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Abstract Dual decomposition has been successfully employed in a variety of dis-
tributed convex optimization problems solved by a network of computing and
communicating nodes. Often, when the cost function is separable but the constraints
are coupled, the dual decomposition scheme involves local parallel subgradient calcu-
lations and a global subgradient update performed by a master node. In this paper, we
propose a consensus-based dual decomposition to remove the need for such a master
node and still enable the computing nodes to generate an approximate dual solution
for the underlying convex optimization problem. In addition, we provide a primal
recovery mechanism to allow the nodes to have access to approximate near-optimal
primal solutions. Our scheme is based on a constant stepsize choice, and the dual and
primal objective convergence are achieved up to a bounded error floor dependent on
the stepsize and on the number of consensus steps among the nodes.

Keywords Distributed convex optimization · Dual decomposition ·
Primal recovery · Consensus algorithm · Subgradient optimization ·
Epsilon-subgradient · Ergodic convergence

Mathematics Subject Classification 90C25 · 90C30 · 90C46 · 90C59

B Andrea Simonetto
a.simonetto@tudelft.nl

Hadi Jamali-Rad
h.jamalirad@tudelft.nl

1 Faculty of Electrical Engineering, Mathematics, and Computer Science,
Delft University of Technology, 2826 CD Delft, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-015-0758-0&domain=pdf


J Optim Theory Appl (2016) 168:172–197 173

1 Introduction

Lagrangian relaxation and dual decomposition are extremely effective in solving
large-scale convex optimization problems [1–6]. Dual decomposition has also been
employed successfully in the field of distributed convex optimization, where the opti-
mization problem requires to be decomposed among cooperative computing entities
(called in the following simply by nodes). In this case, the optimization problem is
generally divided into two steps, a first step pertaining the calculation of the local
subgradients of the Lagrangian dual function, and a second step consisting of the
global update of the dual variables by projected subgradient ascent. The first step can
typically be performed in parallel on the nodes, whereas the second step has often to
be performed centrally, by a so-called master node (or data-gathering node, or fusion
center), which combines the local subgradient information.

Even though by solving the dual problem, one obtains a lower bound on the optimal
value of the original convex problem, in practical situations, one would also like to
have access to an approximate primal solution. However, even with the availability
of an approximate dual optimal solution, a primal one cannot be easily obtained. The
reason is that the Lagrangian dual function is generally nonsmooth at an optimal point,
thus an optimal primal solution is not a trivial combination of the extreme subproblem
solutions. Methods to recover approximate (near-optimal) primal solutions from the
information coming from dual decomposition have been proposed in the past [4,7–13]
(and references therein). In one way or another, all these methods use a combination
of all the approximate primal solutions that are generated, while the dual decompo-
sition scheme converges to a near-optimal dual solution. A possible choice for the
combination is the ergodic mean [4,11,14].

Among the dual decomposition schemeswith primal recoverymechanism available
in the literature, we are interested here in the ones that employ a constant stepsize in
the projected dual subgradient update. The reasons are twofold. First of all, a constant
stepsize yields faster convergence to a bounded error floor, which is fundamental
in real-time applications (e.g., control of networked systems). In addition, the error
floor can be tuned by trading-off the number of iterations required and the value of
the stepsize. The second reason is that in many situations, the underlying convex
optimization problem is not stationary, but changes over time. Having in mind the
development of methods to update the dual variables while the optimization problem
varies [15–17], it is of key importance to employ a constant stepsize. In this way,
the capability of the subgradient scheme to track the dual optimal solutions does not
change over time due to a vanishing stepsize approach.

In this paper, we propose a way to remove the need for a master node to collect the
local subgradient information coming from the different nodes and generate a global
subgradient. The reason is that in distributed systems, the nodes are connected via
an ad-hoc network and the communication is often limited to geographically nearby
nodes. It is therefore impractical to collect the local subgradient information in one
physical location, whereas it is advisable to enable the nodes themselves to have
access to a suitable approximation of the global subgradient. We use consensus-based
mechanisms to construct such an approximation. Consensus-based mechanisms have
been used in the primal domain bothwith constant stepsizes [18,19] andwith vanishing
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ones [19–21], however, to the best of the authors’ knowledge, they have not been
used in the dual domain, and not together with primal recovery. An interesting, but
different, approach applying consensus on the cutting-plane algorithm to solve the
master problem has been very recently proposed in [22]. Our main contributions can
be described as follows.

First, we develop a constant stepsize consensus-based dual decomposition. Our
method enables the different nodes to generate a sequence of approximate dual optimal
solutions whose dual cost eventually converges to the optimal dual cost within a
bounded error floor. Under the assumptions of convexity, compactness of the feasible
set, and Slater’s condition, the convergence goes as O(1/k), where k is the number
of iterations. The error depends on the stepsize and on the number of consensus steps
between subsequent iterations k. Furthermore, the nodes are exchanging subgradient
information only with their nearby neighboring nodes.

Then, since in ourmethod, each nodemaintains its own approximate dual sequence,
we provide an upper bound on the disagreement among the nodes and we prove its
convergences to a bounded value.

Finally, we propose a primal recovery scheme to generate approximate primal solu-
tions from consensus-based dual decomposition. This scheme is proven to converge
to the optimal primal cost up to a bounded error floor. Once again, under the same
assumptions, the convergence goes as O(1/k) and the error depends on the stepsize
and on the number of consensus steps.
Organization Section 2 describes the problem setting, our main research question, and
some sample applications. In Sect. 3, we cover the basics of dual decomposition to
pinpoint themain limitation, i.e., the need for amaster node.We propose, develop, and
investigate the convergence results of our algorithm in Sects. 4 and 5. All the proofs are
contained in Sects. 6 and 7. In Sect. 8, we collect numerical simulation results. Future
research questions and conclusions are discussed in Sects. 9 and 10, respectively.

2 Problem Formulation

Notation For any two vectors x, y ∈ R
n , the standard inner product is indicated

as 〈x, y〉, while its induced (Euclidean) norm is represented as ‖x‖2. A vector x
belongs to R

n+ iff it is of size n, and all its components are nonnegative (i.e., Rn+ is
the nonnegative orthant). For any vectors x ∈ R

n , its components are indicated by xi ,
i ∈ {1, . . . , n}. The vector 1n is the column vector of length n containing only ones.
We indicate by In the identity matrix of size n. For any real-valued squared matrix
X ∈ R

n×n , we say X � 0 or X � 0 iff the matrix is positive semi-definite or negative
semi-definite, respectively. We also write X ∈ S

n+, iff X � 0. For any real-valued
squared matrix X ∈ R

n×n , the norm ‖X‖F represents the Frobenius norm, while the
trace is indicated by tr[X]. The symbol (·)T is the transpose operator,⊗ represents the
Kronecker product, ◦ stands for map composition, conv[·] is the convex hull, vec(·) is
the vectorization operator, while PX [·] is the projection operator onto the set X . The
ε-subgradient of a concave function q(x) : X ⊆ R

n → R, for the nonnegative scalar
ε � 0, at x′ ∈ X is a vector g̃ ∈ R

n such that
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〈 g̃, y − x′〉 � q( y) − q(x′) − ε, ∀ y ∈ X. (1)

Furthermore, the collection of ε-subgradients of q(x) at x′ is called the ε-
subdifferential set, denoted by ∂εqx(x′). If ε = 0, the ε-subgradient is the regular
subgradient and we drop the ε in the notation of the subdifferential.

FormulationWeconsider a convex optimization problem defined on a network of com-
puting and communicating nodes. Let the nodes be labeled with i ∈ V = {1, . . . , n},
andwe equip each of themwith the local (private) convex function fi (xi ) : R → R. Let
x be the stacked vector of all the local decision variables, i.e., x = (x1, . . . , xn)T.Let
the functions gi (xi ) : R → R, i ∈ V be convex. Let A0, Ai , i ∈ V bed×d real-valued
square and symmetric matrices. Let Xi ⊂ R, i ∈ V be convex and compact sets, and
let X := ∏

i∈V Xi . We are interested in solving decomposable convex optimization
problems of the form,

minimize
xi∈Xi ,i∈V

f (x) :=
∑

i∈V
fi (xi ) (2a)

subject to
∑

i∈V
gi (xi ) � 0, (2b)

A0 +
∑

i∈V
Ai xi � 0. (2c)

In order to simplify our notation (and without loss of generality), we have chosen to
work with scalar decision variables xi , with one scalar inequality and with one linear
matrix inequality. The following assumptions are in place.

Assumption 2.1 (Convexity and compactness) The cost functions fi (xi ) and the con-
straint functions gi (xi ) are convex in xi for each i . The sets Xi are convex and compact
(thus, bounded). The matrices A0, Ai , i ∈ V are real-valued square and symmetric.

Assumption 2.2 (Existence of solution) The feasible set F := {x ∈ X |(2b) and (2c)}
is nonempty; for all x ∈ F , the cost function f (x) > −∞, and there exists a vector
x ∈ F such that f (x) < ∞.

Assumption 2.3 (Slater condition) There exists a vector x̄ ∈ R
n that is strictly feasi-

ble for problem (2), i.e.,

∑

i∈V
gi (x̄i ) < 0, and A0 +

∑

i∈V
Ai x̄i � 0.

Assumption 2.4 (Communication network) The computing nodes communicate syn-
chronously via undirected time-invariant communication links.

Assumption 2.1 is required to ensure a convex program with compact feasible set.
Assumption 2.2 ensures the existence of a solution for the optimization problem (2).
Let x∗ be such a (possibly not unique) solution (i.e., a minimizer) and let f ∗ be the
unique minimum. Assumption 2.3 is often required in dual decomposition approaches
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in order to guarantee zero duality gap and to be able to derive the optimal value
of the optimization problem (2) by solving its dual. In addition, Slater condition
helps in bounding the dual variables, which is crucial in our convergence analysis.
Assumption 2.4 is required to simplify the convergence analysis. One might be able
to loosen it and require only asynchronous communications, but this is left for future
research since it is not the core idea of this paper. By Assumption 2.4, we can define
an undirected communication graph G consisting of a vertex set V as well as an edge
set E . For each node i , we call neighborhood, or Ni , the set of the nodes it can
communicate with.

The main research problem we tackle in this paper can be stated as follows.
Research Problem: We would like to devise an algorithm that enables each node, by
communicating with their neighbors only, to construct a sequence of approximate
local optimizers {xki }, for which their primal objective sequence { f (xk)} eventually
converges to f ∗ (possibly) up to a bounded error floor.

Our approach toward this problem is to devise a consensus-based dual decomposi-
tion with approximate primal recovery.
Sample Applications Problems as (2) appear in many contexts: The first example
we cite is the network utility maximization (NUM) problem, where a group of
communication nodes try to maximize their utility subject to a resource allocation
constraint [23,24]. NUM problems are very relevant in communication systems. Gen-
eralizations of NUM problems, where the cost function is separable and the variables
are constrained by linear inequalities, can also be handled by (2), and have been con-
sidered, e.g., in model predictive controller design [25] (which is one of the workhorse
of nowadays control theory). Another sample application is sensor selection, where a
set of nodes try to decide which one of them should be activated to perform a certain
task based on a given metric. This is in general a combinatorial problem, yet it can be
relaxed to a semi-definite program, which is a generalization of (2), [26,27]. In the
latter example, the constraint (2c) plays an important role.
Multi-agent/Multiuser/Networked Problems If the constraints (2b) and (2c) involve
only local functions, that is, the sum is only over the neighbors of a particular i , then
we have what is known as multi-agent (or multiuser, or networked) problem. These
problems can be further complicated by the presence of global decision variables. In
all these cases, due to the presence of neighborhood constraint functions only, the
dual variables associated with them can be computed locally in the neighborhood
(we can refer to them as link dual variables). Therefore, by a proper use of dual
decomposition,we can devise distributed algorithms that can be implemented on nodes
and connecting links. Relevant recent work on these problems is reported in [28–35].
In our case, the constraints (2b)–(2c) involve constraint functions from all the nodes,
in all the decision variables together; therefore, the proposed methods for multi-agent
problems cannot be directly applied in our case. In general, the link dual variables
become a network-wide dual variable in our case, and we retrieve the standard dual
decomposition scheme with the need for a master node to compute such a global
network-wide dual variable.
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3 Dual Decomposition

The Lagrangian function L(x, μ, G) : Rn × R+ × S
d+ → R is formed, as a first step

of dual decomposition,

L(x, μ, G) :=
∑

i∈V
fi (xi ) + μ

(∑

i∈V
gi (xi )

)
− tr

[(
A0 +

∑

i∈V
Ai xi

)
G
]
, (3)

where μ ∈ R+ is the dual variable associated with the constraint (2b), and G ∈ S
d+ is

the dual variable associatedwith (2c). Further, the dual function q(μ, G) : R+×S
d+ →

R can be defined as
q(μ, G) := min

x∈X{L(x, μ, G)}. (4)

The set X is compact,whichmeans that the functionq(μ, G) is continuous onR+×S
d+.

Furthermore, the function q(μ, G) is concave. For any pair of dual variables (μ, G),
we can compute the value of the primal minimizers and their set:

x̃ := argmin
x∈X

{L(x, μ, G)}, X̃ := {x ∈ X |q(μ, G) = L(x, μ, G)} . (5)

Given the compactness of X and the form of the dual function (4), we can define the
subdifferential of q(μ, G) at μ and G as the following sets

∂qμ(μ, G) := conv
[∑

i∈V
gi (x̃i )|x̃ ∈ X̃

]
, (6a)

∂qG(μ, G) := conv
[

−
(
A0 +

∑

i∈V
Ai x̃i

)
|x̃ ∈ X̃

]
, (6b)

Subgradient choices for q(μ, G) are therefore

h(x̃) :=
∑

i∈V
gi (x̃i ) ∈ ∂qμ(μ, G), Q(x̃) := −A0 −

∑

i∈V
Ai x̃i ∈ ∂qG(μ, G), (7)

for any choice of x̃ ∈ X̃ . In addition, since X is compact and the constraints (2b)–(2c)
are represented by continuous functions, the subgradients are bounded, and we set,
for all i ∈ V

‖hi (x)‖2 � max
xi∈Xi

∥
∥
∥gi (xi )

∥
∥
∥
2

=: L , ‖Qi (x)‖F � max
xi∈Xi

∥
∥
∥− A0/n − Ai xi

∥
∥
∥
F

=: Q,

(8)
where we have defined hi (x) := gi (xi ), and Qi (x) := −A0/n − Ai xi . Finally, the
Lagrangian dual problem can be written as

q∗ := sup
μ∈R,G∈Sd+

{q(μ, G)}, (9)

123



178 J Optim Theory Appl (2016) 168:172–197

and by Slater condition (Assumption 2.3), strong duality holds: q∗ = f ∗.
Since theoriginal convexoptimizationproblem (2) is decomposable, theLagrangian

function is separable as

L(x, μ, G) =
∑

i∈V

(
fi (xi ) + μgi (xi ) − tr

[(
A0/n + Ai xi

)
G
])

=:
∑

i∈V
Li (xi , μ, G),

(10)
and so is the dual function

q(μ, G) :=
∑

i∈V
min
xi∈Xi

{Li (xi , μ, G)} :=
∑

i∈V
qi (μ, G), (11)

and its subgradients.
Dual decomposition with approximate primal recovery as defined in [4] is summa-

rized in the following algorithm.

Dual decomposition with primal recovery

1. Initialize μ0 ∈ R+, G0 ∈ S
d+, choose a constant stepsize α;

2. Local dual optimization: compute in parallel the local dual functions and their primal optimizers

qi (μ
k , Gk ) = min

xi∈Xi

{
Li
(
xi , μ

k , Gk
)}

, x̃ki = argmin
xi∈Xi

{
Li
(
xi , μ

k , Gk
)}

, (12a)

as well as their subgradients gi (x̃
k
i ) and −A0/n − Ai x̃

k
i ;

3. Primal recovery step: compute in parallel the ergodic sum, for k � 1

xki = 1
k

k∑

t=1
x̃ ti ; (12b)

4. Dual update: update the variables μk , Gk as

μk+1 = PR+
[
μk + α

∑

i∈V
gi (x̃

k
i )
]

(12c)

Gk+1 = P
S
d+

[
Gk − α

(
A0 + ∑

i∈V
Ai x̃

k
i

)]
. (12d)

This algorithm generates a converging sequence {xki } as detailed in the following
theorem.

Theorem 3.1 Let the sequence {μk, Gk, xk} be generated by the iterations (12). Let
L and Q be defined as in (8). Under Assumptions 2.1 till 2.3,

(a) the dual variables are bounded, i.e., ‖μk‖2 � Λ0 < ∞, ‖Gk‖F � Γ0 < ∞, for
all k � 1;

(b) an upper bound on the primal cost of the vector xk , k � 1, is given by

f (xk) � f ∗ + Λ2
0 + Γ 2

0

2αk
+ αn2(L2 + Q2)

2
;

(c) a lower bound on the primal cost of the vector xk , k � 1, is given by

f (xk) � f ∗ − Λ2
0 + Γ 2

0

αk
.
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Proof The proof follows from [4, Lemma 3 and Proposition 1]. Since our optimization
problem involves also a linear matrix inequality, some extra steps are needed in the
proof of part (c). To be more specific, by following the same steps in the proof of [4,
Proposition 1(c)], we arrive at the following inequality

f (xk) � f ∗ − μ∗h(xk) − tr[Q(xk)G∗]. (13)

where μ∗ � 0 and G∗ � 0 are the optimal dual variables. We now need to find a
lower bound for the rightmost term of (13). By similar arguments of the proof of [4,
Proposition 1(a)], we obtain for all k � 1

h(xk) � μk

αk
,

Gk

αk
− Q(xk) � 0. (14)

Given the two positive semi-definite matrices X and Y of dimension n × n, we know
that tr[X Y ] � λmin(X)tr[Y ] � 0, [36, Lemma 1], which means

tr
[(Gk

αk
− Q(xk)

)
G∗] � 0, thus tr

[(Gk

αk

)
G∗] � tr[Q(xk)G∗].

This implies that for k � 1

tr[Q(xk)G∗] � tr
[Gk

αk
G∗] =

∣
∣
∣tr
[Gk

αk
G∗]

∣
∣
∣ � 1

αk
‖Gk‖F‖G∗‖F � Γ 2

0

αk
, (15)

where we have used Cauchy–Schwarz inequality [37]. By combining (15) and (14)
with (13), we obtain the lower bound

f (xk) � f ∗ − μ∗h(xk) − tr[Q(xk)G∗] � f ∗ − Λ2
0

αk
− Γ 2

0

αk
,

and the claim is proven. ��

Although the dual decomposition method of [4] presents several advantages, in
practice, the nodes will need to sum the subgradients coming from the whole network
in Step 4 in order to maintain common dual variables. This is often not practical in
large networks, because it would call for a significant communication overhead.

In the following sections, (i)wepropose a consensus-baseddual decompositionwith
primal recovery mechanism to modify Step 4 in order to make it suitable for limited
information exchange (i.e., communication only with neighboring nodes); (ii) we
prove dual and primal objective convergence of the proposed method up to a bounded
error floor which depends (among other things) on the number of communication
exchange with the neighboring nodes for each iteration k.
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4 Basic Relations

Lemma 4.1 Suppose Assumption 2.1 till 2.3 hold. Let μ̄ � 0, Ḡ � 0 be a pair of dual
variables for which the set D̄ := {(μ � 0, G � 0)|q(μ, G) � q(μ̄, Ḡ)} is nonempty.
Then, the set D̄ is bounded and we have

max
(μ,G)∈D̄

‖μ‖2 + ‖G‖F � 1

γ
( f (x̄) − q(μ̄, Ḡ)),

where γ := min
{∑

i∈V −gi (x̄i ), λmin
(
A0 + ∑

i∈V Ai x̄i
)}
, λmin(·) is the smallest

eigenvalue and x̄ is a vector satisfying the Slater condition.

Proof The lemma follows from [4, Lemma 1] with minor modifications. In particular,
we use [36, Lemma 1] to bound the inner product

tr
[(

A0 +
∑

i∈V
Ai x̄i

)
Gk
]

� λmin

(
A0 +

∑

i∈V
Ai x̄i

)
tr[Gk],

and the fact that ‖G‖F � tr[G], [37]. The remaining steps are omitted since similar
to [4, Lemma 1]. ��

It follows from the result of the preceding lemma that under Slater, the dual optimal
set D∗ is nonempty. Since D∗ := {(μ � 0, G � 0)|q(μ, G) � q∗}, by using
Lemma 4.1, we obtain

max
(μ∗,G∗)∈D∗ ‖μ∗‖2 + ‖G∗‖F � 1

γ
( f (x̄) − q∗).

Furthermore, although the dual optimal value q∗ is not a priori available, one can
compute a looser bound by computing the dual function for some couple (μ̃ � 0, G̃ �
0). Owning to optimality, q∗ � q(μ̃, G̃), thus

max
(μ∗,G∗)∈D∗ ‖μ∗‖2 + ‖G∗‖F � 1

γ
( f (x̄) − q(μ̃, G̃)).

This result is quite useful to render the dual decomposition method easier to study. In
fact, as in [4], we can modify the sets over which we project in Step 4 by considering
a bounded superset of the dual optimal solution set. This means that we can substitute
Step 4 in (12) with

μk+1 = PDμ

⎡

⎣μk + α
∑

i∈V
gi (x̃

k
i )

⎤

⎦ , Dμ :=
{

μ � 0
∣
∣
∣ ‖μ‖2 � f (x̄) − q(μ̃, G̃)

γ
+ r

}

(16a)

Gk+1 = PDG

[
Gk − α

(
A0 +

∑

i∈V
Ai x̃

k
i

)]
, DG :=

{
G � 0

∣
∣
∣ ‖G‖F � f (x̄) − q(μ̃, G̃)

γ
+ r

}

(16b)
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for a given scalar r > 0. The nice feature of this modification is that both Dμ and DG
are now compact convex sets. This does not increase computational complexity, and
it is a useful modification, for it provides a leverage to derive the convergence rate

results. In the following, for convergence purposes, we will use r � f (x̄)−q(μ̃,G̃)
γ

.

5 Consensus-Based Dual Decomposition

We consider now a consensus-based update to enforce the update rule of dual decom-
position in (16) to fit the constraint of a limited communication network. Our approach
is inspired by the one of [18] but applied to the dual domain. First of all, we define a
consensus matrix W ∈ R

n×n , with the following properties:

[W ]i j = 0 if j /∈ Ni ∪ {i}, W = WT, W1n = 1n, ρ

[

W − 1n1Tn
n

]

� ν < 1, (17)

whereρ[·] returns the spectral radius and ν is an upper boundon the value of the spectral
radius. It is a common practice to generate such consensus matrices; a possible choice
is the Metropolis-Hasting weighting matrix [38,39].

A consensus iteration is a linear mapping C(x) : x �→ Wx with the property that
the result of its repeated application converges to the mean of the initial vector, i.e.,
for x ∈ R

n

lim
ϕ→∞ C ◦ C ◦ · · · ◦ C︸ ︷︷ ︸

ϕ times

(x) = lim
ϕ→∞ Wϕx = 1n1Tn

n
x.

This averaging property is ensured, for example, by conditions as the ones in (17). In
addition, given the structure ofW in (17), each consensus iteration involves only local
communications (only the neighboring nodes will share their local variables), which
will be the key point of our modification. In the following, we will study multiple
consensus steps, in the sense that the computing nodes will run multiple consensus
iterations (each of which involving only local communications) between subsequent
iterations k’s. We let the number of consensus steps be ϕ ∈ N. In this case, the
consensus mapping will be of the form x �→ Wϕx. Since we will enable each node
to generate its own dual variables on which consensus will be enforced, we start by
defining local versions of μ and G as μi ∈ R+ and Gi ∈ S

d+, respectively. Next, we
define our consensus-based dual decomposition as the following algorithm.

We highlight that the proposed algorithm CoBa-DD (or (18)) involves only local
communication. The only communication involved is in the ϕ consensus steps, each
of which requiring the nodes to share information with their neighbors. Also, note that
computing ( f (x̄)−q(μ̃, G̃))/γ (for the definition of Dμ and DG) is not a very difficult
task, since a Slater vector is usually easy to find by inspection, and both f (x̄) and γ

can be computed by a consensus algorithm run in the initialization step of CoBa-DD.
In order to analyze dual and primal convergence of (18), we start by some basic

results. First, given that the sets Dμ and DG are compact, and that μ0
i and G0

i are
picked to be bounded, the dual variables μk

i and Gk
i are bounded for each k � 0.
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Consensus-based dual decomposition with primal recovery (CoBa-DD)

1. Initialize μ0
i ∈ R+, G0

i ∈ S
d+, i ∈ V , choose α > 0, determine a Slater vector x̄ and the sets

Dμ and DG of (16) with an arbitrarily picked μ̃, G̃ and a scalar r � f (x̄)−q(μ̃,G̃)
γ ; pick a number of

consensus steps ϕ;
2. Local dual optimization: compute in parallel the local dual functions and their primal optimizers
qi (μ

k
i , G

k
i ) = min

xi∈Xi
{Li (xi , μk

i , G
k
i )}, x̃ki = argmin

xi∈Xi
{Li (xi , μk

i , G
k
i )}, (18a)

as well as their subgradients gi (x̃
k
i ) and −A0/n − Ai x̃

k
i ;

3. Primal recovery step: compute in parallel the ergodic sum, for k � 1

xki = 1
k

k∑

t=1
x̃ ti ; (18b)

4. Update the dual variables μk
i , G

k
i as

μk+1
i = PDμ

[ ∑

j∈V
[Wϕ ]i j

(
μk
j + αg j (x̃

k
j )
)]

(18c)

Gk+1
i = PDG

[ ∑

j∈V
[Wϕ ]i j

(
Gk

j − α(A0/n + A j x̃
k
j )
)]

. (18d)

In particular, we have

‖μk
i ‖2 � Λ < ∞, ‖Gk

i ‖F � Γ < ∞. (19)

Lemma 5.1 Let q(x) : X → R be a concave function. Let the set X ⊂ R
n be convex

and compact, and in particularmaxx∈X ‖x‖2 � η. There exist two finite scalars ζ > 0
and τ > 0 such that, for all x ∈ X, for all g(x) ∈ ∂qx(x), and for all vectors ν ∈ R

n

with ‖ν‖2 � τ , the following holds

g(x) + ν ∈ ∂ζqx(x).

Proof The claim is proven by using the definition of subgradient of a concave func-
tion (1). Since q is a concave function, for all x, y ∈ X, ν ∈ R

n ,

q( y) − q(x) � 〈g(x), y − x〉 = 〈g(x) + ν, y − x〉 − 〈ν, y − x〉
� 〈g(x) + ν, y − x〉 + ‖ν‖2‖ y − x‖2 � 〈g(x) + ν, y − x〉 + 2τη.

For τ � ζ/(2η), the claim follows. ��
Lemma 5.2 Let the initial dual variables in (18),μ0

i andG
0
i for all i ∈ V , be bounded.

LetW satisfy the conditions (17). Then, the following quantity is bounded by a certain
c0 � 0,

∥
∥
∥
∑

j∈V

[
Wϕ − 1n1Tn /n

]

i j

(
μ0

j + αg j (x̃
0
j )
)∥
∥
∥
2

+
∥
∥
∥
∑

j∈V

[
Wϕ − 1n1Tn /n

]

i j

(
G0

j − α(A0/n + A j x̃
0
j )
)∥
∥
∥
F

� c0, ∀i ∈ V .

(20)
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Proof The proof follows given the compactness of X and (therefore) the boundedness
of the subgradients. ��

We now present the main convergence results.

Theorem 5.1 (Dual variable agreement) Let μ̄k, Ḡ
k
be the mean values of the dual

variables generated via the algorithm (18), i.e.,

μ̄k = 1

n

∑

i∈V
μk
i , Ḡ

k = 1

n

∑

i∈V
Gk

i .

Let Assumptions 2.1 till 2.3 hold and let W satisfy the conditions (17). Let μ0
i and G0

i
for i ∈ V be bounded and let β0 � c0, with c0 defined as in (20). Define L and Q as
in (8) and let

M := L + Q, p := νδβ0

β0 + αM
.

There exists a number of consensus iterations ϕ̄, such that if ϕ � ϕ̄ + δ, δ � 0, k � 1,
then the dual variables reach consensus as

‖μk+1
i − μ̄k+1‖2 � 2pk−1νδβ0 + 2p αM

1 − pk−1

1 − p
, ∀i ∈ V,

‖Gk+1
i − Ḡ

k+1‖F � 2pk−1νδβ0 + 2p αM
1 − pk−1

1 − p
, ∀i ∈ V .

Furthermore,

ϕ̄ = log(β0) − log(4n(1 + d2)(β0 + αM))

log(ν)
.

Corollary 5.1 Under the same conditions of Theorem 5.1, we obtain

lim
k→∞ ‖μk

i − μ̄k‖2 � 2p αM

1 − p
, lim

k→∞ ‖Gk
i − Ḡ

k‖F � 2p αM

1 − p
, ∀i ∈ V .

Theorem 5.1 and Corollary 5.1 specify how the consensus is reached among the
nodes on the value of the dual variables while the algorithm (18) is running. Specifi-
cally, the consensus is reached exponentially fast to a steady-state bounded error floor.
This bounded error depends on α (which can be tuned), and on p, which can also be
tuned by varying ϕ. In particular, for ϕ → ∞, due to the fact that ν < 1 in condi-
tions (17), then p = 0 and we obtain back the usual dual decomposition scheme with
perfect agreement among the nodes.

Remark 5.1 Computing the lower bound on the number of consensus steps ϕ̄ can be
done during the initialization of the algorithm. We can always pick β0 big enough so

that β0 � αM , which means that ϕ̄ can be simplified as ϕ̄ = log(1/(4n(1+d2)))
log(ν)

, which
can be determined in a distributed way [40].
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Theorem 5.2 (Dual objective convergence) Let μk, Gk be the dual variables gener-
ated via the algorithm (18). Let μ0

i and G0
i for all i ∈ V be bounded and let β0 be

defined as in Theorem 5.1. Define L and Q as in (8) and let M := L + Q. Choose a
scalar τ such that β0/α � τ . Let ζ be defined as in Lemma 5.1 for the concave function
q(μ, G) and the choice of τ . Let q∗ be the optimal value of q(μ, G). Let Assump-
tions 2.1 till 2.3 hold and let W satisfy the conditions (17). Let ϕ � ϕ̄ + δ, δ � 0 and
let ϕ̄ be defined as in Theorem 5.1. The following holds true.
If q∗ = ∞, then

lim sup
k→∞

q(μk
i , G

k
i ) = ∞, ∀i ∈ V,

If q∗ < ∞, then

lim sup
k→∞

q(μk
i , G

k
i ) � q∗ − αn(M + τ)2/2 − n(β∞(9M + 3τ) + ζ ), ∀i ∈ V,

with β∞ = p αM
1−p and p = νδβ0

β0+αM .

Theorem5.2 implies dual objective convergenceup to abounded error floor.Conver-
gence is evenmore evident ifwe remember that owning to optimality, q(μk

i , G
k
i ) � q∗,

and therefore, if we define q∞
i := lim supk→∞ q(μk

i , G
k
i ), we obtain

0 � q∞
i − q∗ � −αn(M + τ)2/2 − n (β∞(9M + 3τ) + ζ ) =: −ε2.

Note that the rightmost term (−ε2) represents a measure of sub-optimality of the
approximate solution.

Theorem 5.3 (Primal objective convergence) Let μk, Gk, xk be the dual and primal
variables generated via the algorithm (18). Let μ0

i and G0
i for all i ∈ V be bounded

and let β0 be defined as in Theorem 5.1. Define L and Q as in (8), Λ and Γ as in (19),
and let M := L + Q. Choose a scalar τ such that β0/α � τ . Let ζ be defined as in
Lemma 5.1 for the concave function q(μ, G) and the choice of τ . Let f ∗ be the optimal
value of f (x). Let Assumptions 2.1 till 2.3 hold and let W satisfy the conditions (17).
Let ϕ � ϕ̄ + δ, δ � 0 and let ϕ̄ be defined as in Theorem 5.1. The following holds
true.

(a) An upper bound on the primal cost of the vector xk , k � 1, is given by

f (xk) � f ∗ + Λ2 + Γ 2

2kα/n
+ ek;

(b) A lower bound on the primal cost of the vector xk , k � 1, is given by

f (xk) � f ∗ − 9(Λ2 + Γ 2)

2kα/n
− ek;
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where

ek = αn(M + τ)2

2
+ nτ(Λ + Γ ) + n(β0(6M + 3τ) + ζ ).

Theorem 5.3 formulates convergence of the primal cost up to an error bound ek . The
rate of convergence is O(1/k). We can also distinguish the error terms that come from
the constant stepsize α and the terms that come from the finite number of consensus
steps ϕ. In particular, we can write

ek = αnM2

2︸ ︷︷ ︸
(1)

+ αn(2Mτ + τ 2)

2
+ nτ(Λ + Γ ) + n(β0(6M + 3τ) + ζ )

︸ ︷︷ ︸
(2)

,

and see that the term (1) is due to the constant stepsize, while the term (2) is due to
the finite number of consensus steps. Furthermore, if ϕ → ∞, then c0 = 0, and we
can set β0 = τ = ζ = 0, yielding

lim
ϕ→∞ ek = αnM2

2
.

This is similar to the error level we obtain for the dual decomposition method in (12),
and Theorem 3.1. Theorem 5.3 defines themain trade-offs in designing the algorithm’s
parameters α and ϕ. The larger the stepsize α is, the faster the convergence is, even
though the steady-state error becomes larger. If we increase ϕ, then the communication
effort increases and the error ek decreases.

6 Proof of Theorems 5.1 and 5.2

6.1 Preliminaries

Westart our analysis by rewriting Step 4 of (18) in amore compactway. Let zi ∈ R
1+d2

be the vector defined as zi := (μi , vec(Gi )
T)T, and let zsv be the stacked vector of

all the zi , i ∈ V . Similarly, let hi (x) be the vector hi (x) := (gi (xi ), vec(−A0/n −
Ai xi )T)T, and let hsv(x) the stacked vector of all the hi (x), i ∈ V . Let Z be the
convex set

Z :=
{

z :=
(
μ, vec(G)T

)T ∈ R
1+d2 |μ ∈ Dμ, G ∈ DG

}

, (21)

and let Zsv = ∏n
i=1 Z . The iterations in Step 4 of (18) can be rewritten as

zk+1
sv = PZsv

[
Wϕ ⊗ I1+d2

(
zksv + αhsv(x̃

k)
)]

. (22)
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The iteration (22) represents a consensus-based subgradient method to maximize the
dual function q(μ, G), i.e, the maximization problem

q∗ := max
μ∈Dμ,G∈DG

∑

i∈V
qi (μ, G) ≡ max

z∈Z
∑

i∈V
qi (z), for z = (μ, vec(G)T)T.

In particular, (22) assigns to each node a copy of z, zi , and enforces consensus among
them. Furthermore, by (8), by triangle inequality, and by (19),

‖hi (x)‖2 � ‖hi (x)‖2 + ‖Qi (x)‖F = L + Q = M, ‖hsv(x)‖2 � nM, (23a)

max
z∈Z ‖z‖2 �

√
Λ2 + Γ 2 � Λ + Γ. (23b)

Lemma 6.1 ([18, Lemma 1]) Let xi ∈ R
m, i ∈ V be m-dimensional vectors. Let x̄

be the average value of xi , i ∈ V , i.e., x̄ = 1
n

∑
i∈V xi . The following basic relations

hold,

(a) if ‖xi − x j‖2 � β, ∀i, j ∈ V , then ‖xi − x̄‖2 � n−1
n β;

(b) if ‖xi − x̄‖2 � β, ∀i ∈ V , then ‖xi − x j‖2 � 2β.

Lemma 6.2 ([18, Lemma 2]) Let xk ∈ R
n be an n-dimensional vector, with com-

ponents xi ∈ R, i = 1, . . . , n. Let xk+1 = Wϕxk , with W ∈ R
n×n fulfilling

conditions (17). Let ‖xki − xkj ‖2 � σ , for a bounded σ , and for all i, j = 1, . . . , n.

Then ‖xk+1
i − xk+1

j ‖2 � 2νϕnσ for all i, j = 1, . . . , n.

Lemma 6.3 Let {zksv} be generated by (22) under Assumptions 2.1 till 2.3. Let vki ∈
R
1+d2 , for all i ∈ V be defined as

vki =
∑

j∈V
[Wϕ]i j

(
zkj + αh j (x̃

k)
)
,

and let v̄k be the average value of vki , i ∈ V , i.e., v̄k = 1
n

∑
i∈V vki . There exists a

ϕ̄ � 1, such that if ϕ � ϕ̄ + δ with δ � 0, then

‖vki − v̄k‖2 � β, ∀i ∈ V �⇒ ‖vk+1
i − v̄k+1‖2 � νδβ, ∀i ∈ V, k � 0.

Proof The proof is an adaptation of [18, Lemma 3]. In particular, we can show that
for all i, j ∈ V

‖vki − v̄k‖2 � β �⇒ ‖vk+1
i − vk+1

j ‖2 � 4νϕn(1 + d2)(β + αM). (24)

Therefore, if we choose,

ϕ � log(β) − log(4n(1 + d2)(β + αM))

log(ν)
︸ ︷︷ ︸

=:ϕ̄

+δ, δ � 0,
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then

‖vki − v̄k‖2 � β, ∀i ∈ V �⇒ ‖vk+1
i − vk+1

j ‖2 � νδβ, ∀i, j ∈ V,

and the claim follows from Lemma 6.1(a). In order to prove (24), we proceed as
follows.

‖vki − v̄k‖2 � β, ∀i ∈ V �⇒︸ ︷︷ ︸
Lemma 6.1

‖vki − vkj‖2 � 2β, ∀i, j ∈ V

�⇒ ‖[vki − vkj ]�‖2 � 2β, ∀i, j ∈ V, � = 1, . . . , 1 + d2,

where [·]� extracts the �-th component of a vector. Define

uk+1
i = PZ [vki ] + αhi (x̃

k+1), ∀i ∈ V .

Prior to the consensus, the distance between the iterates can be bounded as

‖uk+1
i − uk+1

j ‖2 = ‖PZ [vki ] + αhi (x̃
k+1) − PZ [vkj ] − αh j (x̃

k+1)‖2
� ‖PZ [vki ] − PZ [vkj ]‖2 + 2αM � ‖vki − vkj‖2 + 2αM � 2(β + αM),

which also implies ‖[uki − ukj ]�‖2 � 2(β + αM). Given that zk+1
i = P[vki ],∀i , after

consensus, we have

‖vk+1
i − vk+1

j ‖2 =
∥
∥
∥
∑

p∈V
[Wϕ]i puk+1

p −
∑

p∈V
[Wϕ] j puk+1

p

∥
∥
∥
2

�
1+d2∑

�=1

∥
∥
∥
[∑

p∈V
[Wϕ]i puk+1

p −
∑

p∈V
[Wϕ] j puk+1

p

]

�

∥
∥
∥
2

=
1+d2∑

�=1

∥
∥
∥
∑

p∈V
[Wϕ]i p[uk+1

p ]� −
∑

p∈V
[Wϕ] j p[uk+1

p ]�
∥
∥
∥
2

=
1+d2∑

�=1

∥
∥
∥
[
Wϕ ũk+1

�

]

i
−
[
Wϕ ũk+1

�

]

j

∥
∥
∥
2
, (25)

where ũk+1
� = ([uk+1

1 ]�, . . . , [uk+1
n ]�)T. As said ‖[uki − ukj ]�‖2 � 2(β + αM) which

means ‖[ũk�]i −[ũk�] j‖2 � 2(β +αM). Thus, by using Lemma 6.2, we can bound (25)
as

‖vk+1
i − vk+1

j ‖2 �
1+d2∑

�=1

∥
∥
∥
[
Wϕ ũk+1

�

]

i
−
[
Wϕ ũk+1

�

]

j

∥
∥
∥
2

� 4νϕn(1+ d2)(β + αM),

which is the rightmost term in (24) and the claim is proven. ��
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6.2 Proof of Theorem 5.1

The quantity ‖v0i − v̄0‖2 is upper bounded by β0 � c0 by Lemma 5.2 (inequality (20)),
thus, ‖v0i − v̄0‖2 � β0. Let us choose ϕ � ϕ̄ + δ, δ � 0, with ϕ̄ determined as in
Theorem 5.1. Then, by Lemma 6.3 and (24), it follows that,

‖v1i − v̄1‖2 � νδβ0

‖v2i − v̄2‖2 � 4νϕn(1 + d2)(νδβ0 + αM) = νδβ0
νδβ0 + αM

β0 + αM

‖v3i − v̄3‖2 � νδβ0
νδβ0

β0 + αM

(νδβ0 + αM

β0 + αM
+ αM

)

‖vki − v̄k‖2 � νδβ0

(
νδβ0

β0 + αM

)k−1

+ αM

(

−1 +
k−1∑

t=0

(
νδβ0

β0 + αM

)t
)

.

Let p := νδβ0
β0+αM , since p < 1, then

‖vki − v̄k‖2 � pk−1νδβ0 + pαM
1 − pk−1

1 − p
=: βk, k � 1 (26)

and by Lemma 6.1(b), we derive ‖vki − vkj‖2 � 2βk .

By using the nonexpansive property of the projection operator, since zk+1
i = P[vki ],

for all i , we can write

‖zk+1
i − zk+1

j ‖2 � ‖vki − vkj‖2 � 2βk, k � 1, (27)

and by Lemma 6.1(a) the claim follows.

6.3 Proof of Theorem 5.2

We define an average value for zksv as z̄k = 1
n

∑
i∈V zki . For convergence purposes,

we need to keep track of the difference z̄k+1 −PZ [v̄k], and thus we define the vectors
yk ∈ R

1+d2 and dk ∈ R
1+d2 as

yk := PZ [v̄k−1], dk := z̄k − yk, k � 1. (28)

Themain idea of the proof is to show that y is updated via an approximate ε-subgradient
method and, then, by using [41, Proposition 4.1], the theorem follows. The first part
is formalized in the following lemma.

Lemma 6.4 Let yk be defined as in (28). Under the same conditions of Theorem 5.2,
for all k � 1,

(a) The quantity ‖dk/α‖2 is upper bounded by βk−1/α � τ (where βk is defined
in (26));
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(b) The following inequalities are true, for all i ∈ V

q( yk) � q(zki ) + 3nMβk−1 (29)

qi ( y) � qi ( yk) + 〈hi (x̃k) + ν, y − yk〉 + εk/n, ∀ y ∈ Z . (30)

(c) The quantity g(x̃k) := ∑
i∈V

(
hi (x̃

k) + dk
α

)
is an εk-subgradient of q( yk) with

respect to y.
(d) The variable yk is updated via an ε-subgradient method

yk+1 = PZ

[
yk + α

n
g(x̃k)

]
, g(x̃k) ∈ ∂εk q y( yk). (31)

And εk = n(βk−1(6M + 3τ) + ζ ).

Proof (a) We start by bounding ‖dk‖2,

‖dk‖2 = 1

n

∥
∥
∥
∑

i∈V

(
PZ [vk−1

i ] − PZ [v̄k−1]
)∥
∥
∥
2

� 1

n

∑

i∈V
‖vk−1

i − v̄k−1‖2 � βk−1,

where we have used the inequality (26) to bound the term ‖vk−1
i − v̄k−1‖2.

(b)Since yk ∈ Z and zki ∈ Z , by the concavity ofqi (z) and the definition of subgradient
of a concave function (1), we can write for all i, j ∈ V

q j ( yk) � q j (zki ) + 〈h, yk − zki 〉, where h ∈ ∂q j,z(zki )

� q j (zki ) + ‖h‖2‖zki − yk‖2 � q j (zki ) + M(‖zki − z̄k‖2 + ‖dk‖2)
� q j (zki ) + M(2βk−1 + βk−1) � q j ( yk) + 3Mβk−1.

In particular, we have used the fact that any subgradient vector of q j (z) is bounded by
M (23a), and inequality (27). If we sum the last relation over j ∈ V , we obtain (29).
In addition for any y ∈ Z , by using Lemma 5.1

qi ( y) � qi (zki ) + 〈hi (x̃k), y − zki 〉 � qi (zki ) + 〈hi (x̃k) + ν, y − zki 〉 + ζ

� qi ( yk) + 〈hi (x̃k) + ν, y − zki 〉 + 3Mβk−1 + ζ

= qi ( yk) + 〈hi (x̃k) + ν, y − yk + yk − zki 〉 + 3Mβk−1 + ζ

� qi ( yk) + 〈hi (x̃k) + ν, y − yk〉 + ‖hi (x̃k)+ν‖2‖ yk − zki ‖2 + 3Mβk−1 + ζ.

Weuse the fact that ‖ν‖2 � τ by construction in Lemma5.1, ‖hi (x̃k)‖2 � M by (23a),
‖zki − z̄k‖2 � 2βk−1 by (27), and ‖dk‖2 � βk−1 by the preceding proof. By using
these inequalities, we can bound

‖hi (x̃k) + ν‖2 � M + τ, ‖ yk − zki ‖2 = ‖zki − z̄k + dk‖2 � 3βk−1,
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and we obtain

qi ( y) � qi ( yk) + 〈hi (x̃) + ν, y − yk〉 + (βk−1(6M + 3τ) + ζ ),

which is (30).
(c) By using the definition of subdifferential (1), the inequality (30) implies (hi (x̃) +
ν) ∈ ∂εk/nqi, y( y) with εk/n = (βk−1(6M + 3τ) + ζ ). Summation over i yields,

q( y) � q( yk) +
〈∑

i∈V
hi (x̃) + ν, y − yk

〉
+ n(βk−1(6M + 3τ) + ζ ),

for any ν, such that ‖ν‖ � τ . Since ‖dk/α‖2 � τ by construction, then we can choose
ν = dk/α, from which the claim follows.
(d) It is sufficient to write explicitly the update rule for yk . Starting from the definition
of yk+1 in (28) and the definition of vki in Lemma 6.3, we obtain

yk+1 = PZ

[1

n

∑

i∈V
vki

]
= PZ

[1

n

∑

i∈V

∑

j∈V
[Wϕ]i j

(
zkj + αh j (x̃

k)
) ]

= PZ

[1

n

∑

i∈V

(
zki + αhi (x̃

k)
) ]

= PZ

[
yk + dk + α

n

∑

i∈V
hi (x̃

k))
]

= PZ

[

yk + α

n

(
∑

i∈V
hi (x̃

k) + dk

α

)]

.

Given part (c) of this Lemma, the claim follows. ��
Proof (of Theorem 5.2) By Lemma 6.4, the sequence { yk} is generated via an εk
subgradient algorithm to maximize q( y). And in particular, k � 1

yk+1 = PZ

[
yk + α/ng(x̃k)

]
, ‖g(x̃k)‖2 � n(M + τ).

Therefore, we can use any standard result on the convergence of approximate sub-
gradient algorithms. For example, by using [41, Proposition 4.1] (with m = 1), the
following holds for the sequence { yk},
If q∗ = ∞, then

lim sup
k→∞

q( yk) = ∞,

If q∗ < ∞, then

lim sup
k→∞

q( yk) � q∗ − αn(M + τ)2/2 − n(β∞(6M + 3τ) + ζ ),

where β∞ = limk→∞ βk−1. Then, from the inequality (29), the claim is proven. ��
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7 Primal Recovery: Proof of Theorem 5.3

7.1 Some Basic Facts

Lemma 7.1 Let yk be defined as (28). Under the same assumptions and notation of
Theorem 5.2,

(a) For any y ∈ Z,

k∑

t=1

〈g(x̃t ), y − yt 〉 � ‖ y1 − y‖22
2α/n

+ k
αn(M + τ)2

2
;

(b) For any y ∈ Z,

k∑

t=1

〈g(x̃t ), y − y∗〉 � ‖ y1 − y‖22
2α/n

+ k
αn(M + τ)2

2
+

k∑

t=1

εt ,

where εt = n(βt−1(6M + 3τ) + ζ ).

Proof We start from the update rule (31). For any y ∈ Z ,

‖ yk+1 − y‖22 =
∥
∥
∥PZ

[
yk + α

n
g(x̃k)

]
− PZ [ y]

∥
∥
∥
2

2
�
∥
∥
∥ yk + α

n
g(x̃k) − y

∥
∥
∥
2

2

� ‖ yk − y‖22 + 2α

n
〈g(x̃k), yk − y〉 + α2(M + τ)2.

where we use the fact that ‖g(x̃k)‖2 = ‖∑i∈V (hi (x̃
k) + dk/α)‖2 � n(M + τ).

Therefore, for any y ∈ Z

〈g(x̃k), y − yk〉 � ‖ yk − y‖22 − ‖ yk+1 − y‖22
2α/n

+ α n(M + τ)2

2
, (32)

and by summing over k, part (a) follows. Since g(x̃k) is an εk-subgradient of the dual
function q at yk , using the subgradient inequality (1),

〈g(x̃k), yk − y∗〉 � q( yk) − q( y∗) + εk � εk,

where the last inequality comes from the optimality condition q( yk) � q( y∗), which
is valid for any yk ∈ Z . In particular, εk is defined in Lemma 6.4(c). We then have

〈g(x̃k), y − y∗〉 = 〈g(x̃k), y − yk〉 + 〈g(x̃k), yk − y∗〉 � 〈g(x̃k), y − yk〉 + εk .

From the preceding relation and (32), we obtain

〈g(x̃k), y − y∗〉 � ‖ yk − y‖22 − ‖ yk+1 − y‖22
2α/n

+ αn(M + τ)2

2
+ εk, k � 1
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and summingover k part (b) follows aswell. In particular,we remark that y1 = PZ [v̄0],
which is bounded, since Z is a compact set. ��

7.2 Proof of Theorem 5.3(a)

Proof By convexity of the primal cost f (x) and the definition of x̃ ki as a minimizer
of the local Lagrangian functions over xi ∈ Xi , we have,

f (xk) � 1

k

k∑

t=1

f (x̃t ) = 1

k

k∑

t=1

∑

i∈V

(
qi (zti ) − 〈zti , hi (x̃t )〉

)
, k � 1. (33)

By Lemma 6.4 inequality (30) with y = zti ∈ Z ,

qi (zti ) − qi ( yt ) � 〈hi (x̃t ), zti 〉 + 〈ν, zti 〉 − 〈hi (x̃t ) + ν, yt 〉 + εt/n,

with εt/n = βt−1(6M + 3τ) + ζ . Summing over i ∈ V ,

∑

i∈V
qi (zti ) � q( yt ) +

∑

i∈V
〈hi (x̃t ), zti 〉 +

∑

i∈V
〈ν, zti 〉 − 〈g(x̃t ), yt 〉 + εt ,

hence,

f (xk) � 1

k

k∑

t=1

(
q( yt ) +

∑

i∈V
〈ν, zti 〉 − 〈g(x̃t ), yt 〉 + εt

)
. (34)

We can use Lemma 7.1(a) with y = 0 ∈ Z to upper bound −〈g(x̃t ), yt 〉, while we
bound ‖〈ν, zti 〉‖2 as ‖〈ν, zti 〉‖2 � τ(Λ + Γ ). The latter bound comes from the fact
that by construction ‖ν‖2 � τ , and ‖zti‖2 � Λ + Γ by (23a). With this in place, we
can write (34) as

f (xk) � 1

k

k∑

t=1

q( yt ) + nτ(Λ + Γ ) + ‖ y1‖22
2kα/n

+ αn(M + τ)2

2
+ 1

k

k∑

t=1

εt .

If we now compute

1

k

k∑

t=1

εt = 1

k

k∑

t=1

n(βt−1(6M + 3τ) + ζ ) � n(β0(6M + 3τ) + ζ ), (35)

and remember that by optimality q( yt ) � q∗, q∗ = f ∗ by strong duality (Assump-
tion 2.3), and ‖ y1‖22 � Λ2 + Γ 2, then the claim follows. ��
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7.3 Proof of Theorem 5.3. (b)

Proof Given any dual optimal solution y∗, we have

f (xk) = f (xk) +
〈
y∗, 1

k

k∑

t=1

g(x̃t )
〉

︸ ︷︷ ︸
(a)

−
〈
y∗, 1

k

k∑

t=1

g(x̃t )
〉
. (36)

We also know that,

(a) = f (xk) +
〈

y∗, 1
k

k∑

t=1

∑

i∈V
hi (x̃

t )

〉

+ n

〈

y∗ 1
k

k∑

t=1

d t/α

〉

� f (xk) +
〈

y∗,
∑

i∈V
hi (xk)

〉

− n(Λ + Γ )τ, (37)

where we used the fact that hi (x̃
t ) is a convex function of x̃t and therefore,

1

k

k∑

t=1

∑

i∈V
hi (x̃

t ) �
∑

i∈V
hi (xk),

and the Cauchy–Schwarz inequality to bound

〈
y∗, 1

k

k∑

t=1

d t/α
〉
� −‖ y∗‖2

∥
∥
∥
1

k

k∑

t=1

d t/α
∥
∥
∥
2

� −τ(Λ + Γ ).

Furthermore, by the saddle point property of the Lagrangian function, i.e., for any
x ∈ X, y ∈ Z

L(x∗, y) � L(x∗, y∗) � L(x, y∗),

and the fact that under strong duality (Assumption 2.3) L(x∗, y∗) = q∗ = f ∗, we
can write

f (xk)+
〈
y∗,

∑

i∈V
hi (xk)

〉
−nτ(Λ+Γ ) = L(xk, y∗)−nτ(Λ+Γ ) � f ∗−nτ(Λ+Γ ).

(38)

We can now upper bound
〈
y∗, 1

k

∑k
t=1 g(x̃t )

〉
in (36) as in Lemma 7.1(b), with y =

2 y∗ ∈ Z (by the definition of r ). By substituting this bound in (36) and by combining
it with (37) and (38), we get

f (xk) � f ∗ − nτ(Λ + Γ ) − ‖ y1 − 2 y∗‖22
2kα/n

− αn(M + τ)2

2
− 1

k

k∑

t=1

εt .
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Fig. 1 Convergence of the proposed algorithm for different choices of stepsize α and number of consensus
step ϕ

From the upper bound (35), and ‖ y1 − 2 y∗‖22 = ‖ y1‖22 + 4‖ y1‖2‖ y∗‖2 + 4‖ y∗‖22,
which can be upper bounded as 9(Λ2 + Γ 2), the claim follows. ��

8 Numerical Results

In this section, we present some numerical results to assess the proposed algorithm
for different ϕ values in comparison with the standard dual decomposition. We choose
the following simple yet representative sample problem,

minimize
xi∈[0,1]

i∈{1,...,100}
f (x) := −

33∑

i=1

σi xi −
100∑

i=34

σi log(1 + xi ), subject to
100∑

i=1

σi xi � 10,

where each σi ∈ [0, 1] is drawn from a uniform random distribution. This type of
problem has been considered, e.g., in network utility maximization contexts [23].
We solve the problem in Matlab with Yalmip and SDPT3 [42,43], where we also
implement the proposed algorithm.1

For this problem a Slater vector is xi = 0 for all i ; furthermore γ = 10, while q(0)
is solvable by inspection (xi = 1) and gives (for our realization of σi ) r = 8.62. The
communication network is randomly selected, and the average number of neighbors
is 3.12.

Figure 1 depicts convergence, and it is in line with our theoretical findings: The
error decreases as O(1/k) till it reaches a bounded error floor. This bounded error

1 The code is available at: http://ens.ewi.tudelft.nl/~asimonetto/NumericalExample.zip.
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Fig. 2 Relative error and number of exchanged messages for different choices of stepsize α and number
of consensus step ϕ

floor depends on both ϕ and α as captured in Theorem 5.3. We have also plotted the
performance of the standard dual decomposition, which (in the absence of a master
node) requires reaching complete consensus at each iteration (in theory ϕ → ∞, but
we have set ϕ = 26, which yields a full Wϕ).

Figure 2 shows the relative error with respect to the total number of messages the
nodes are exchanging. We can see that, in the absence of a master node, the proposed
consensus-based algorithm involves significantly fewer number of messages than the
standard dual decomposition for the same accuracy level (till up to 1% error). This is
very important in real-life applications.

9 Future Research Questions

Future research encompasses the following points.
First of all, we have used the ergodicmean to recover the primal solution. The reason

for it is mainly technical: It helps to derive convergence rate results, via a telescopic
cancelation argument. Other convex combinations have been advocated, e.g., in [12],
but the results they can offer are typically asymptotical and require vanishing stepsizes.
An open question is whether other combinations for primal recovery are possible using
constant stepsizes.

Then, in the derivation, we have limited ourselves to objective convergence. It
would be relevant to investigate convergence of the ergodic mean to the optimizer set,
either in the general convex case or in the strong convex scenario.

Finally, the bound on ϕ, i.e., ϕ̄ has been derived in such a way that we could use
ε-subgradient arguments in the rest of the convergence proofs. However, it is quite
conservative (in fact, in practice, ϕ can be as small as 1, but this is often not captured
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by the bound in Theorem 5.1). This is due to Lemma 6.2 and the use of the spectral
radius as an upper bound. A thorough investigation is left for future research.

10 Conclusions

Aconsensus-based dual decomposition scheme has been proposed to enable a network
of collaborative computing nodes to generate approximate dual and primal solutions
of a distributed convex optimization problem. We have proven convergence of the
scheme both in the dual and the primal objective senses up to a bounded error floor.
The proposed scheme is of theoretical and applied importance since it eliminates
the need for a centralized entity (i.e., a master node) to collect the local subgradient
information, by distributing this task among the nodes. This need has been a major
hurdle in the use of dual decomposition for solving certain classes of distributed
optimization problems.
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