider the approximate solution of (3) by means of forward Euler’s
method. For any η = (ξ, u) ∈ HN and N ∈ N , we set xη,k

N (0) = ξ k and

xη,k
N (( j + 1)/N ) − xη,k

N ( j/N ) = 1

N
hk
(

xη,k
N ( j/N ), uk( j/N )

)
(12)

for j =0, 1, . . . , N−1, k =1, 2, . . . , K . Furthermore, xη
N :=((xη,1

N )�, . . . , (xη,K
N )�)�.

Simultaneously, we approximately solve (4) also by forward Euler’s method. For any
η = (ξ, u) ∈ HN , α ∈ A, and N ∈ N , we set zη

N (0;α) = 0 and

zη
N (( j + 1)/N ;α)−zη

N ( j/N ;α) = 1

N

K∑
k=1

L∑
l=1

rk,l
(

xη,k
N ( j/N ), yl( j/N ;α)

)
(13)

for j = 0, 1, . . . , N − 1.

7 See, for example, Definition 5.3.6 in [31].
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Using the discretized “information state” given by the recursion (13), we define the
approximate objective functions fN :HN → R for any η ∈ HN and N ∈ N by

fN (η) :=
∫

α∈A
f̃N (η;α)φ(α)dα, (14)

where, for any α ∈ A, f̃N (·;α):Hc,N → R is defined by f̃N (η;α) :=
exp(−zη

N (1;α)).
For any N ∈ N , the approximating problem then takes the form

PN : min
η∈Hc,N

fN (η).

We find that fN (·) and f̃N (·;α), N ∈ N , are Gâteaux differentiable and that their
gradients are Lipschitz continuous, which follow in a manner similar to that of Lemma
3.1 and Proposition 3.1:

Lemma 4.1 Suppose that Assumption 3.1 is satisfied and that N ∈ N . For any α ∈ A,

(i) f̃N (·;α) has a Gâteaux differential D f̃N (η;α; δη) at η ∈ Hc,N for all δη ∈ HN ,
which is given by

D f̃N (η;α; δη) =
〈
∇η f̃N (η;α), δη

〉
H2

,

where the gradient ∇ f̃N (η;α) :=
(
∇ξ f̃N (η;α), ∇u f̃N (η;α)

)
∈ HN is

∇ξ f̃N (η;α) := pη
N (0;α), and ∇u f̃N (η;α)(t) :=

N−1∑
j=0

γ
η
N ( j/N ;α)πN , j (t),

t ∈ [0, 1], and

γ
η
N ( j/N ;α) = 1√

N
h̃u(xη

N ( j/N ), u( j/N );α)� pη
N (( j + 1)/N ;α),

j = 0, 1, ..., N − 1, with pη
N (·;α) determined by the adjoint equation

pη
N ( j/N ;α) − pη

N (( j + 1)/N ;α)

= 1

N
h̃x (xη

N ( j/N ), u( j/N );α)� pη
N (( j + 1)/N ;α),

j = 0, 1, . . . , N − 1,

pη
N (1;α) = (

0, . . . , 0,− exp
(−zη

N (1;α)
))� ∈ R

n+1.

(ii) f̃N (·;α) and ∇ f̃N (·;α) are Lipschitz H-continuous on bounded subsets of Hc,N .
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Proposition 4.2 Suppose that Assumption 3.1 is satisfied and N ∈ N . For
any η ∈ Hc,N and δη ∈ HN , fN has a Gâteaux differential D fN (η; δη) =
〈∇ fN (η), δη〉H2

, where the gradient ∇ fN (η) := (∇ξ fN (η),∇u fN (η))� ∈ HN is
given by

∇ξ fN (η) :=
∫

A
∇ξ f̃N (η;α)φ(α)dα,

∇u fN (η)(t) :=
∫

A
∇u f̃N (η;α)(t)φ(α)dα, t ∈ [0, 1]

and ∇ fN :Hc,N → HN is Lipschitz H-continuous on bounded subsets of Hc,N .

As in Sect. 3, we state an optimality condition for PN in terms of zeros of an
optimality function. For any N ∈ N , we define the nonpositive optimality function
θN :Hc,N → R by

θN (η) := min
η′∈Hc,N

〈∇ fN (η), η′ − η
〉
H2

+ 1

2

∥∥η′ − η
∥∥2

H2
,

which characterizes stationary points of PN as follows, where the proof is omitted due
to its similarity to that of Proposition 3.2.

Proposition 4.3 Suppose that Assumption 3.1 is satisfied.

(i) θN is Hc,N -continuous.
(ii) If η̂ ∈ Hc,N is a local minimizer of PN , then θN (η̂) = 0.

Using an approach similar to that found in Section 3.3 of [31], we next show that
the pairs (PN , θN ) in the sequence {(PN , θN )}N∈N are consistent approximations
in the sense of Polak; see Definition 2 of “Appendix.” We begin with the following
intermediate result, whose proof can be found in [33].

Proposition 4.4 Suppose that Assumption 3.1 is satisfied. For every bounded subset
S ⊂ Hc, there exist constants C S

0 , K S
0 < ∞ such that for every η ∈ S ∩ HN , and

N ∈ N ,

| fN (η) − f (η)| ≤ C S
0

N
, and ‖∇ fN (η) − ∇ f (η)‖H2

≤ K S
0

N
. (15)

We are now ready to state the consistency of the time discretization scheme.

Theorem 4.1 Suppose that Assumption 3.1 is satisfied. Then, the pairs (PN , θN ), in
the sequence {(PN , θN )}N∈N are consistent approximations for the pair (P, θ).

Proof Epiconvergence of PN to P , as N → ∞, follows straightforwardly from the
uniform error bound (15). Next, suppose that {ηN }N∈N is such that ηN ∈ Hc,N ,
for all N ∈ N , and ηN →N η ∈ Hc, as N → ∞. By the uniform error bound
(15), ∇ fN (ηN ) →N ∇ f (η), as N → ∞, and consequently, θN (ηN ) →N θ(η), as
N → ∞. These two facts satisfy the requirements of Definition 2 (see “Appendix”)
for consistency of approximation. ��
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4.2 Time and Parameter Discretization

We next consider both time and parameter discretization. Since A ⊂ R
2, we adopt the

two-dimensional discretization parameter M = (M1, M2)
� ∈ N×N. We also define a

numerical integration scheme, I k
M , for a function Ψ : A → R

k , with Ψ ∈ C p(A,Rk),
where C p(A,Rk) is the collection of p-times continuously differentiable functions
from A to Rk . We view I k

M as a mapping from C p(A,Rk) to Rk defined by

I k
M (Ψ ) :=

M1∑
i=1

M2∑
j=1

Wi jΨ (αi j ),

for any Ψ ∈ C p(A,Rk), where Wi j ∈ R, i = 1, 2, . . . , M1, j = 1, 2, . . . , M2, are
weights and αi j ∈ A are discretization points.

We define the approximate problem

PN M : min
η∈Hc,N

fN M (η), where fN M (η) := I 1M
(
exp

[−zη
N (1; ·)]φ(·)) .

We proceed as in Section 4.1 by stating properties of fN M . The first result is
analogous to that in Proposition 3.1 and the proof is omitted.

Proposition 4.5 Suppose that Assumption 3.1 is satisfied, N ∈ N , and M ∈ N × N.
For any η ∈ Hc,N and δη ∈ H∞,2, fN M has a Gâteaux differential

D fN M (η; δη) = 〈∇ fN M (η), δη〉H2
,

where the gradient

∇ fN M (η) := (∇ξ fN M (η),∇u fN M (η))� ∈ H∞,2

is given by

∇ξ fN M (η) := I n+1
M (∇ξ f̃N (η; ·)φ(·)),

∇u fN M (η)(t) := I m
M (∇u f̃N (η; ·)(t)φ(·)), t ∈ [0, 1]

and ∇ fN M :Hc,N → HN is Lipschitz H-continuous on bounded subsets of Hc,N .

Numerical integration errors are method dependent, and we assume A is rectangu-
lar and I k

M is given by two-dimensional composite Simpson’s rule. We strengthen the
assumption about smoothness with respect to α to allow for integration error quantifi-
cation. An analogous development can be carried out in other cases.

Assumption 4.1 We assume that

(i) A = {
(α1, α2) ∈ R

2 : αl
1 ≤ α1 ≤ αu

1 , α
l
2 ≤ α2 ≤ αu

2

}
for scalars αl

1 < αu
1 and

αl
2 < αu

2 ,
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(ii) Composite Simpson’s rule is used for numerical integration across A, and
(iii) the functions φ, yl(t; ·), rk,l(xk, ·), and ∇xrk,l(xk, ·) are four times continuously

differentiable on A for all t ∈ [0, 1], xk ∈ R
nk , k = 1, 2, . . . , K , and l =

1, 2, . . . , L .

To quantify the discretization error, we start by showing that the partial derivatives
of f̃N (η; ·)φ(·) and ∇η f̃N (η; ·)φ(·) are four times continuously differentiable and
uniformly bounded for anyα ∈ A, N ∈ N , andη in a bounded subset ofHc,N .Weneed
the following notation. For any η ∈ Hc,N , α ∈ A, N ∈ N , and j = 0, 1, . . . , N − 1,
we define

ζ1(α) := exp

⎡
⎣−

N−1∑
j=0

1

N

K∑
k=1

L∑
l=1

rk,l
(

xη,k
N

(
j

N

)
, yl

(
j

N
;α

))⎤
⎦ ,

ζ2(α) := φ(α), ζ3(α) := pη
N (0;α), and ζ4(α) := pη

N

(
j + 1

N
;α

)
. (16)

Wenote that ζ1 and ζ3 dependonη and N , and ζ4 also on j , even though this dependence
is not explicit in the notation. We omit the proof of next result, as it is found in Lemma
III.25 of [33].

Lemma 4.2 Suppose that Assumptions 3.1 and 4.1 are satisfied and S is a bounded
subset of Hc,N . Then,

(i) ζi (·), i = 1, 2, 3, 4, are four times continuously differentiable and
(ii) there exists C0 < ∞, such that, for all η ∈ S, j = 0, 1, . . . , N − 1, α ∈ A, and

N ∈ N ,

max

{∣∣∣∣∣
∂4ζi (α)

∂α4
1

∣∣∣∣∣ ,
∣∣∣∣∣
∂4ζi (α)

∂α4
2

∣∣∣∣∣

}
≤ C0, i = 1, 2, 3, 4.

We are now in a position to state approximation error bounds after both time and
space discretization, where N3 denotes the odd integers no smaller than 3.

Proposition 4.6 Suppose that Assumptions 3.1 and 4.1 are satisfied. Then, for every
bounded subset S ⊂ Hc, there exist constants C S

1 , C S
2 , K S

1 , K S
2 < ∞ such that, for

any N ∈ N , M ∈ N3 × N3 and η ∈ S ∩ HN ,

(i)

| f (η) − fN M (η)| ≤ C S
0

N
+ C S

1

(M1 − 1)4
+ C S

2

(M2 − 1)4
(17)

and
(ii)

‖∇ f (η) − ∇ fN M (η)‖H2 ≤ K S
0

N
+ K S

1

(M1 − 1)4
+ K S

2

(M2 − 1)4
, (18)

where C S
0 and K S

0 are as in Proposition 4.4.
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Proof We first consider (17). In view of Proposition 4.4 and the fact that

| f (η) − fN M (η)| ≤ | f (η) − fN (η)| + | fN (η) − fN M (η)| , (19)

it suffices to consider the last term on the right-hand side in (19). Let

g(α) := ζ1(α)ζ2(α) = exp(−zη
N (1;α))φ(α)

be a short-hand notation for the integrand in (14). ByLemma4.2, g(·) is four times con-
tinuously differentiable and there exists a constant c < ∞ such that

∣∣∂4g(α)/∂α4
i

∣∣ ≤ c
for i = 1, 2, η ∈ S, α ∈ A, and N ∈ N , where we recall that g(α) depends on N and
η through the definition of ζ1(α). Then, under Assumption 4.1, standard integration
error analysis gives that

∣∣∣∣I 1M (g(·)) −
∫

α∈A
g(α)dα

∣∣∣∣

≤ (αu
2 − αl

2)(α
u
1 −αl

1)

180

[
(αu

1 − αl
1)

4

(M1−1)4
max
α∈A

∣∣∣∣∣
∂4g(α)

∂α4
1

∣∣∣∣∣+
(αu

2 − αl
2)

4

(M2 − 1)4
max
α∈A

∣∣∣∣∣
∂4g(α)

∂α4
2

∣∣∣∣∣

]

≤ (αu
2 − αl

2)(α
u
1 − αl

1)

180

[
(αu

1 − αl
1)

4

(M1 − 1)4
c + (αu

2 − αl
2)

4

(M2 − 1)4
c

]
. (20)

Consequently, (17) holds withC S
1 = c(αu

2 −αl
2)(α

u
1 −αl

1)
5/180 and C S

2 = c(αu
1 −αl

1)

(αu
2 − αl

2)
5/180.

Second, we consider (18) in a similar manner. Since Proposition 4.4 holds and

‖∇ f (η)−∇ fN M (η)‖H2 ≤ ‖∇ f (η)−∇ fN (η)‖H2+‖∇ fN (η)−∇ fN M (η)‖H2 , (21)

we only need to consider the last term on the right-hand side of this expression. For
the sake of notational simplicity, let G(α) := (Gξ (α), Gu(α)), where

Gξ (α) := ∇ξ f̃N (η;α)φ(α) = pη
N (0;α)φ(α) = ζ3(α)ζ2(α),

and for t ∈ [0, 1],

Gu(α)(t) := ∇u f̃N (η;α)(t)φ(α) =
⎡
⎣

N−1∑
j=0

γ
η
N

(
j

N
;α

)
πN , j (t)

⎤
⎦φ(α)

=
N−1∑
j=0

⎛
⎜⎜⎜⎜⎜⎝

h1
u

(
xη

N

(
j

N

)
, u
(

j
N

))

...

hK
u

(
xη

N

(
j

N

)
, u
(

j
N

))

0

⎞
⎟⎟⎟⎟⎟⎠

�

πN , j (t)ζ4(α)ζ2(α).
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Clearly, G(α) equates the integrand in Proposition 4.2; see Lemma 4.1 and the defi-
nitions given in (16). The vector Gξ (α) has n + 1 components, which we denote by
Gξ j (α), j = 1, 2, . . . , n + 1. In view of Lemma 4.2, we find that Gξ (·) and Gu(·)(t)
are four times continuously differentiable and there exists a constant c′ < ∞ such that

max

{
sup

t∈[0,1]

∣∣∣∣∣
∂4Gu(α)(t)

∂α4
i

∣∣∣∣∣ , max
j=1,2,...,n+1

∣∣∣∣∣
∂4Gξ j (α)

∂α4
i

∣∣∣∣∣

}
≤ c′ (22)

for i = 1, 2, η ∈ S, α ∈ A, and N ∈ N . In view of this fact, standard integration error
analysis gives that

∥∥∥∥I n+1
M (Gξ (·)) −

∫

α∈A
Gξ (α)dα

∥∥∥∥∞

≤ (αu
2 − αl

2)(α
u
1 − αl

1)

180

[
(αu

1 − αl
1)

4

(M1 − 1)4
c′ + (αu

2 − αl
2)

4

(M2 − 1)4
c′
]

(23)

and, similarly, for all t ∈ [0, 1],
∥∥∥∥I m

M (Gu(·)(t)) −
∫

α∈A
Gu(α)(t)dα

∥∥∥∥∞
(24)

is bounded by the same expression. Using the properties of the H2-norm, we find
that (18) holds with K S

1 = √
n + 1 + mc′(αu

2 − αl
2)(α

u
1 − αl

1)
5/180 and K S

2 =√
n + 1 + mc′(αu

1 − αl
1)(α

u
2 − αl

2)
5/180. ��

As above, we define a nonpositive optimality function θN M :Hc,N → R by

θN M (η) := min
η′∈Hc,N

〈∇ fN M (η), η′ − η
〉
H2

+ 1

2

∥∥η′ − η
∥∥2

H2
, (25)

which characterizes stationary points of PN M , as stated next, where we again omit the
proof.

Proposition 4.7 Suppose that Assumptions 3.1 and 4.1 are satisfied.

(i) θN M (·) is an Hc,N -continuous function.
(ii) If η̂ ∈ Hc,N is a local minimizer of PN M , then θN M (η̂) = 0.

Since consistency of approximation is defined only for a single-parameter fam-
ily of approximating problems (see Definition 2 in “Appendix”), we link the space
discretization parameter M to the time discretization parameter N . For i = 1, 2, let
Mi : N → N be such that Mi (N ) → ∞, as N → ∞, and M(N ) ∈ N3 × N3. We
conclude this section by stating the main result of consistency, but omit the proof as,
in view of Proposition 4.6, it follows easily as in Theorem 4.1.

Theorem 4.2 Suppose that Assumptions 3.1 and 4.1 are satisfied. Then, the pairs
(PN M(N ), θN M(N )), in the sequence {(PN M(N ), θN M(N ))}N∈N , are consistent approx-
imations for the pair (P, θ).
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The consistency results of Theorem 4.2 ensure that global minimizers, local mini-
mizers, and stationary points of the discretized problems PN M(N ) converge to global
minimizers, local minimizers, and stationary points, respectively, of the original
parameter-distributed optimal control model P as the level of discretization tends
to infinity. Because the original model is nonconvex, it is especially important to have
convergence of stationary solutions.

5 Conclusions

We formulate a search-trajectory optimization problem, with multiple searchers look-
ing for multiple targets in continuous time and space, as a parameter-distributed
optimal control model. We construct discretization schemes to solve these contin-
uous time-and-space problems, and prove that they are consistent approximations in
the sense of E. Polak. Our theoretical development and proofs of consistency are use-
ful, if not essential, for algorithm development. In particular, Theorem 4.2 can be
used to develop an implementable algorithm that automatically adjusts the time and
space discretization parameters, as described in our companion paper [32]. In addition,
Proposition 4.6 provides error bounds that can be used in subsequent algorithms to
provide guidance for stopping criteria.

Acknowledgments The second and third authors were partially supported by ONR MURI “Science of
Autonomy.”

Appendix: Optimality Functions and Consistent Approximations

For the sake of completeness, we briefly define optimality functions and consistent
approximations in the sense of Polak; see Section 3.3.1 in [31]. Let B be a normed
linear space, with norm ‖ · ‖B, and let R̄ := R ∪ {−∞,+∞}. We then define the
problem

P: min
x∈X

f (x), (26)

where f :B → R̄ is lower semi-continuous and X ⊂ B is a constraint set. Let N be
an ordered infinite subset of the positive integers. Then, let {BN }N∈N be a family of
finite-dimensional subspaces of B such that BN1 ⊂ BN2 , for all N1 < N2 ∈ N , and
∪N∈NBN is dense in B. For all N ∈ N, let fN :BN → R̄ be a lower semi-continuous
function that approximates f on BN , and let X N ⊂ BN be an approximation to X .
For all N ∈ N , we define the family of approximating problems

PN : min
x∈X N

fN (x). (27)

We now state the definitions of optimality functions and consistent approximations.

Definition 1 Suppose that S is a subset of B such that X ⊂ S. We will say that a
function θ : S → R is an optimality function for P iff

(i) θ(·) is sequentially upper semi-continuous,
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(ii) θ(x) ≤ 0 for all x ∈ S, and
(iii) if x̂ is a local minimizer of P , then θ(x̂) = 0.

Similarly, for all N ∈ N , let SN be a subset of BN ∩ S such that X N ⊂ SN ⊂ S. We
will say that a function θN : SN → R is an optimality function for PN iff

(i) θN (·) is sequentially upper semi-continuous,
(ii) θN (x) ≤ 0 for all x ∈ SN , and
(iii) if x̂N is a local minimizer of PN , then θN (x̂N ) = 0.

Definition 2 Suppose that S is a subset of B such that X ⊂ S and X N ⊂ S for
all N ∈ N . Moreover, for all N ∈ N , let SN be a subset of S ∩ BN such that
X N ⊂ SN ⊂ S. Also, let θ : S → R and θN : SN → R, N ∈ N , be optimality
functions for P and PN , respectively. We say that the pairs (PN , θa

N ), in the sequence
{(PN , θa

N )}N∈N , are consistent approximations for the pair (P, θa) iff

(i) PN epiconverges to P , as N → ∞, and
(ii) for any infinite sequence {xN }N∈K , K ⊂ N , with xN ∈ SN for all N ∈ K , such

that xN → x , as N → ∞, lim supN→∞ θa
N (xN ) ≤ θa(x).
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