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Abstract We present a sufficient condition for the existence of a solution to the
generalized vector equilibrium problem onHadamardmanifolds using a version of the
Knaster–Kuratowski–Mazurkiewicz Lemma. In particular, the existence of solutions
to optimization, vector optimization,Nash equilibria, complementarity, and variational
inequality problems is a special case of the existence result for the generalized vector
equilibrium problem.
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1 Introduction

The generalized vector equilibrium problem (GVEP) has been widely studied and
continues to be an active topic for research. One of the primary reasons for this is that
multiple problems can be formulated as generalized vector equilibrium problems, such
as optimization, vector optimization, Nash equilibria, complementarity, fixed point,
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and variational inequality problems. Extensive developments of these problems can
be found in Fu [1], Fu and Wan [2], Konnov and Yao[3], Ansari et al. [4], Farajzadeh
et al. [5], and the references therein. An important question concerns the conditions
under which a solution to the GVEP exists. In a linear setting, multiple authors have
provided results that answer this question, such as Ansari and Yao [7], Fu [1], Fu and
Wan [2], Konnov and Yao[3], Ansari et al. [4], Farajzadeh et al. [5], and the authors
referenced in their work. Moreover, it should be noted that Ky Fan studied inequalities
in [6], which prompted present equilibrium theory.

Colao et al. [8] and Zhou and Huang [9] were the first authors to examine the exis-
tence of solutions for equilibrium problems in the Riemannian context by generalizing
the Knaster–Kuratowski–Mazurkiewicz (KKM) Lemma to a Hadamard manifold.
Applying the KKM Lemma in a Riemannian setting allowed Zhou and Huang [10]
to confirm solution existence for vector optimization problems and vector variational
inequalities in this context. Similarly, Li and Huang [11] presented results concerning
solution existence for a special class of the GVEP. In this paper, we apply the KKM
Lemma in a Riemannian setting in order to prove solution existence for the GVEP. To
the best of our knowledge, our contribution is unprecedented. However, it should be
noted that the results of this paper include the results presented in [8,10] and are not
included in [11].

This paper is organized as follows. In Sect. 2, we present the notations and basic
results used in the paper. Our main results are stated and proved in Sect. 3, and
conclusions are discussed in Sect. 4.

2 Notations and Basics Definitions

In this paper, every manifold M is assumed to be Hadamard and finite dimensional.
The notations, results, and concepts used throughout this paper can be found in Bento
et al. [12].

A set Ω ⊆ M is said to be convex iff any geodesic segment with end points in Ω

is contained in Ω , that is, iff γ : [a, b] → M is a geodesic such that x = γ (a) ∈ Ω

and y = γ (b) ∈ Ω; then γ ((1 − t)a + tb) ∈ Ω for all t ∈ [0, 1]. Given an arbitrary
set, B ⊂ M , the minimal convex subset that contains B is called the convex hull of
B and is denoted by conv(B); see [8].

Suppose Ω ⊆ M is a convex set. Then for any set A , we let 2A represent the
set of all subsets of A . Let Ω ⊆ M be a nonempty set and Y a topological vector
space. Given a set-valued mapping T : Ω ⇒ Y, the domain and range are the sets,
respectively, defined by the following:

dom T := {x ∈ Ω : T (x) �= ∅} , rge T := {y ∈ Y : y ∈ T (x) for some x ∈ Ω} .

(1)
Moreover, the inverse of T is the set-valued mapping T−1 : Y ⇒ Ω defined by

T−1(y) := {x ∈ Ω : y ∈ T (x)} . (2)
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A set-valued mapping T : Ω ⇒ Y is said to be upper semicontinuous on Ω iff,
for each x0 ∈ Ω and any open set V in Y containing T (x0), there exists an open
neighborhood U of x0 in Ω such that T (x) ⊂ V for all x ∈ U .

The following result is a version of the KKM lemma in Riemannian context due to
[8], which is an extension of KKM theorem that can be found, for example, in [13].

Lemma 2.1 Let Ω ⊆ M be a nonempty, closed, and convex set, and G : Ω ⇒ Ω

a set-valued mapping, such that, for each y ∈ Ω,G(y) is closed. Suppose that there
exists y0 ∈ Ω such that G(y0) is compact, and for all y1, . . . , ym ∈ Ω , we have
conv({y1, . . . , ym}) ⊂ ⋃m

i=1 G(yi ). Then
⋂

y∈Ω G(y) �= ∅.

Proof See [8, Lemma 3.1]. ��

3 Generalized Vectorial Equilibrium Problem

In this section, we present a sufficient condition for the existence of a solution to
the generalized vector equilibrium problem on Hadamard manifolds. We should note
that this material is motivated by the results found in [7]. Henceforth, we let Ω ⊆ M
denote a nonempty, closed and convex set, andY denote ametric vector space. Assume
C : Ω ⇒ Y is a set-valued mapping such that

C(x) is a closed and convex cone, intC(x) �= ∅, ∀ x ∈ Ω. (3)

Also suppose x ∈ Ω . A set-valued mapping F : Ω × Ω ⇒ Y is called C(x) -
quasiconvex-like iff for any geodesic segment γ : [0, 1] → Ω , either F(x, γ (t)) ⊆
F(x, γ (0)) − C(x) or F(x, γ (t)) ⊆ F(x, γ (1)) − C(x), for all t ∈ [0, 1].
Example 3.1 Let H

2 := {
x = (x1, x2) ∈ R

2 : x2 > 0,
}
be the two-dimensional

hyperbolic space endowed with the Riemannian metric gi j (x1, x2) := δi j/x22 , for
i, j = 1, 2. The curvature of H

2 is K = −1, and the geodesics in H
2 are semicircles

centered on x1-axis and vertical lines. Udriste discusses more details of this in [15].
In addition, assume that F : H

2 × H
2 → R is the bifunction given by

F ((x1, x2), (y1, y2)) =
∣
∣
∣y21 + y22 − x21 − x22

∣
∣
∣ .

Since, for every c ∈ R, the sub-level set

Lψ,Ω(c) =
{
(y1, y2) ∈ R

2 : − c + x21 + x22 ≤ y21 + y22 ≤ c + x21 + x22 , y2 > 0
}
,

is convex in H
2, where ψ(y1, y2) = F((x1, x2), (y1, y2)) and (x1, x2) ∈ Ω is a fixed

point, we can conclude that F is C(x)-quasiconvex-like. It should be noted that F is
not C(x)-quasiconvex-like in the Euclidean setting.

Given a set-valued mapping F : Ω × Ω ⇒ Y, the generalized vector equilibrium
problem (GVEP) in the Riemannian context consists in

Find x∗ ∈ Ω : F(x∗, y) � −intC(x∗), ∀ y ∈ Ω. (4)
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Remark 3.1 Let M = R
n, Y = R

m and intC(x) = K for all x ∈ R
n , where K ⊂ R

m

is a closed pointed and convex cone such that int K �=∅. Given a function f : R
n →

R
m , if F : R

n×R
n →R

m is defined by F(x, y)= f (y)− f (x), then we can transform
the GVEP in (4) into the classic vector optimization problem minK f (x); see [14].

Remark 3.2 Although variational inequality theory provides us with a toll for for-
mulating multiple equilibrium problems, Iusem and Sosa [16, Proposition 2.6]
demonstrated that the generalization given by equilibrium problem (EP) formulation
with respect to variational inequality (VI) is genuine, meaning there are EP formula-
tions that do not fit the format of a VI. When compared with VIs, EP formulations
may also guarantee genuineness by considering the important class of quasiconvex
optimization problems, which appear, for instance, in many microeconomical models
that are devoted to maximizing utility. Indeed, the absence of convexity allows us to
obtain situations in which this important class of problems cannot be considered to be
a VI because its possible representation given this format produces a problem whose
solution set contains points that do not necessarily belong to the solution set of the
original optimization problem. For example, let Ω ⊆ M be a nonempty, closed and
convex set, and f : M → R be a differentiable and (R+)-quasiconvex-like function.
Then consider the following optimization problem:

Find x∗ ∈ Ω : f (y) − f (x∗) /∈ −intR+, ∀ y ∈ Ω. (5)

Note that, if F : Ω×Ω → R is the bifunction given by F(x, y) = f (y)− f (x∗), then
the optimization problem in (6) is equivalent to the following equilibrium problem:

Find x∗ ∈ Ω : F(x∗, y) /∈ −intR+, ∀ y ∈ Ω. (6)

On the other hand, in the absence of convexity, the optimization problem in (6) is not
equivalent to the associated variational inequality,

Find x∗ ∈ Ω : 〈∇ f (x∗), y − x∗〉 /∈ −intR+, ∀ y ∈ Ω,

because, for instance, point x∗ ∈ Ω , in which ∇ f (x∗) = 0, is a solution to this
variational inequality, but it cannot be a solution to the equilibrium problem in (6).

The following result is closed related to [7, Theorem 2.1] and establishes an existence
result of solution for GVEP as an application of Lemma 2.1.

Theorem 3.1 Let F : Ω × Ω ⇒ Y be a set-valued mapping such that, for each
x, y ∈ Ω , we have:

h1. F(x, x) �⊂ −intC(x);
h2. F(·, y) is upper semicontinuous;
h3. F is C(x)-quasiconvex-like;
h4. there exist D ⊂ Ω compact and y0 ∈ Ω such that x ∈ Ω\D ⇒ F(x, y0) ⊂

−intC(x).

Then, the solution set, S∗, of the GVEP defined in (4) is a nonempty compact set.
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Remark 3.3 In particular, when M = R
n , our problem (4) retrieves a particular

instance of the generalized vector equilibrium problem studied in [7]. In the case
where C(x) = R+, for each x ∈ Ω fixed, Y = R and F is single-valued map
from Ω × Ω to R, and then the problem in (4) reduces to the equilibrium problem
on Hadamard manifold that was studied in [8]. Let us consider the following vector
optimization problem on Hadamard manifolds:

minRm+ f (x), such that x ∈ Ω, (7)

in which f : M → R
m is a vector function and minRm+ represents the weak minimum.

In the main result of [10], namely Theorem 3.2, the existence of a solution to the prob-
lem in (7) was achieved by demonstrating the equivalence of this and the variational
inequality on Hadamard manifolds (studied by Németh in [17]):

Find x∗ ∈ Ω : 〈A(x∗), exp−1
x∗ y〉 /∈ −R

m++, ∀ y ∈ Ω, (8)

in the particular case where f is a differentiable and convex vector function, and A is
the Riemannian Jacobian of f . When we consider that x∗ ∈ Ω is a weak minimum
of (7), i.e., f (x) − f (x∗) /∈ −R

m++, for all x ∈ Ω , then Theorem 3.1 increases the
applicability of [10, Theorem 3.2] to genuine Hadamard manifolds and quasiconvex
nondifferentiable vector functions.

Example 3.2 Let (H2, gi j ) be the two-dimensional hyperbolic space, as defined in
Example 3.1. The bifunction F : H

2 × H
2 → R, which is given by F ((x1, x2),

(y1, y2)) = ln2
(
y21 + y22

) − ln2
(
x21 + x22

)
, satisfies all the assumptions in Theo-

rem 3.1 if Ω = {
x = (x1, x2) ∈ H

2 : x2 ≥ 1/2
}
, C(x) ≡ R+, y0 = (0, 1), and

D =
{
(x1, x2) ∈ R

2 : x21 + x22 ≤ 1, x2 ≥ 1/2
}
.

Indeed, it is clear that F((x1, x2), (x1, x2)) = 0 for all (x1, x2) ∈ Ω , which implies
that F satisfies h1. In addition, for fixed (y1, y2) ∈ Ω , we know that ϕ(x1, x2) =
F((x1, x2), (y1, y2)) is continuous, and F consequently satisfies h2. Moreover, for all
c ∈ R, the sub-level set,

Lψ,Ω(c) =
{
(y1, y2) ∈ R

2 : e−√
d ≤ y21 + y22 ≤ e

√
d , y2 > 0

}
,

d = c + ln2
(
x21 + x22

)
,

is convex in H
2, where ψ(y1, y2) = F((x1, x2), (y1, y2)), and (x1, x2) ∈ Ω is a fixed

point. Hence, F satisfies h3. Finally, because we have F((x1, x2), (0, 1)) > 0 for all
x ∈ Ω\D, then we know that F satisfies h4. Moreover, according to Theorem 3.1,
we can conclude that S∗ = {(x1, x2) ∈ R

2 : x21 + x22 = 1, x2 ≥ 1/2}, and the set is
compact.

Remark 3.4 One reason for the successful extension, to the Riemannian setting, is
the possibility to transform nonconvex or quasiconvex problems in linear context into
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convex or quasiconvex problems by introducing a suitable metric; see Rapcsák [18].
For instance, in Example 3.2, for a fixed point (x1, x2) ∈ Ω , the function ψ(y1, y2) =
ln2

(
y21 + y22

) − ln2
(
x21 + x22

)
is not usual quasiconvex in {(y1, y2) ∈ R

2 : y2 > 0},
because its sub-level Lψ,Ω(0) = {(y1, y2) ∈ R

2 : y21 + y22 = 1, y2 > 0} is not
convex. Therefore, [7, Theorem 2.1] cannot be applied to the GVEP. However, we can
apply Theorem 3.1.

Henceforth, we assume that every assumption made in Theorem 3.1 holds. In order
to prove this theorem, we must establish some preliminary concepts. First, we define
the set-valued mapping, P : Ω ⇒ Ω , by

P(x) := {y ∈ Ω : F(x, y) ⊂ −intC(x)} . (9)

Lemma 3.1 If S∗ = ∅, then for each x, y ∈ Ω , the set-valued mapping P satisfies
the following conditions:

(i) set P(x) is nonempty and convex;
(ii) P−1(y) is an open set, and

⋃
y∈Ω P−1(y) = Ω;

(iii) there exists y0 ∈ Ω such that P−1(y0)c is compact.

Proof Because solution set S∗ = ∅, the definition in (9) lets us to conclude that
P(x) �= ∅, for all x ∈ Ω , which proves the first statement, (i). Assume x ∈ Ω . To
prove P(x) is convex, we consider y1, y2 ∈ P(x) and a geodesic γ : [0, 1] → Ω

such that γ (0) = y1 and γ (1) = y2. Applying assumption h3 gives us

F(x, γ (t)) ⊆ F(x, y1) − C(x) or F(x, γ (t)) ⊆ F(x, y2) − C(x). (10)

As y1, y2 ∈ P(x), the definition of P(x) in (9) implies that F(x, y1) ⊂ −intC(x)
and F(x, y2) ⊂ −intC(x). Therefore, given −intC(x) − C(x) ⊂ −intC(x), which
is obtained using Proposition 1.3 and Proposition 1.4 of [19], it follows from (10) that
F(x, γ (t)) ⊂ −intC(x), and this concludes the proof of (i).

In order to prove (i i), we must first note that the definition in (2) provides

P−1(y) = {x ∈ Ω : y ∈ P(x)} = {x ∈ Ω : F(x, y) ⊂ −intC(x)}, (11)

where the second equality follows from the definition of the set, P(x), in (9). Given
x0 ∈ P−1(y), the second equality in (11), and the fact that −intC(x) is an open
set, if we apply h2, then we know there exists an open set, Vx0 ⊂ Ω , such that
F(x, y) ⊂ −intC(x), for all x ∈ Vx0 . Hence, P

−1(y) is open, which proves the first
statement in (i i). The definition in (11) implies that P−1(y) ⊆ Ω for all y ∈ Ω . In
order to complete the proof of (i i), it is sufficient to prove that Ω ⊆ ⋃

y∈Ω P−1(y).
Therefore, suppose x ∈ Ω . Item (i) ensures that P(x) �= ∅, which implies that there
exists y ∈ P(x). Thus, x ∈ P−1(y) for some y ∈ Ω , which concludes the proof of
item (i i).

To prove (i i i), we note thath4 and (11) imply that P−1(y0)c={x ∈Ω : F(x, y0) �⊂
−intC(x)} ⊂ D, for some y0 ∈ Ω , and D ⊂ Ω is a compact set. Given item i , we
know P−1(y0) is an open set. Furthermore, because D is compact, we can conclude
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from the last inclusion that P−1(y0)c is a compact set, and this completes the proof
our proposition. ��
Now we are ready to prove our main result: Theorem 3.1.

Proof In order to create a contradiction, let us suppose that solution set S∗ = ∅. Also,
assume G : Ω ⇒ Ω is the set-valued mapping defined by

G(y) := P−1(y)c. (12)

Further define set D := ⋂
y∈Ω G(y). Therefore, we have two possibilities for set

D: D �= ∅ or D = ∅. If D �= ∅, i.e.,
⋂

y∈Ω P−1(y)c �= ∅, then we have
⋃

y∈Ω P−1(y) �= Ω, which contradicts (i i) in Lemma 3.1. Hence, we can conclude
that D = ∅, i. e.,

⋂
y∈Ω G(y) = ∅.

Thus, given our assumption that S∗ = ∅, combining the definition in (12) and
statements (i i) and (i i i) in Lemma 3.1, we can conclude that for each y ∈ Ω , setG(y)
is closed, and there exists y0 ∈ Ω such that G(y0) is a compact set. Hence, because⋂

y∈Ω G(y) = ∅, Lemma 2.1 implies that there exist y1, . . . , ym ∈ Ω such that
conv{y1, . . . , ym} �⊂ ⋃m

i=1 G(yi ). Therefore, there also exists x ∈ conv{y1, . . . , ym}
such that x /∈ G(yi ) = P−1(yi )c for all i = 1, . . .m. Equivalently, there exists
x ∈ conv{y1, . . . , ym} such that x ∈ P−1(yi ) for all i = 1, . . .m. Hence, we can
conclude that

∃ y1, . . . , ym ∈ Ω, ∃ x ∈ conv{y1, . . . , ym}; yi ∈ P(x), ∀ i = 1, . . .m. (13)

Considering S∗ = ∅, items (i) in Lemma 3.1 implies that P(x) is convex. When
combined with the relations in (13), this implies that there exists x ∈ Ω such that
x ∈ P(x). These inclusions and the definition in (9) imply that there exists x ∈ Ω

such that F(x, x) ⊂ −intC(x). This contradicts assumption h1 in Theorem 3.1.
Therefore, solution set S∗ �= ∅, and this concludes the proof of Theorem 3.1. ��

4 Conclusions

In this paper, we examined the basic intrinsic properties of the generalized vector
equilibrium problem on Hadamard manifolds, and we briefly discussed equilibrium
problem theory in this context. Our results should provide the first step to a more
general theory, which includes hyperbolic spaces and algorithms for solving problems
on Hadamard manifolds.
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