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Abstract In the present paper, we investigate stability of solutions of Hamilton–
Jacobi–Bellman equations under state constraints by studying stability of value
functions of a suitable family of Bolza optimal control problems under state
constraints. The stability is guaranteed by the classical assumptions imposed onHamil-
tonians and an inward-pointing condition on state constraints.
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1 Introduction

In the optimal control theory, very often we deal with partial differential equations
called Hamilton–Jacobi–Bellman equations. In the literature, there are several con-
cepts of the generalised solutions of Hamilton–Jacobi equations. In order to deal
with continuous solutions of the Hamilton–Jacobi–Bellman equation, the notion of
viscosity solution was introduced; see, e.g. Crandall and Lions [1] for the defini-
tion of viscosity solution. This paper concerns first-order Hamilton–Jacobi equations
with convex Hamiltonian under state constraints and investigates robustness of the
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viscosity solutions with respect to perturbations of the Hamiltonian and the con-
straints. We establish stability of solutions of Hamilton–Jacobi–Bellman equations
under state constraints by investigating stability of value functions of a suitable fam-
ily of Bolza optimal control problems under state constraints. It is well known that,
in the absence of state constraints, the value function of the Bolza problem satis-
fies the Hamilton–Jacobi–Bellman equation in a generalised sense. Namely, under
some technical assumptions, the value function is a unique viscosity solution of the
Hamilton–Jacobi equation. For the case with no state constraints, there is large lit-
erature, where under appropriate assumptions it is proved that the value function is
the unique viscosity solution of Hamilton–Jacobi–Bellman equation; see, e.g. [2,3].
Several papers were devoted to Hamilton–Jacobi–Bellman equations under state con-
straints; see, e.g. [4,5]. The uniqueness of solution of Hamilton–Jacobi–Bellman
equation was proved by different authors under the hypotheses, which include the
so-called inward-pointing condition (IPC). The existence of solutions is known under
hypotheses that include an inward-pointing condition, in the literature dealing with
discontinuous value functions; see, e.g. Crandall-Lions [1], an outward-pointing con-
dition is imposed instead. Soner [6] has considered inward-pointing condition for the
constraint set having a smooth boundary and investigated the infinite horizon optimal
control problem. The inward-pointing condition is an important property in investi-
gation of uniqueness of solutions to Hamilton–Jacobi–Bellman equation under state
constraints, because it allows to approximate (in the sense of uniform convergence)
feasible trajectories by trajectories staying in the interior of the constraint set; see, for
example [7–9] for the most recent neighbouring feasible trajectories (NFT) theorems
concerning such approximations. In order to investigate the discontinuous solutions to
Hamilton–Jacobi–Bellman equation, Ishii and Koike [10] have expressed the inward-
pointing condition using “inward” trajectories of a control system, which is not simple
to verify. In general, the value function of the Bolza optimal control problem may be
not continuous (even if all data are smooth). Frankowska and Plaskacz [11] have
proved the uniqueness results for Hamilton–Jacobi–Bellman equation by extending
the inward-pointing condition to constraints having nonsmooth boundary.

In the present paper, we investigate stability of solutions of Hamilton–Jacobi–
Bellman equations by investigating stability of value functions of Bolza problems.
The stability is guaranteed by the classical assumptions imposed on Hamiltonians and
an inward-pointing condition on state constraints. We show that, under appropriate
assumptions, the value function is a unique viscosity solution to Hamilton–Jacobi–
Bellman equation. This allows us to conclude that solutions are stable with respect
to Hamiltonians and state constraints. The novelty of this paper is that it establishes
stability of solutions of the Hamilton–Jacobi equations under more general condi-
tions that those required to obtain stability from known results. The stability analysis
arises in various engineering applications, in which the perturbations correspond to
the difference between idealised models and the real world. Nevertheless, we do not
investigate such applications in the present paper.

The outline of the paper is as follows: In Sect. 2, we recall some notions and
introduce some notations. In Sect. 3, we investigate the stability of value functions of
Bolza problems. In Sect. 4, we associate with a Hamilton–Jacobi–Bellman equation
(with the Hamiltonian convex in the last variable) a Bolza optimal control problem. In
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Sect. 5, we prove the uniqueness of solutions of Hamilton–Jacobi–Bellman equation
and their continuous dependence on data.

2 Preliminaries and Notations

The notation B(x0, R) stands for the closed ball in R
n of centre x0 ∈ R

n and radius
R ≥ 0 and RB := B(0, R), B := B(0, 1). We denote by 〈p, v〉 the scalar product
of p, v ∈ R

n and by |x | the Euclidean norm. For a bounded function f : � → R,
we define ‖ f ‖∞ := sup { | f (x)| : x ∈ � }. For a set X ⊂ R

n , denote by conv(X) its
convex hull. For an extended real-valued function f : Rn → R∪ {±∞}, f |K stands
for the restriction of f to K . Let A be a metric space with the distance d and X be a
subset of A. The distance from x ∈ A to X is defined by

d(x, X) := inf
y∈X d(x, y),

where we have set d(x,∅) = +∞. We denote by ∂X the boundary of X.
Let {Xi }i≥1 be a family of subsets of A. The subset

Limsupi→∞Xi : = {x ∈ A : lim inf
i→∞ d(x, Xi ) = 0}

= {x ∈ A : for every open neighbourhood U of x,

U ∩ Xi 
= ∅ for infinitelymany i},

is called the upper limit of the sequence Xi , and the subset

Limin fi→∞Xi : = {x ∈ A : lim sup
i→∞

d(x, Xi ) = 0}
= {x ∈ A : for every open neighbourhood U of x,

U ∩ Xi 
= ∅ for all large enough i},

is called its lower limit. A subset X is said to be the (Kuratowski) set limit of the
sequence Xi iff

X = Limin fi→∞Xi = Limsupi→∞Xi =: Limi→∞Xi .

For arbitrary subsets X,Y of Rn , the extended Hausdorff distance between X and Y
is defined by

Haus(X, Y ) := max{sup
x∈X

d(x,Y ), sup
x∈Y

d(x, X)} ∈ R ∪ {+∞},

which may be equal to +∞ when X or Y is unbounded or empty.
It is well known that, if Xi are subsets of a given compact set, then

X = Limi→∞Xi ⇔ lim
i→∞Haus(Xi , X) = 0.
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Let T > 0, F(·, ·) : [0, T ]×R
n ⇒ R

n be amultifunction with compact and nonempty
values. Consider t0 ∈ [0, T [ and the following differential inclusion

ẋ(t) ∈ F(t, x(t)), a.e. t ∈ [t0, T ]. (1)

Solutions to differential inclusion (1) are understood in the Carathéodory sense,
i.e. absolutely continuous functions verifying (1) almost everywhere. We denote by
S̄[t0,T ](x0) the set of absolutely continuous solutions x(·) of (1), defined on [t0, T ] and
satisfying the initial condition x(t0) = x0. Let K ⊂ R

n be a closed and nonempty set.
Consider the following state constrained differential inclusion

ẋ(t) ∈ F(t, x(t)), a.e. t ∈ [t0, T ],
x(t) ∈ K , ∀t ∈ [t0, T ]. (2)

The very proof of Theorem 2.3, [8] implies the following result, the so-called neigh-
bouring feasible trajectories (NFT) theorem, stated in a slightly different way than
Theorem 2.3, [8].

Theorem 2.1 (NFT) Let r0 > 0. Assume that for some positive constant c > 0 and
for R = ecT (r0 + 1), the following hypotheses hold true

1. maxv∈F(t,x) |v| ≤ c(1 + |x |), for any x ∈ R
n and for t ∈ [0, T ].

2. There exists cR(·) ∈ L1(0, T ) such that, for all x, x ′ ∈ RB and a.e. t ∈ [0, T ],

F(t, x ′) ⊂ F(t, x) + cR(t)|x − x ′|B.

3. (IPC) Inward-pointing condition.
There exist ε > 0, η > 0 such that, for any (t, x) ∈ [0, T ]×(∂K +ηB)∩RB∩K,
we can find v ∈ coF(t, x) satisfying x ′ + [0, ε](v + εB) ⊂ K , for all x ′ ∈
(x + εB) ∩ K .

4. For an absolutely continuous function aR : [0, T ] → R and for any x ∈ K ∩ RB
and 0 ≤ s < t ≤ T ,

F(s, x) ⊂ F(t, x) +
∫ t

s
aR(τ )dτ B.

Then, there exists C > 0 depending only on ε, η, c, cR(·) and aR(·) such that, for
any t0 ∈ [0, T [ and any solution x̂(·) of (1), with x̂(t0) ∈ K ∩ (ect0(r0 +1)−1)B,
we can find a solution x(·) of (2) satisfying x(t0) = x̂(t0), x(t) ∈ int K for all
t ∈]t0, T ] and

|x̂(·) − x(·)|C([t0,T ],Rn) ≤ C max
t∈[t0,T ] dist(x̂(t), K ).

Definition 2.1 Let i ≥ 1 and Ki ⊂ R
n be closed and nonempty sets. For T > 0

consider Vi : [0, T ] × Ki → R. We say that Vi are equicontinuous uniformly in i , iff
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for any ε > 0, there exists δ > 0, such that for any i and any x, y ∈ Ki , t, s ∈ [0, T ]
with |x − y| + |t − s| ≤ δ,

|Vi (t, x) − Vi (s, y)| ≤ ε.

Definition 2.2 Let φ : Rn → R ∪ {±∞}.
1. Dom(φ) is the set of all x0 ∈ R

n , such that φ(x0) 
= ±∞.
2. The epigraph of φ is defined by epi(φ) := {(x, a) : x ∈ R

n, a ∈ R, a ≥ φ(x)}.
The hypograph of φ is defined by hyp(φ) := {(x, a) : x ∈ R

n, a ∈ R, a ≤ φ(x)}.
3. The subdifferential of φ at x0 ∈ Dom(φ) is defined by

∂−φ(x0) :=
{
p ∈ R

n : lim inf
x→x0

φ(x) − φ(x0) − 〈p, x − x0〉
|x − x0| ≥ 0

}
.

The superdifferential of φ at x0 ∈ Dom(φ) is defined by

∂+φ(x0) :=
{
p ∈ R

n : lim sup
x→x0

φ(x) − φ(x0) − 〈p, x − x0〉
|x − x0| ≤ 0

}
.

4. The contingent epiderivative of φ at x0 ∈ Dom(φ) in the direction u ∈ R
n is

defined by

D↑φ(x0)(u) := lim inf
h→0+,v→u

φ(x0 + hv) − φ(x0)

h
.

The contingent hypoderivative of φ at x0 ∈ Dom(φ) in the direction u ∈ R
n is

defined by

D↓φ(x0)(u) := lim sup
h→0+,v→u

φ(x0 + hv) − φ(x0)

h
.

Definition 2.3 Let X ⊂ R
n . We call d ∈ R

n a tangent direction (in the sense of
Bouligand) to X at point x ∈ X , iff there exist sequences {xk}k∈N and {tk}k∈N such
that

{xk} ⊂ X, tk ↓ 0,
xk − x

tk
→ d.

The set of tangent directions to X at x is called a tangent cone (in the sense of
Bouligand) for X at x and is denoted by TX (x).

Definition 2.4 We define a normal cone (in the sense of Bouligand) to a set X ⊂ R
n

at point x ∈ X by NX (x) := {p ∈ R
n : 〈p, v〉 ≤ 0,∀v ∈ TX (x)}.

Lemma 2.1 Let K be a closed set in R
n and F : K ⇒ R

n be lower semicontinuous
with closed images. Then, the following are equivalent
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(i) F(x) ⊂ TK (x), for any x ∈ K.
(ii) F(x) ⊂ cl(conv(TK (x))), for any x ∈ K .

Proof (i) ⇒ (ii), is immediate.
(ii) ⇒ (i), from Theorem 4.1.10, [12], we deduce that

Limin fx→K x0F(x) ⊂ Limin fx→K x0cl(conv(TK (x))) ⊆ TK (x0),

where →K denotes the convergence in the set K . As F is lower semicontinuous,
F(x0) ⊂ Limin fx→x0F(x). This ends the proof. ��

Lemma 2.2 Let φ : Rn → R, x0 ∈ R
n. Then, p ∈ ∂−φ(x0) iff, for any v ∈ R

n,

D↑φ(x0)(v) ≥ 〈p, v〉,

and p ∈ ∂+φ(x0) iff, for any u ∈ R
n,

D↓φ(x0)(u) ≤ 〈p, u〉.

Proof We do not provide a proof, since in [3], the complete proof is provided. ��

3 Stability of the Value Functions of Bolza Problems

Let U be a compact metric space, K and Ki be nonempty and closed subsets of Rn

for i = 1, 2, . . ., controls u(·) be Lebesgue measurable maps on [0, T ] taking values
in U , where T > 0. Let y0 ∈ R

n and ϕ : Rn → R, ϕi : Rn → R be equicontinuous.
Consider continuous functions f : [0, T ]×R

n×U → R
n , fi : [0, T ]×R

n×U → R
n ,

l : [0, T ] ×R
n ×U → R, li : [0, T ] ×R

n ×U → R, i = 1, 2, . . . and the following
Bolza optimal control problems:

(P)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
∫ T
0 l(s, x(s), u(s)) ds + ϕ(x(T )),

ẋ(s) = f (s, x(s), u(s)), u(s) ∈ U a.e. in [0, T ],
x(0) = y0,

x(s) ∈ K , ∀s ∈ [0, T ].
(3)

(Pi )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
∫ T
0 li (s, x(s), u(s)) ds + ϕi (x(T )),

ẋ(s) = fi (s, x(s), u(s)), u(s) ∈ U a.e. in [0, T ],
x(0) = y0,

x(s) ∈ Ki , ∀s ∈ [0, T ].
(4)

We impose the following assumptions on f and l.
(A1) For any R > 0, there exist an integrable function cR : [0, T ] → R+ and an
absolutely continuous function aR : [0, T ] → R such that, for all t, s ∈ [0, T ],
x, y ∈ RB, u ∈ U ,
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| f (t, x, u) − f (t, y, u)| + |l(t, x, u) − l(t, y, u)| ≤ cR(t)|x − y|,
| f (t, x, u) − f (s, x, u)| + |l(t, x, u) − l(s, x, u)| ≤ |aR(t) − aR(s)|.

(A2) There exists a positive constant c > 0 such that | f (t, x, u)| ≤ c(1 + |x |) for all
(t, x, u) ∈ [0, T ] × R

n ×U .

For any (t0, y0) ∈ [0, T ]×R
n denote by S[t0,T ](y0) the set of all trajectory–control

pairs of the control system under state constraint

ẋ(s) = f (s, x(s), u(s)), u(s) ∈ U a.e. in [t0, T ],
x(t0) = y0,

x(s) ∈ K , ∀s ∈ [t0, T ], (5)

and by Si[t0,T ](y0) the set of all trajectory–control pairs of the following control system
under state constraint

ẋ(s) = fi (s, x(s), u(s)), u(s) ∈ U a.e. in [t0, T ],
x(t0) = y0,

x(s) ∈ Ki , ∀s ∈ [t0, T ]. (6)

For all (t0, y0) ∈ [0, T ] × R
n , the value function of the Bolza optimal control

problem (P) is defined by:

V (t0, y0) := inf

{∫ T

t0
l(s, x(s), u(s)) ds + ϕ(x(T )) : (x, u) ∈ S[t0,T ](y0)

}
. (7)

Similarly, for all (t0, y0) ∈ [0, T ]×R
n , the value function of the Bolza optimal control

problem (Pi ) is defined by:

Vi (t0, y0) := inf

{∫ T

t0
li (s, x(s), u(s)) ds + ϕi (x(T )) : (x, u) ∈ Si[t0,T ](y0)

}
. (8)

In the above, we set V (t0, y0) = +∞, if S[t0,T ](y0) = ∅ and, respectively, we set
Vi (t0, y0) = +∞, if Si[t0,T ](y0) = ∅.

We assume that the closed sets K and Ki are defined by the multiple inequality
constraints, namely let g j

i : Rn → R and g j : Rn → R, j = 1, . . . ,m, i = 1, 2, . . .
be given continuously differentiable functions satisfying
(A3) Regularity.

1. For any R > 0, there exists AR > 0 such that |∇g j
i (x)| ≤ AR for any x ∈ RB

and ∇g j
i is AR-Lipschitz on RB, i = 1, 2, . . ., j = 1, 2, . . . ,m.

2. ∇g j
i → ∇g j uniformly on compacts and g j

i (0) → g j (0), when i → ∞, for any
j = 1, . . . ,m.
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Consider closed sets

Ki :=
m⋂
j=1

{x : g j
i (x) ≤ 0}, (9)

K :=
m⋂
j=1

{x : g j (x) ≤ 0}. (10)

For any x ∈ R
n , let us now denote by I (x) the set of active indices at x , for g(·) =

(g1(·), . . . , gm(·)), i.e.

I (x) := { j : g j (x) = 0}.

(A4) Inward-pointing condition.
For any R > 0, there exists ρR > 0 such that, for every x ∈ K ∩ RB with I (x) 
= ∅

and every s ∈ [0, T ],

inf
v∈cof (s,x,U )

max
j∈I (x)〈∇g j (x), v〉 ≤ −ρR .

Lemma 3.1 Let K , Ki ⊂ R
n defined above be nonempty and (A2), (A3), (A4) hold

true. If fi converge to f uniformly on compacts, then for every R > 0, there exist ηR >

0, ε > 0, i0 ≥ 1 such that, for all i ≥ i0, t ∈ [0, T ] and x ∈ (∂Ki + ηR B) ∩ RB ∩ Ki

we can find vx,t ∈ cofi (t, x,U ) satisfying x ′ + [0, ε](vx,t + εB) ⊂ Ki , for all
x ′ ∈ (x + εB) ∩ Ki .

Proof The proof follows by a straightforward, but somewhat technical, contradiction
argument. ��
Proposition 3.1 Let the assumptions of Lemma 3.1 hold true. Then, for any δ > 0,
there exists i0 such that for any i ≥ i0

K ∩ RB ⊂ (Ki ∩ (RB + δB)) + δB.

Proof The proof follows by a straightforward, but somewhat technical, contradiction
argument. ��
Proposition 3.2 Let the assumption (A3) holds true. Then, for any R > 0, δ > 0,
there exists i0 such that, for any i ≥ i0

Kc
i ∩ RB ⊂ (Kc ∩ RB) + δB.

Proof The proof follows by a straightforward, but somewhat technical, contradiction
argument. ��
Proposition 3.3 Let the assumption (A3) holds true. For all x0 ∈ I ntK and r > 0
such that x0 + r B ⊂ K there exists i(x0) satisfying x0 + r

2 B ⊂ Ki for all i ≥ i(x0).
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Proof The proof follows by a straightforward, but somewhat technical, contradiction
argument. ��

For all (t, x) ∈ [0, T ] × R
n and i ≥ 1 define

Gi (t, x) := {( fi (t, x, u), li (t, x, u) + r) : u ∈ U, r ≥ 0}.

Theorem 3.1 Let (A3), (A4) hold true and assume that Gi (t, x) is convex and closed
for all i ≥ 1, (t, x) ∈ [0, T ] × R

n and f , fi , l, li satisfy (A1), (A2) with the same
integrable functions cR(·), absolutely continuous functions aR(·) and c > 0. Assume
that fi converge to f , li converge to l and ϕi converge to ϕ uniformly on compacts,
when i → ∞, and that for some MR > 0 and all (t, x, u) ∈ [0, T ] × RB × U, we
have |l(t, x, u)| + |li (t, x, u)| ≤ MR. Then, for all x0 ∈ I ntK and r > 0 such that
x0 +r B ⊂ K, Vi |[0,T ]×B(x0,

r
2 ) converge uniformly to V |[0,T ]×B(x0,

r
2 ), when i → ∞.

Furthermore, for any Q > 0, Vi |[0,T ]×(B(0,Q)∩Ki ) are equicontinuous uniformly in i .

Proof We first show that Vi |[0,T ]×(B(0,Q)∩Ki ) are equicontinuous uniformly in i , for
any Q > 0. Fix Q > 0. Let us now prove that there exist increasing, continuous
functions ω′ : [0,+∞[→ [0,+∞[ and ω′′ : [0,+∞[→ [0,+∞[ with ω′(0) = 0
and ω′′(0) = 0 such that, for any t1, t0 ∈ [0, T ] and y1, y2 ∈ B(0, Q) ∩ Ki ,

|Vi (t0, y1) − Vi (t0, y2)| ≤ ω′(|y1 − y2|),
|Vi (t1, y1) − Vi (t0, y1)| ≤ ω′′(|t1 − t0|). (11)

We have ϕi (·) are equicontinuous on compact subsets of Rn . Thus, for any compact
set� ⊂ R

n , there exists an increasing, continuous functionω� : [0,+∞[→ [0,+∞[
such that ω�(0) = 0 and |ϕi (x) − ϕi (y)| ≤ ω�(|x − y|), for all x, y ∈ �. Let us
prove that there exists a modulus of continuity ω′(·) such that, for all i and for any
y1, y2 ∈ B(0, Q) ∩ Ki and t0 ∈ [0, T ],

|Vi (t0, y1) − Vi (t0, y2)| ≤ ω′(|y1 − y2|).

Let i(y1) be as in Proposition 3.3. It is well known that, taking into account Lemma
3.1, under assumptions of Theorem 3.1, there exist (yi (·), ui (·)) ∈ Si[t0,T ](y1), for any
i ≥ i0 such that

Vi (t0, y1) =
∫ T

t0
li (s, yi (s), ui (s)) ds + ϕi (yi (T )).

Then, yi (·) is a trajectory of the following system

ẏi (s) = fi (s, yi (s), ui (s)),
˙̄zi (s) = li (s, yi (s), ui (s)),

yi (t0) = y1,

z̄i (t0) = 0,
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satisfying yi (s) ∈ Ki , for all s ∈ [t0, T ]. Now consider the solution (xi (·), zi (·)) of

ẋi (s) = fi (s, xi (s), ui (s)),

żi (s) = li (s, xi (s), ui (s)),

xi (t0) = y2,

zi (t0) = 0.

Let R > 0 be such that, for every trajectory–control pair (x, u) of the control system
ẋ(t) = fi (t, x(t), u(t)), u(t) ∈ U satisfying x(t0) ∈ B(0, Q) for some t0 ∈ [0, T ]
we have xi (T ) ∈ B(0, R). We would like to underline that B(0, R) depends on Q. As
Q > 0 is fixed, for the simplicity, we will omit the subindex B(0, R) for ωB(0,R)(·).
By Lemma 3.1 and Theorem 2.1 applied to

F(t, x, z) = {( fi (t, x, u), li (t, x, u)), u ∈ U },

there exists C > 0 independent from i such that, for all i ≥ 1, we can find absolutely
continuous (x̃i (·), z̃i (·)) such that ( ˙̃xi (t), ˙̃zi (t)) ∈ F(t, x̃i (t), z̃i (t)) a.e. x̃i (t0) = y2,
z̃i (t0) = 0 satisfying the following state constraints (x̃i (t), z̃i (t)) ∈ Ki × R, for all
t ∈ [t0, T ] such that

‖z̃i − zi‖∞ + ‖x̃i − xi‖∞ ≤ C max
s∈[t0,T ] dist(xi (s), Ki ).

By the Gronwall inequality, for any s ∈ [t0, T ] and for a constant E > 0, we have
‖xi (s) − yi (s)‖∞ ≤ E |y2 − y1|. Using Gronwall’s inequality, we deduce

max
s∈[t0,T ] dist(xi (s), Ki ) ≤ max

s∈[t0,T ] |xi (s) − yi (s)| ≤ E |y2 − y1|.

By Filippov theorem, Theorem 8.2.10, [12], for some measurable ũi (·) : [t0, T ] → U
we have

˙̃xi (s) = fi (s, x̃i (s), ũi (s)) a.e. in [t0, T ],
˙̃zi (s) = li (s, x̃i (s), ũi (s)) a.e. in [t0, T ].

We have that |ϕi (x̃i (T )) − ϕi (xi (T ))| ≤ ω(|x̃i (T ) − xi (T )|) and also

∣∣∣∣
∫ T

t0
li (s, x̃i (s), ũi (s)) ds −

∫ T

t0
li (s, xi (s), ui (s)) ds

∣∣∣∣ ≤ ‖z̃i − zi‖∞ ≤ CE |y2 − y1|.

By the definition of Vi (t0, ·), we have

Vi (t0, y2) − Vi (t0, y1) ≤
∫ T

t0
li (s, x̃i (s), ũi (s)) ds + ϕi (x̃i (T ))

−
∫ T

t0
li (s, yi (s), ui (s)) ds
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−ϕi (yi (T ))=
∫ T

t0
(li (s, x̃i (s), ũi (s)) − li (s, yi (s), ui (s))) ds + (ϕi (x̃i (T ))

−ϕi (yi (T ))).

Hence,

Vi (t0, y2) − Vi (t0, y1) ≤
∫ T

t0
(li (s, x̃i (s), ũi (s)) − li (s, xi (s), ui (s))) ds

+
∫ T

t0
(li (s, xi (s), ui (s)) − li (s, yi (s), ui (s))) ds + ϕi (x̃i (T )) − ϕi (xi (T ))

+ϕi (xi (T )) − ϕi (yi (T )).

From (A1), we deduce that

Vi (t0, y2) − Vi (t0, y1) ≤ CE |y2 − y1| +
∫ T

t0
cR(s)|xi (s) − yi (s)| ds

+ω(|x̃i (T ) − xi (T )|) + ω(|xi (T ) − yi (T )|).

Thus, for some M̄ > 0 and c̄ > 0 independent from i and for all y1, y2 ∈ B(0, Q)∩K ,

Vi (t0, y2) − Vi (t0, y1) ≤ M̄|y2 − y1| + ω(c̄|y2 − y1|).

For all s ≥ 0 define ω′
Q(s) := M̄s + ω(c̄s). Therefore,

Vi (t0, y2) − Vi (t0, y1) ≤ ω′
Q(|y2 − y1|).

Interchanging the roles of y1, y2, we deduce that

|Vi (t0, y2) − Vi (t0, y1)| ≤ ω′
Q(|y2 − y1|), (12)

this ends the proof of the first inequality in (11).
Now let us show that Vi |[0,T ]×(B(0,Q)∩Ki ) are equicontinuous with respect to the

time variable too. Consider y0 ∈ B(0, Q) ∩ Ki , 0 ≤ t0 < t1 ≤ T and (xi (·), ui (·)) ∈
Si[t0,T ](y0) such that

Vi (t0, y0) =
∫ T

t0
li (s, xi (s), ui (s)) ds + ϕi (xi (T )).

We have that for some c̄ > 0 independent from i and y0,

|xi (t1) − y0| = |xi (t1) − xi (t0)| ≤ c̄|t1 − t0|.
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Since y0 ∈ B(0, Q) ∩ K , we deduce that xi (t1) ∈ B(0, Q + c̄T ). By the dynamic
programming principle

Vi (t0, y0) =
∫ t1

t0
li (s, xi (s), ui (s)) ds + Vi (t1, xi (t1)).

Hence,

Vi (t1, xi (t1)) − Vi (t0, y0) = −
∫ t1

t0
li (s, xi (s), ui (s)) ds. (13)

Therefore,

|Vi (t0, y0) − Vi (t1, y0)| ≤ |Vi (t0, y0) − Vi (t1, xi (t1))| + |Vi (t1, xi (t1)) − Vi (t1, y0)|
≤

∫ t1

t0
|li (s, xi (s), ui (s))| ds + |Vi (t1, xi (t1)) − Vi (t1, y0)|.

We have that li are equibounded on compacts. Therefore, for some c > 0 independent
from i by (13), we deduce that

∫ t1

t0
|li (s, xi (s), ui (s))| ds ≤ c|t1 − t0|.

Let Q̄ be such that every trajectory x(·) of the control system ẋ(t) = fi (t, x(t), u(t)),
u(t) ∈ U with x([0, T ]) ∩ B(0, Q) 
= ∅ satisfies x([0, T ]) ⊂ B(0, Q̄). According to
(12), it follows that

|Vi (t1, xi (t1)) − Vi (t1, y0)| ≤ ω′
Q̄
(|xi (t1) − y0|).

Thus,

|Vi (t0, y0) − Vi (t1, y0)| ≤ c|t1 − t0| + ω′
Q̄
(|xi (t1) − y0|).

Therefore,

|Vi (t0, y0) − Vi (t1, y0)| ≤ c|t1 − t0| + ω′
Q̄
(c̄|t1 − t0|).

We set ω′′(s) := cs + ω′
Q̄
(c̄s) for all s ≥ 0. Hence, we have proved that, for all

0 ≤ t0 < t1 < T ,

|Vi (t0, y0) − Vi (t1, y0)| ≤ ω′′(|t1 − t0|).
Therefore, Vi |[0,T ]×(B(0,Q)∩Ki ) are equicontinuous uniformly in i , for any Q > 0.

Fix (t0, x0) ∈ [0, T ]×int K . Let r > 0 be such that x0+r B ⊂ K and y0 ∈ x0+ r

2
B.

We claim that

lim
i→∞ Vi (t0, y0) = V (t0, y0).
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First we will show that

V (t0, y0) ≤ lim inf
i→∞ Vi (t0, y0).

Let i(y0) be as in Proposition 3.3. It is well known that, taking into account Lemma 3.1,
under assumptions of Theorem 3.1, there exist (xi , ui ) ∈ Si[t0,T ](y0), for any i ≥ i0
such that

Vi (t0, y0) = ϕi (xi (T )) +
∫ T

t0
li (s, xi (s), ui (s)) ds.

Consider a subsequence Vi j such that

lim inf
i→∞ Vi (t0, y0) = lim

j→∞ Vi j (t0, y0).

By (A2), we may assume that i j are such that xi j converge uniformly on [t0, T ] to an
absolutely continuous function x ∈ W 1,1([t0, T ];Rn), ẋi j (·) converge weakly in L1

to ẋ , and

ξ j (·) := li j (·, xi j (·), ui j (·))

converges weakly in L1 to some ψ(·). Then,
∫ T

t0
li j (s, xi j (s), ui j (s)) ds →

∫ T

t0
ψ(s) ds.

By our assumptions for any R > 0 and for every ε > 0, there exists i0 ≥ 1
such that for any i ≥ i0, t ∈ [0, T ], x ∈ RB, u ∈ U and ε > 0 we have that
|li (t, x, u) − l(t, x, u)| ≤ ε, | fi (t, x, u) − f (t, x, u)| ≤ ε.

We fix ε > 0 and denote Gε(t, x) := G(t, x) + εB. Then, Gε(t, x) is closed
and convex. As xi j (·) → x(·) uniformly on [t0, T ], there exists R > 0 such that
‖xi j (·)‖∞ ≤ R for all j . Using Lipschitzianity assumptions (A1), we deduce that for
all sufficiently large j and all t ∈ [t0, T ],

( fi j (t, xi j (t), ui j (t)), li j (t, xi j (t), ui j (t))) ∈ Gε(t, x(t)) + 2cR(t)|xi j (t) − x(t)|B.

For all t ∈ [t0, T ], the sets Qε(t) := Gε(t, x(t)) + 2cR(t)εB are convex and closed.
Thus, the set {v(·) ∈ L1([t0, T ];Rn) : v(t) ∈ Qε(t),∀ t ∈ [t0, T ]} is convex and
closed in L1. By the Mazur theorem (applied in L1), it follows (ẋ(s), ψ(s)) ∈ Qε(s)
a.e., since ε > 0 is arbitrary, we get (ẋ(s), ψ(s)) ∈ G(s, x(s)) a.e. in [t0, T ]. By
the measurable selection theorem, there exist a measurable selection u(s) ∈ U and
λ(s) ≥ 0

ẋ(s) = f (s, x(s), u(s)),

ψ(s) = l(s, x(s), u(s)) + λ(s).
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Since ψ(·) ∈ L1 and l is bounded on compacts, λ(·) is integrable. Note that, as
(xi , ui ) ∈ Si[t0,T ](y0), for any i ≥ i0 and xi j (·) → x(·) uniformly on [t0, T ], hence
x(t) ∈ K , for any t ∈ [t0, T ]. We have that

lim
j→∞ Vi j (t0, y0) = ϕ(x(T )) +

∫ T

t0
l(s, x(s), u(s)) ds +

∫ T

t0
λ(s) ds ≥ V (t0, y0).

Weshownext that V (t0, y0) ≥ lim supi→∞ Vi (t0, y0).Let (x̄(·), ū(·)) ∈ S[t0,T ](y0)
be such that

V (t0, y0) = ϕ(x̄(T )) +
∫ T

t0
l(s, x̄(s), ū(s)) ds,

and for almost all s ∈ [t0, T ],
˙̄x(s) = f (s, x̄(s), ū(s)),

ż(s) = l(s, x̄(s), ū(s)),

x̄(t0) = y0,

z(t0) = 0,

x̄(s) ∈ K , s ∈ [t0, T ].

Then, (x̄(s), z(s)) ∈ K × R, for all s ∈ [t0, T ]. Consider the solutions xi (·) of

ẋi (s) = fi (s, xi (s), ū(s)),

żi (s) = li (s, xi (s), ū(s)),

xi (t0) = y0,

zi (t0) = 0,

for i = 1, 2, . . . Observe that for any ε > 0, there exists ī0 > 0, such that for any
i > ī0, we have |xi − x̄ |∞ ≤ ε and |zi − z|∞ ≤ ε. Let R be such that R > |x̄ |∞. For
any δ > 0 and for any sufficiently large i , by triangular inequality, it follows that

dist((xi (s), zi (s)), (Ki × R)) = dist(xi (s), Ki ) ≤ dist(xi (s), Ki ∩ (RB + δB))

≤ dist(xi (s), (Ki ∩ (RB + δB)) + δB) + δ.

Fix δ > 0. From Proposition 3.1, it follows that there exists i0 > 0, such that, for any
i > i0,

dist(xi (s), (Ki ∩ (RB + δB)) + δB) ≤ dist(xi (s), K ∩ RB).

Hence, for all sufficiently large i

dist((xi (s), zi (s)), (Ki × R)) ≤ dist(xi (s), K ∩ RB) + δ.
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Consequently, for any δ > 0, there exists i0, such that, for any i > i0,

dist((xi (s), zi (s)), (Ki × R)) ≤ 2δ.

By Lemma 3.1 and Theorem 2.1 applied to

F(t, x, z) = {( fi (t, x, u), li (t, x, u)), u ∈ U }

there existsC > 0 independent from i such that, for all sufficiently large i , we can find
absolutely continuous (x̃i (·), z̃i (·)) such that ( ˙̃xi (t), ˙̃zi (t)) ∈ F(t, x̃i (t), z̃i (t)) a.e. in
[t0, T ], x̃i (t0) = y0, z̃i (t0) = 0 satisfying state constraints (x̃i (t), z̃i (t)) ∈ Ki × R,

such that

‖z̃i − zi‖∞ + ‖x̃i − xi‖∞ ≤ C max
s∈[t0,T ] dist(xi (s), Ki ).

We have that for any δ > 0,

max
s∈[t0,T ] dist(xi (s), Ki ) ≤ max

s∈[t0,T ] dist(xi (s), Ki ∩ (R + δ)B).

From Proposition 3.1, we deduce for any δ > 0 and all sufficiently large i that

max
s∈[t0,T ] dist(xi (s), Ki ) ≤ max

s∈[t0,T ] dist(xi (s), K ∩ RB) + δ ≤ ‖xi − x̄‖∞ + δ ≤ ε + δ.

Thus, taking δ = ε, we deduce that

‖z̃i − zi‖∞ + ‖x̃i − xi‖∞ ≤ 2Cε.

Consider measurable ũi (·) : [t0, T ] → U such that

˙̃xi (s) = fi (s, x̃i (s), ũi (s)) a.e. in [t0, T ],
˙̃zi (s) = li (s, x̃i (s), ũi (s)) a.e. in [t0, T ].

For any ε > 0, there exists ĩ0 > 0, such that for any i > ĩ0, we have

|ϕi (x̃i (T )) − ϕ(x̄(T ))| ≤ ε

and

∣∣∣∣
∫ T

t0
li (s, x̃i (s), ũi (s)) ds −

∫ T

t0
l(s, x̄(s), ū(s)) ds

∣∣∣∣ ≤ ε.
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Hence, we obtain

V (t0, y0) =
∫ T

t0
l(s, x̄(s), ū(s)) ds + ϕ(x̄(T ))

≥
∫ T

t0
li (s, x̃i (s), ũi (s)) ds + ϕi (x̃i (T )) − 2ε ≥ Vi (t0, y0) − 2ε.

Thus,

V (t0, y0) ≥ lim sup
i→∞

Vi (t0, y0) − 2ε.

The above being valid for any ε > 0; therefore, we get

V (t0, y0) ≥ lim sup
i→∞

Vi (t0, y0).

Hence, we have that for any Q > 0, Vi are equicontinuous uniformly in i on
[0, T ] × (B(0, Q) ∩ Ki ) and converging pointwise to V on [0, T ] × B(x0,

r
2 ); we

deduce that the convergence is uniform. The proof is complete. ��
Corollary 3.1 Let the assumptions of Theorem 3.1 hold true. Then,

Limi→∞graphVi = graphV,

where the limit is taken in the Kuratowski sense.

Proof We will first prove that graphV ⊂ Limin fi→∞graphVi .

Case 1 Let (t, x) ∈ [0, T ] × int K . We will show that

((t, x), V (t, x)) ∈ Limin fi→∞graphVi .

Take any (relatively) open neighbourhood � of ((t, x), V (t, x)) in [0, T ] × R
n × R.

It is not restrictive to assume that � = W0 ×U0, whereW0 is an open neighbourhood
of (t, x) and U0 is an open neighbourhood of V (t, x).

By Theorem 3.1 for all x ∈ int K and r > 0 such that x + r B ⊂ K , we have
Vi (·, ·) → V (·, ·) uniformly on [0, T ] × B(x, r

2 ), when i → ∞, thus there exists an
open neighbourhoodW1 of (t, x) and there exists i0 ≥ 1 such that, for any (s, y) ∈ W1
and any i ≥ i0, Vi (s, y) ∈ U0. Therefore,

((W1 ∩ W0) ×U0) ∩ graphVi 
= ∅,

for any i ≥ i0. We deduce that � ∩ graphVi 
= ∅, for any i ≥ i0. Hence, for any
(t, x) ∈ [0, T ] × int K ,

((t, x), V (t, x)) ∈ Limin fi→∞graphVi .
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Case 2 Let (t, x) ∈ [0, T ]×∂K . Take any open neighbourhood� of ((t, x), V (t, x)).
It is not restrictive to assume that � = W0 ×U0, whereW0 is an open neighbourhood
of (t, x) and U0 is an open neighbourhood of V (t, x). There exists x1 ∈ int K , such
that (t, x1) ∈ W0 and V (t, x1) ∈ U0 (by continuity of V (t, ·) on K ). Thus, we can
choose W1, an open neighbourhood of (t, x1), and U1, an open neighbourhood of
V (t, x1), such that W1 × U1 ⊆ W0 × U0. Consider �1 = W1 × U1, then �1 ⊆ �.
As x1 ∈ int K , by the result of Case 1, we have that there exists i0 ≥ 1 such that
�1∩graphVi 
= ∅, for any i ≥ i0.Therefore,�∩graphVi 
= ∅, for any i ≥ i0.Hence,
for any (t, x) ∈ [0, T ] × ∂K , we have ((t, x), V (t, x)) ∈ Limin fi→∞graphVi .

Combining the results of Case 1 and Case 2, we deduce that

graphV ⊂ Limin fi→∞graphVi . (14)

In order to complete the proof, let us now prove that

graphV ⊃ Limsupi→∞graphVi .

Take any ω ∈ Limsupi→∞graphVi , thus for any open neighbourhood Q � ω,
we have Q ∩ graphVi 
= ∅, for infinitely many i . Thus, B(ω, 1

k ) ∩ graphVi 
=
∅, for infinitely many i , where B(ω, 1

k ) is the ball of centre ω and with the radius
1
k , for any k > 0. Hence, there exist vik ∈ B(ω, 1

k ) ∩ graphVik , such that vik =
((tik , xik ), Vik (tik , xik )), for some (tik , xik ) ∈ [0, T ] × K . Therefore,

|((tik , xik ), Vik (tik , xik )) − ω| <
1

k
.

Let v ∈ R be such that ω = ((t, x), v), for some (t, x) ∈ [0, T ] ×R
n . Hence, for any

k > 0, we have that

|xik − x | <
1

k
,

|tik − t | <
1

k
,

|Vik (tik , xik ) − v| <
1

k
. (15)

By (14), it follows that there exist (t̄k, x̄k) ∈ [0, T ] × Kik , (t̄k, x̄k) → (t, x), when
k → ∞, such that

Vik (t̄k, x̄k) → V (t, x). (16)

From (15), we have that when k → ∞, then (tik , xik ) → (t, x). By triangular inequal-
ity

|tik − t̄k | ≤ |tik − t | + |t − t̄k |,
|xik − x̄k | ≤ |xik − x | + |x − x̄k |, (17)
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|Vik (tik , xik ) − V (t, x)| ≤ |Vik (tik , xik ) − Vik (t̄k, x̄k)| + |Vik (t̄k, x̄k) − V (t, x)|.
(18)

Since (by Theorem 3.1) Vik |[0,T ]×Kiik
are equicontinuous (in the sense of Definition

2.1), then by (18), (17) and (16), we deduce limk→∞ Vik (tik , xik ) = V (t, x). By (15),
we obtain that v = V (t, x). Hence, ((t, x), V (t, x)) = ω, thus ω ∈ graphV . Thus,
Limi→∞graphVi = Limin fi→∞graphVi = Limsupi→∞graphVi = graphV ,
this ends the proof. ��

4 Hamilton–Jacobi–Bellman Equations and the Bolza Optimal Control
Problem

Let K be a closed and nonempty subset ofRn . Consider the Hamilton–Jacobi equation

(HJB)

{
−Vt (t, x) + H(t, x,−Vx (t, x)) = 0, (t, x) ∈ [0, T ] × K ,

V (T, x) = ϕ(x),
(19)

with the Hamiltonian [0, T ] × R
n × R

n � (t, x, p) → H(t, x, p).

Definition 4.1 For a map H : [0, T ] × R
n × R

n → R, H∗ denotes the conjugate of
H with respect to the third variable, i.e. for all (t, x, v) ∈ [0, T ] × R

n × R
n ,

H∗(t, x, v) := sup
p∈Rn

{〈v, p〉 − H(t, x, p)} ∈ R ∪ {+∞}.

Assumptions.
(H1) H(t, x, ·) is convex for any (t, x) ∈ [0, T ] × R

n .
(H2) For any R > 0, there exists an integrable cR : [0, T ] → R+ such that, for all

x, y ∈ RB, t ∈ [0, T ] and p ∈ R
n ,

|H(t, x, p) − H(t, y, p)| ≤ cR(t)(1 + |p|)|x − y|.

(H3) There exists c > 0 such that

|H(t, x, p) − H(t, x, q)| ≤ c(1 + |x |)|p − q|

for all (t, x) ∈ [0, T ] × R
n and p, q ∈ R

n .
(H4) H∗(t, x, ·) is bounded on its domain for all (t, x) ∈ [0, T ] × R

n .
(H5) For every R > 0, there exists MR > 0 such that, for all (t, x) ∈ [0, T ] × RB

and v ∈ dom(H∗(t, x, ·)) we have

H∗(t, x, v) = max
p∈B(0,MR)

(〈v, p〉 − H(t, x, p)).
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(H6) For every R > 0, there exists an absolutely continuous aR : [0, T ] → R such
that, for all x ∈ RB, p ∈ R

n and t, s ∈ [0, T ],
|H(t, x, p) − H(s, x, p)| ≤ (1 + |p|)|aR(t) − aR(s)|.

Definition 4.2 A continuous function W : [0, T ] × K → R is called a viscosity
solution of (19) iff W (T, ·) = ϕ(·) and

(i) for all (s, x) ∈]0, T [×K and all (ps, px ) ∈ ∂−W (s, x),

−ps + H(s, x,−px ) ≥ 0.

(ii) for all (s, x) ∈]0, T [×int K and all (ps, px ) ∈ ∂+W (s, x),

−ps + H(s, x,−px ) ≤ 0.

Frankowska and Sedrakyan [13] have shown that, if (H1)–(H6) hold true, then there
exist f : [0, T ] ×R

n × B → R
n and l : [0, T ] ×R

n × B → R satisfying (A1)–(A2)
with U = B and such that f (t, x, B) = domH∗(t, x, ·),

H(t, x, p) = max
u∈B (〈p, f (t, x, u)〉 − l(t, x, u)).

Moreover, G(t, x) = {( f (t, x, u), l(t, x, u) + r) : u ∈ B, r ≥ 0} is convex and
closed. Let V be the value function defined in Sect. 2 for f ,l and U as above. We
impose the following assumption.
(A4)H . For any R > 0, there exist ρR > 0 such that, for every x ∈ K ∩ RB with
I (x) 
= ∅ and every t ∈ [0, T ],

inf
v∈dom(H∗(t,x,·)) max

j∈I (x)〈∇g j (x), v〉 ≤ −ρR .

Proposition 4.1 Let assumption (A4)H hold true. Then, for all (s, x) ∈ [0, T [×K
and all (ps, px ) ∈ ∂−V (s, x),

−ps + H(s, x,−px ) ≥ 0.

Proof Fix (t0, x0) ∈ [0, T [×K . By a straightforward, but somewhat technical argu-
ment, one can deduce that the assumption (A4)H implies that the optimal control (P)
admit solutions. Let (x̄(·), ū(·)) be optimal for (P) at (t0, x0); therefore

V (t, x̄(t)) = V (t0, x̄(t0)) −
∫ t

t0
l(s, x̄(s), ū(s)) ds.

Take t := t0 + h with h > 0 small enough. Hence,

V (t0 + h, x̄(t0 + h)) − V (t0, x̄(t0))

h
= −1

h

∫ t0+h

t0
l(s, x̄(s), ū(s)) ds. (20)
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We shall deduce that for some (v, γ ) ∈ G(t0, x0), D↑V (t0, x̄(t0))(1, v) ≤ −γ. For
this aim consider hi → 0+, when i → ∞ and v ∈ R

n , γ ∈ R, such that

x̄(t0 + hi ) − x̄(t0)

hi
→ v,

∫ t0+hi
t0

l(s, x̄(s), ū(s)) ds

hi
→ γ. (21)

We deduce from the continuity of f , l and (A2) that for any ε > 0, there exists h0 > 0
such that for any s ∈ [t0, t0 + h0],

( f (s, x̄(s), ū(s)), l(s, x̄(s), ū(s))) ⊂ ( f (t0, x̄(t0), ū(s)), l(t0, x̄(t0), ū(s))) + εB

⊂ G(t0, x0) + εB.

Hence, (v, γ ) ∈ G(t0, x0). Thus, from Definition 2.2, (20), (21), we deduce that

D↑V (t0, x0)(1, v) ≤ −γ. (22)

By definition of G(·, ·), there exists u0 and r0 ≥ 0 such that

v = f (t0, x0, u0),

γ = l(t0, x0, u0) + r0. (23)

By (22), (23), we obtain D↑V (t0, x0)(1, f (t0, x0, u0)) ≤ −l(t0, x0, u0) − r0 ≤
−l(t0, x0, u0). For any (ps, px ) ∈ ∂−V (t0, x0), using the Lemma 2.2, we obtain
that

ps · 1 + 〈px , f (t0, x0, u0)〉 ≤ D↑V (t0, x0)(1, f (t0, x0, u0)) ≤ −l(t0, x0, u0).

Hence, −ps + 〈−px , f (t0, x0, u0)〉 − l(t0, x0, u0) ≥ 0, and we obtain

−ps + sup
u∈B

(〈−px , f (t0, x0, u)〉 − l(t0, x0, u)) ≥ 0.

Therefore, for any (ps, px ) ∈ ∂−V (t0, x0), we have −ps + H(t0, x0,−px ) ≥ 0.
Since (t0, x0) ∈ [0, T [×K is arbitrary, we end the proof. ��

Proposition 4.2 For all (s, x) ∈ [0, T [×int K and all (ps, px ) ∈ ∂+V (s, x),

−ps + H(s, x,−px ) ≤ 0.

Proof Fix u0 ∈ B and consider the solution x(·) of

ẋ(s) = f (s, x(s), u0),

x(t0) = x0.
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Then,

V (t0 + h, x(t0 + h)) ≥ V (t0, x0) −
∫ t0+h

t0
l(s, x(s), u0) ds.

We have that for h → 0+,

x(t0 + h) − x0
h

→ f (t0, x0, u0)

and

1

h

∫ t0+h

t0
l(s, x(s), u0) ds → l(t0, x0, u0).

By Lemma 2.2, for any (ps, px ) ∈ ∂+V (t0, x0), we have that

〈(ps, px ), (1, f (t0, x0, u0))〉 ≥ D↓V (t0, x0)(1, f (t0, x0, u0)) ≥ −l(t0, x0, u0).

Hence, we have obtained that for any (ps, px ) ∈ ∂+V (t0, x0) and u0 ∈ B,

−ps + 〈−px , f (t0, x0, u0)〉 − l(t0, x0, u0) ≤ 0,

and therefore, for any (ps, px ) ∈ ∂+V (t0, x0), we have −ps + H(t0, x0,−px ) ≤ 0.
Since (t0, x0) ∈ [0, T [×K is arbitrary, we end the proof. ��
Theorem 4.1 If assumptions (H1)–(H6) hold true, then the value function of the Bolza
optimal control problem (3) is a viscosity solution of the Hamilton–Jacobi equation
(19).

Proof By Theorem 3.1, the value function is continuous on [0, T ] × K . According to
Definition 4.2 and Proposition 4.1, the value function is a viscosity supersolution of
Hamilton–Jacobi equation, and by Proposition 4.2, the value function is a viscosity
subsolution of Hamilton–Jacobi equation; thus, it is a viscosity solution. This ends the
proof. ��

5 Uniqueness of Solutions of Hamilton–Jacobi Equation and Their
Continuous Dependence on Data

Theorem 5.1 Let assumptions (H1)–(H6) and (A4)H hold true. Then, there exists the
unique viscosity solution of Hamilton–Jacobi equation (19) on [0, T ] × K.

Proof We provide a complete proof, since in [3] there are no state constraints, while
in [5] the Mayer problem instead of the Bolza one is considered.

Frankowska and Sedrakyan [13] have shown that, if (H1)–(H6) hold true for H , then
there exist f : [0, T ]×R

n × B → R
n and l : [0, T ]×R

n × B → R satisfying (A1)–
(A2) with U = B and such that H(t, x, p) = maxu∈B(〈p, f (t, x, u)〉 − l(t, x, u)).
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Moreover,G(t, x) = {( f (t, x, u), l(t, x, u)+r) : u ∈ B, r ≥ 0} is convex and closed.
We consider Bolza optimal control problem (3) with U = B and the associated value
function. By Theorem 4.1, we know that the value function is a viscosity solution of
the Hamilton–Jacobi equation. Let W be a viscosity solution of (19). We will show
that W = V on [0, T ] × K . We proceed in two steps.

Step 1Wewill showfirst that for any (t0, x0) ∈ [0, T ]×K , it holds trueW (t0, x0) ≥
V (t0, x0). Since W is a viscosity solution, by Definition 4.2, we have

∀(t, x) ∈]0, T [×K , ∀(pt , px ) ∈ ∂−W (t, x),

−pt + sup
u∈B

(〈−px , f (t, x, u)〉 − l(t, x, u)) ≥ 0. (24)

If for some (t, x) ∈]0, T [×K and z ≥ W (t, x), (pt , px , q) ∈ Nepi(W )(t, x, z),
then (pt , px , q) ∈ Nepi(W )(t, x,W (t, x)). By Lemma 4.2, [3], there exist (ti , xi ) ∈
]0, T [×K , such that (ti , xi ) → (t, x), when i → ∞ and

(pit , p
i
x , qi ) ∈ Nepi(W )(ti , xi ,W (ti , xi )), (25)

where qi < 0 and such that (pit , p
i
x , qi ) → (pt , px , q), when i → ∞. Therefore, as

qi < 0, we deduce from (25) that

( pit
|qi | ,

pix
|qi | ,−1

)
∈ Nepi(W )(ti , xi ,W (ti , xi )).

Hence, by Proposition 4.1, [3], we obtain that

( pit
|qi | ,

pix
|qi |

)
∈ ∂−W (ti , xi ). (26)

From (24) and (26), we deduce that the following inequality holds true

− pit
|qi | + sup

u∈B

(
〈− pix

|qi | , f (ti , xi , u)〉 − l(ti , xi , u)
)

≥ 0,

or equivalently, −pit + supu∈B
(
〈−pix , f (ti , xi , u)〉− |qi |l(ti , xi , u)

)
≥ 0. Passing to

the limit when i → ∞, by continuity of f and l, we obtain that

−pt + sup
u∈B

(
〈−px , f (t, x, u)〉 − |q|l(t, x, u)

)
≥ 0.

Therefore,
pt + inf

u∈B

(
〈px , f (t, x, u)〉 + |q|l(t, x, u)

)
≤ 0. (27)
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Consider a solution x of

ẋ(s) = f (s, x(s), u(s)), s ∈ [0, T ], u(s) ∈ B,

x(0) = x0 ∈ RB ∩ K . (28)

From (28) and (A2), together with the Gronwall lemma, it follows that there exists
c > 0 such that supt∈[t0,T ] |x(t)| ≤ ecT |x0| < 2ecT R := R̂. Therefore, any solution

starting at x0 ∈ B(0, R) and defined on [t0, T ] stays in B̊(0, R̂). For any (t, x, u) ∈
[0, T ] × B(0, 2R̂) × B denote by

M := max
(t,x,u)∈[0,T ]×B(0,2R̂)×B

|l(t, x, u)|,

as l is continuous and [0, T ]×B(0, 2R̂)×B is a compact set; thus,M > 0 is a constant,
such that for any (t, x, u) ∈ [0, T ] × B(0, 2R̂) × B, we have |l(t, x, u)| ≤ M. Define
a set-valued map F− : [0, T ] × R

n × R ⇒ R × R
n × R by

F−(t, x, v) := {(1, f (t, x, u),−l(t, x, u) − r) | u ∈ B, r ∈ [0, M − l(t, x, u)]},

where M is as above. Note that F− has convex and compact images. Let us prove that

F−(t, x, v) ∩ cl(conv(Tepi(W )(t, x, z))) 
= ∅, (29)

for any (t, x) ∈]0, T [×(K ∩ B(0, ecT R)), z ≥ W (t, x).
We proceed by a contradiction argument. Indeed, if (29) is not satisfied for some

(t, x, v) ∈]0, T [×(K ∩ B(0, ecT R))× B, then by the separation theorem, there exists
0 
= (pt , px , q) ∈ R × R

n × R, such that

inf
(α,β,γ )∈F−(t,x,v)

〈(α, β, γ ), (pt , px , q)〉 >

sup
w∈cl(conv(Tepi(W )(t,x,W (t,x))))

〈w, (pt , px , q)〉 ≥ 0. (30)

Note that, if we assume that the right-hand side of (30) is not equal to 0, then it is equal
to +∞ since the supremum is taken over a cone, leading to a contradiction because
the left-hand side of (30) is bounded. Thus, we deduce that

sup
w∈cl(conv(Tepi(W )(t,x,W (t,x))))

〈w, (pt , px , q)〉 = 0. (31)

Hence, from (30) and (31), we obtain that, for all r ∈ [0, M − l(t, x, u)],

pt + 〈px , f (t, x, u)〉 + q(−l(t, x, u) − r) > 0. (32)

From (31), it follows that

(pt , px , q) ∈ Nepi(W )(t, x,W (t, x)). (33)
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Therefore, from (33), we deduce that q ≤ 0; thus by (32), we obtain that

pt + 〈px , f (t, x, u)〉 + |q|(l(t, x, u) + r) > 0.

Let us take r = 0, hence pt + 〈px , f (t, x, u)〉 + |q|l(t, x, u) > 0. This leads to a
contradiction with (27). Hence, (29) holds true. Consider the control system

(CS1)

⎧⎪⎨
⎪⎩
ṫ(s) = 1,

ẋ(s) = f (t0 + s, x(s), u(s)), u(s) ∈ B,

ż(s) = −l(t0 + s, x(s), u(s)) − r(s), r(s) ∈ [0, M − l(s, x(s), u(s)].
(34)

We have that W is continuous; thus, epi(W ) is closed. On the other hand, F− is
continuous and has convex compact images; thus by Theorem 3.2.4, [14], and Local
Viability Theorem 3.3.4, [14], we deduce that, for any (t0, x0) ∈]0, T [×K , there exists
a solution (t (·), x(·), z(·)) of (CS1) on [0, T − t0] such that t (0) = t0, x(0) = x0,
z(0) = W (t0, x0) and (t (s), x(s), z(s)) ∈ epi(W ), for any s ∈ [0, T − t0[. Therefore,
we have, for any s ∈ [0, T − t0[, that

z(s) ≥ W (t (s), x(s)). (35)

By continuity, it holds true also for s = T − t0. Take s = T − t0, thus we obtain from
(35) that

z(T − t0) ≥ W (t (T − t0), x(T − t0)). (36)

We set y(t0 + s) := x(s), therefore we will obtain that x(T − t0) = y(T ) and
W (t (T − t0), x(T − t0)) = W (T, y(T )). From (36), we will deduce that for any
(t0, x0) ∈]0, T [×K ,

W (t0, x0) −
∫ T−t0

0
l(t0 + τ, y(t0 + τ), u(τ )) dτ ≥ ϕ(y(T )).

We set û(t0 + s) := u(s). Therefore,

W (t0, x0) −
∫ T

t0
l(s, y(s), û(s)) ds ≥ ϕ(y(T )).

Hence, for any (t0, x0) ∈]0, T [×K ,

W (t0, x0) ≥ ϕ(y(T )) +
∫ T

t0
l(s, y(s), û(s)) ds ≥ V (t0, x0).

Using that W and V are continuous, we end the proof of Step 1.
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Step 2Wewill shownext that for any (t0, x0) ∈ [0, T ]×K , it holds trueW (t0, x0) ≤
V (t0, x0). Since W is a viscosity solution, by Definition 4.2, we have

∀(t, x) ∈]0, T [×int K , ∀(pt , px ) ∈ ∂+W (t, x),

−pt + sup
u∈B

(〈−px , f (t, x, u)〉 − l(t, x, u)) ≤ 0. (37)

Claim 1 For any (t, x) ∈]0, T [×int K and u ∈ B

(1, f (t, x, u),−l(t, x, u)) ∈ cl(conv(Thyp(W )(t, x, z))),

for any z ≤ W (t, x). In order to prove this claim, we proceed by a contradiction
argument. Suppose there exists u0 ∈ B, such that for z = W (t, x), we have that

(1, f (t, x, u0),−l(t, x, u0)) /∈ c̄oThyp(W )(t, x,W (t, x)).

By the separation theorem, we deduce that there exists 0 
= (pt , px , q) ∈ R×R
n ×R,

such that

sup
w∈cl(conv(Thyp(W )(t,x,W (t,x))))

〈(pt , px , q), w〉

< 〈(pt , px , q), (1, f (t, x, u0),−l(t, x, u0))〉. (38)

Note that the left-hand side of (38) cannot be positive, because the maximum over
the cone on the left-hand side is bounded. Therefore,

sup
w∈cl(conv(Thyp(W )(t,x,W (t,x))))

〈w, (pt , px , q)〉 = 0. (39)

From (38), we also deduce that q ≥ 0. Therefore,

pt + 〈px , f (t, x, u0)〉 − ql(t, x, u0) > 0. (40)

By (39), we have (pt , px , q) ∈ Nhyp(W )(t, x,W (t, x)). By Lemma 4.2, [3] (substitut-
ing epigraph by hypograph), there exist (ti , xi ) ∈]0, T [×K , such that (ti , xi ) → (t, x),
when i → ∞ and

(pit , p
i
x , qi ) ∈ Nhyp(W )(ti , xi ,W (ti , xi )), (41)

where qi > 0 and such that (pit , p
i
x , qi ) → (pt , px , q), when i → ∞. Therefore, as

qi > 0, we deduce from (41) that

( pit
qi

,
pix
qi

, 1
)

∈ Nhyp(W )(ti , xi ,W (ti , xi )).

Hence, by [3], page 267, we obtain that

(
− pit

qi
,− pix

qi

)
∈ ∂+W (ti , xi ). (42)
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From (37) and (42), we deduce that
pit
qi

+ 〈 p
i
x

qi
, f (ti , xi , u0)〉 − l(ti , xi , u0) ≤ 0, or

equivalently, pit + 〈pix , f (ti , xi , u0)〉 − qi l(ti , xi , u0) ≤ 0. Passing to the limit when
i → ∞, by continuity of f and l, we obtain that pt +〈px , f (t, x, u0)〉−ql(t, x, u0) ≤
0. This is a contradiction with (40). This ends the proof of Claim 1.

Claim 2 For any (t, x) ∈]0, T [×int K and z ≤ W (t, x), any u ∈ B

(1, f (t, x, u),−l(t, x, u)) ∈ Thyp(W )(t, x, z).

Proof of Claim 2 follows from Lemma 2.1 and Claim 1. Consider the control system

(CS2)

⎧⎪⎨
⎪⎩
ṫ(s) = 1,

ẋ(s) = f (t0 + s, x(s), u(s)), u(s) ∈ B,

ż(s) = −l(t0 + s, x(s), u(s)).

(43)

From the proof ofTheorem3.3, [3], (substituting epigraph by hypograph)wededuce
that the set � = hyp(W )∩]0, T [×int K × R, is locally invariant by the system
(CS2), i.e. for any solution (t (·), x(·), z(·)) of (CS2) with t (0) = t0 ∈]0, T [ and
x(0) = x0 ∈ int K , z(0) = W (t0, x0), satisfying x(s) ∈ int K , s ∈ [0, δ], for
some δ > 0, we have that (t (s), x(s), z(s)) ∈ hyp(W ). Therefore, we deduce that
z(s) ≤ W (t (s), x(s)). Hence,

W (t0, x0) −
∫ t0+δ

t0
l(t0 + s, x(s), u(s)) ds ≤ W (t0 + δ, x(t0 + δ)).

Thus, if a solution (x, u)(·) of (CS2) satisfies x(s) ∈ int K on [t1, t2], then

W (t1, x(t1)) ≤ W (t2, x(t2)) +
∫ t2

t1
l(s, x(s), u(s)) ds.

Let (x̄(·), ū(·)) be optimal for (P) at (t0, x0) ∈]0, T [×int K . By Theorem 2.1
applied to (CS2) and K = hyp(W ), there exist controls uε such that xε(·) corre-
sponding to uε, converges uniformly to x̄(·) when ε → 0, and zε(·), defined on
[t0, T ] by zε(t) := W (t0, x0) − ∫ t

t0
l(s, xε(s), uε(s)) ds, converges uniformly to z(·)

given by z(t) := W (t0, x0) − ∫ t
t0
l(s, x̄(s), ū(s)) ds, and for all t ∈]t0, T ] we have

(t, xε(t), zε(t)) ∈ int (hyp(W )). Hence, xε(t) ∈ int K on ]t0, T ]. Therefore, we
deduce that for any t ∈]t0, T ], it holds true zε(t) ≤ W (t, xε(t)). Hence, for all small
τ > 0,

W (t0 + τ, xε(t0 + τ)) −
∫ T

t0+τ

l(s, xε(s), uε(s)) ds ≤ W (T, xε(T )) = ϕ(xε(T )).

Taking the limit when τ → 0+, we get

W (t0, xε(t0)) −
∫ T

t0
l(s, xε(s), uε(s)) ds ≤ W (T, xε(T )) = ϕ(xε(T )).
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Passing to the limit when ε → 0+, we deduce that

W (t0, x0) ≤ ϕ(x̄(T )) +
∫ T

t0
l(s, x̄(s), ū(s)) ds.

We obtain for any (t0, x0) ∈]0, T [×int K that W (t0, x0) ≤ V (t0, x0). Since W and
V are continuous, we end the proof of step 2. From Step 1 and Step 2, we deduce
that the value function of the Bolza problem is the unique viscosity solution of the
Hamilton–Jacobi equation on [0, T ] × K (in the class of continuous functions). This
ends the proof of Theorem 5.1. ��
Theorem 5.2 For every i ≥ 1 let Ki , K be closed and nonempty subsets ofRn defined
by (9), (10) and (A3) holds true. Consider continuous Hi : [0, T ] × R

n × R
n →

R satisfying the assumptions (H1)–(H6) with the same integrable functions cR(·),
absolutely continuous functions aR(·) and c > 0, MR > 0. Assume that for some
H : [0, T ]×R

n ×R
n → R, Hi → H uniformly on compacts, when i → ∞ and that

assumption (A4)H holds true. Consider viscosity solutions Wi to Hamilton–Jacobi
equation (19) with H replaced by Hi and K replaced by Ki . Let x0 ∈ int K , r > 0

such that B(x0, r) ⊂ K. Then, the restrictions of Wi to [0, T ] × B(x0,
r

2
) converge

uniformly to the restriction to [0, T ] × B(x0,
r

2
) of the unique solution W of (19).

Proof Clearly, H satisfies (H1)–(H6) with the same cR(·), aR(·), c, MR . In [13],
it is shown that, if (H1)–(H6) hold true for H and Hi , then there exists f, fi , l, li
satisfying (A1)–(A2) such that H(t, x, p) = maxu∈B(〈p, f (t, x, u)〉− l(t, x, u)) and
Hi (t, x, p) = maxu∈B(〈p, fi (t, x, u)〉− li (t, x, u)).Moreover, we will also have that
Gi (t, x) = {( fi (t, x, u), li (t, x, u) + r) : u ∈ B, r ≥ 0} is convex and closed. Let
x0 ∈ int K and r > 0 be such that B(x0, r) ⊂ K . By Theorems 4.1 and 5.1, the
value function of the Bolza problem (with fi , li ) is the unique viscosity solution of
the Hamilton–Jacobi equation on [0, T ] × Ki . As Hi → H uniformly on compacts,
when i → ∞, thus by Theorem 4.1, [13], we have fi converge to f and li converge
to l uniformly on compacts, when i → ∞. Proposition 3.3 and Theorem 3.1 end the
proof. ��
Corollary 5.1 Let the assumptions of Theorem 5.2 hold true. Then,

Limi→∞epiWi = epiW,

where W is the unique viscosity solution of (19).

Proof The proof follows by Corollary 3.1 and from the fact thatWi = Vi is a bounded
family of equicontinuous functions. ��

6 Conclusions

In this paper, we have considered Hamilton–Jacobi–Bellman equations under state
constraints and our main goal was to study the stability of solutions of HJB equations.
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For this reason, we have associated with HJB equations a suitable family of Bolza
optimal control problems under state constraints and established the stability results
of value functions, see Theorem 3.1.We have imposed classical hypotheses on Hamil-
tonian, under which the HJB equation is characterising the value function of Bolza
optimal control problem, and using viability analysis, we have proven that the value
function is stable under perturbations. The key technical point is the inward-pointing
condition (IPC) and the use of so-called neighbouring feasible trajectories theorem
(NFT), see Theorem 2.1. We have also shown that under the classical assumptions on
the Hamiltonian, the value function of the Bolza optimal control problem is a viscosity
solution of the Hamilton–Jacobi–Bellman equation, see Theorem 4.1. The existence
of the unique viscosity solution of HJB equation is proved under the suitable inward-
pointing condition on the Hamiltonian in Theorem 5.1. The stability of solutions of
HJB equations is proved in Theorem 5.2 using the obtained results of stability of value
functions.
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