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Abstract According to the recent definition of efficiency via improvement sets, the
aim of this paper is to characterize the set of optimal points for a set. New existence
results are proved in multicriteria situations, and their novelty is illustrated via several
examples. Moreover, the study of an economic model is provided as an example of
application of our achievements.
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1 Introduction

Most real-life problems are subject to decisions that must be taken according to appro-
priate optimality criteria. The original concepts of proper efficiency, proposed by
Pareto in a pioneering paper, and approximate proper efficiency were later on modi-
fied and formulated in a more general framework by many authors.

The unification of the various definitions of efficiency has recently received a special
attention in the literature on vector optimization. To our knowledge, the most general
definition is reported in [1]. From the economic point of view, the research of such
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points is very general since the preference relation can be given on a Banach space
and determined by a utility function or/and on a topological vector space by a order
set, which is not necessarily a cone. For other details about mathematical economics,
see [2] and references therein. When a convex cone is given, by specializing the order
set, it is possible to recover the classical definition of efficient, weak efficient, strict
efficient, and Henig proper efficient solutions (see [3]). There exist other attempts to
unify the definition of efficiency. One of these is due to Ha, who in [4] introduced the
notion of minimal point of a set with respect to a proper open (not necessarily convex)
cone with apex at the origin. We point out that the definition given by Ha preceded
the one by Flores-Bazàn and Hernàndez [1], but it can be deduced from the latter.

Another attempt to unify was carried out first in [5], where the concept of efficiency
for maximization in a finite dimensional setting is presented, then it has been gener-
alized to a real locally convex Hausdorff topological vector space by Gutiérrez et al.
in [6]. It is based on special sets called improvement sets, which have two properties:
the exclusion property and the comprehensive property. We observe that the definition
of efficiency, given in [5], follows from the one quoted in [1] with suitable choices of
the function and of the order set.

In order to formulate a definition that unifies the concepts of efficiency, in most of
the papers mentioned so far, it is possible to find optimality conditions for vector opti-
mization problems, carried out via scalarizations and via approximate subdifferentials
in the convex case or via the Mordukhovich subdifferential, when nonconvexity is
assumed (see e.g., [1,3,7,8] and references therein), and existence results for efficient
points via topological properties of the sets (see e.g., [5,9,10]).

Inspired by such results, in this paper, we study the existence of efficient points
via topological properties of the sets, currently in a finite dimensional setting. To
emphasize the importance of the topic, we quote the recent paper [11], that in this
framework applies the equilibria concept to study multicriteria games.

The outline of this article is as follows. In Sect. 2,we recall the definition of improve-
ment set and some preliminary results. Section 3 introduces the characterization of the
improvement sets ”close” to zero. In Sect. 4, we present some conditions (necessary,
sufficient or both) for the existence of optimal points, giving several examples to illus-
trate our results and their novelty. Moreover, we provide an example, which shows
that our results can be applied to an economic model. Section 5 provides an answer to
a question proposed by Zhao and Yang in [12]. Finally, some research topics and the
main conclusions are presented in Sects. 6 and 7, respectively.

2 Definitions and Preliminary Results

We write x = (x1, . . . , xn) ∈ R
n and denote by ei the vector of Rn with the i-th

component equal to 1 and the others 0, so that, for every x ∈ R
n with components

x1, x2, . . . , xn , it turns out x = ∑n
i=1 xiei . In casewe have a sequence {xm}m∈N ⊂ R

n ,
we denote by (xm)i the i-th component of the vector xm , in such a way that

xm =
n∑

i=1

(xm)iei (m ∈ N).
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By R
n+, we mean the points in R

n with all coordinates positive or null, by R
n++

those with all coordinates strictly positive (analogously for Rn− and R
n−−) and, given

x, y ∈ R
n , for every i = 1, . . . , n: x � y ⇔ xi ≥ yi ; x > y ⇔ xi > yi (analogous

definitions for �, <).
For A ⊂ R

n : int (A) and bd(A) are the interior and the boundary of A, respectively;
cl(A) is the closure of A; d(x, A) = inf{d(x, a) : a ∈ A}, where d(x, a) is the usual
distance in Rn , i.e., d(x, a) := {∑n

i=1(xi − ai )2}1/2.
We say that V ⊂ R

n is upper-bounded iff there exists b ∈ R
n such that

x � b ∀ x ∈ V .
In the following, we will write 〈a,b〉, a,b ∈ R

n , to indicate the internal (scalar)
product of two vectors, i.e., 〈a,b〉 := ∑n

i=1 ai bi .

Definition 2.1 Let A ⊂ R
n . We define the upper comprehensive set of A as follows:

u-compr(A) := {x ∈ R
n : there exists a ∈ A s.t. a � x}

It is easy to prove:

Proposition 2.1 u-compr(A) = ⋃
a∈A

(
a + R

n+
)
.

Definition 2.2 A subset E of R
n is called ”upper comprehensive set” iff

u-compr(E) = E .

Definition 2.3 Let E ⊂ R
n \ {0} be an upper comprehensive set. We shall call E an

improvement set of Rn , and we will denote by 	n the family of the improvement sets
in Rn .

Remark 2.1 From the above definitions, it follows that E ⊂ R
n is an improvement

set iff it has the two following properties:
i) 0 /∈ E ; ii) if x ∈ E and y ∈ R

n , y � 0, then x + y ∈ E .

3 Improvement Sets and E-Optimal Points

Proposition 3.1 (see [5] Proposition 3.1.) The following relations hold:

(i) 	n is a lattice, i.e., if E1, E2 ∈ 	n, then E1
⋂

E2 ∈ 	n, E1
⋃

E2 ∈ 	n.
(ii) The largest improvement set is Eo = R

n \ Rn−.
(iii) The smallest is Eoo = ∅.
Definition 3.1 Let A, E ⊂ R

n, E improvement set. We say that a ∈ A is an
E-optimal point iff (a + E) ∩ A= ∅ and denote this by writing a ∈ OE (A).

Remark 3.1 In other words: if A ⊂ R
n and E ∈ 	n , we say that a ∈ OE (A) iff

a ∈ A and a + e /∈ A, ∀ e ∈ E .

We get an equivalent definition of the set OE (A) by the following proposition (its
easy proof is left to the reader).

Proposition 3.2 Let A, E ⊂ R
n, E improvement set. Then x ∈ OE (A) iff x ∈ A

and a − x /∈ E ∀ a ∈ A.

Several examples of E-optimal sets can be found in [5].
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In Sect. 4, we will give conditions in order that OE (A) is not empty with the
improvement set E+ := R

n++ = {x ∈ R
n : xi > 0 ∀ i = 1, 2, . . . , n}, having zero

distance from 0. For this reason now, we start by giving some properties related to
improvement sets with such property.

Proposition 3.3 Let E ∈ 	n be such that d(0, E) = 0. Then E+ ⊂ E.

Proof Let x ∈ E+ and δ := min{xi : i = 1, 2, . . . , n} > 0 by the definition of E+.
Since d(0, E) = 0, there exists y ∈ E such that |y| = d(0, y) < δ. Now let ŷ ∈ R

n

with components defined as ŷi = max{yi , 0} (i = 1, 2, . . . , n).
By definition of improvement set it turns out ŷ ∈ E and |ŷ| ≤ |y| < δ. Then, for

every i = 1, 2, . . . , n, we have ŷi < δ ≤ xi , so that ŷi < xi .
Since ŷ ∈ E and x > ŷ, thanks to Remark 2.1, we have x ∈ E . �

Proposition 3.4 Let E ∈ 	n be such that d(0, E) = δ ≥ 0. Then

OE (A) ⊂ {x ∈ A : d(x, bd(A)) ≤ δ}.

Proof We prove that if x ∈ A and d(x, bd(A)) > δ, then x /∈ OE (A). Let x ∈ A be
such that d(x, bd(A)) > δ and e ∈ E such that δ ≤ d(0, e) < d(x, bd(A)). Such e
exists since d(0, E) = δ, d(x, bd(A)) > δ and by definition of distance. Therefore,
we obtain d(x, x + e) = d(0, e) < d(x, bd(A)), which proves that x + e ∈ A and
x /∈ OE (A). �
Corollary 3.1 If in the previous Proposition 3.4 we consider δ = 0, we have:

1. OE (A) ⊂ bd(A);
2. if A is an open set, OE (A) = ∅.

(In this context see also [11], Proposition 11.1).

Proposition 3.5 Let A, E ⊂ R
n, E improvement set; suppose A closed and E open.

Then OE (A) is closed.

Proof Let xk ∈ OE (A) (k = 1, 2, . . . ) such that limk xk = x. We must prove that
x ∈ OE (A). First of all, we note that x ∈ A, since A is closed. By contradiction,
suppose x /∈ OE (A); then there exists e ∈ E such that x+ e ∈ A. This relation can be
written, equivalently, xk + e+ (x−xk) ∈ A. Since E is open by hypothesis, the point
e is internal to E , so e + (x − xk) ∈ E when k is sufficiently large: a contradiction
since xk ∈ OE (A). �

4 Existence of E-Optimal Points

Before we focus our attention on the case where the improvement set is E+, let us
consider next theorem, which holds for every improvement set E ⊂ R

n .

Theorem 4.1 Let E ∈ 	n and A a closed and nonempty set of Rn. Suppose that there
exists p ∈ R

n with pi > 0 for every i ∈ {1, 2, . . . , n} such that 〈p, e〉 > 0 ∀ e ∈ E
and A is upper-bounded. Then OE (A) �= ∅.
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Proof Since A is upper-bounded, we have μ := sup{〈p, a〉 : a ∈ A} < +∞ .

Therefore, there exists a sequence {xm}m∈IN ⊂ A such that

μ − 1

m
≤ 〈p, xm〉 ≤ μ (1)

The sequence {xm}m∈IN is bounded in Rn . In fact, we can write (1) as

μ − 1

m
≤

∑

i∈I−
pi (xm)i +

∑

i∈I+
pi (xm)i ≤ μ (2)

where
∑

i∈I− means the sum on the indices i for which (xm)i < 0 and
∑

i∈I+ the
sum on the indices i for which (xm)i > 0. From (2), we easily obtain

∑

i∈I−
pi |(xm)i | ≤

∣
∣
∣
∣μ − 1

m

∣
∣
∣
∣ +

∑

i∈I+
pi (xm)i , (3)

and recalling that A is supposed to be upper-bounded, we deduce that the sequence
{xm}m∈IN is bounded inRn . Then {xm}m∈IN admits a subsequence {xmk }k∈IN converging
to x̄ ∈ A, since A is closed. We have lim

k→∞〈p, xmk 〉 = 〈p, x̄〉 = μ.

Now, if e ∈ E , we get 〈p, x̄ + e〉 = 〈p, x̄〉 + 〈p, e〉 > 〈p, x̄〉, so that x̄ + e /∈ A,
x̄ ∈ OE (A) and OE (A) �= ∅. �

Remark 4.1 (i) In Theorem 4.1, the assumption that p ∈ R
n is such that

〈p, e〉 > 0 ∀ e ∈ E implies pi ≥ 0 ∀ i = 1, 2, . . . , n. In fact, if there were
ī ∈ {1, 2, . . . , n} for which pī < 0 (we can take for simplicity ī = 1), by Remark

2.1, if e ∈ E and y = (y1, 0, . . . , 0) with y1 > 0, −p1 y1 >

n∑

i=1

pi ei , we have

y ∈ cl(E+), so e+y ∈ E and 〈p, e+y〉 < 0, in contradictionwith the assumption.

(ii) If there exists no p ∈ R
n such that 〈p, e〉 > 0 for every e ∈ E , then OE (A)

can be empty. In fact let A = {(x, y) ∈ R
2 : (x − 1)2 + (y − 1)2 ≤ 1} and

E = {(x, y) ∈ R
2 : x > min(0,−y)}. Clearly for every (x, y) ∈ A it turns out

((x, y) + E) ∩ A �= ∅.
(iii) If x ∈ A is such that there exists ī ∈ {1, 2, . . . , n} for which sup xī = +∞,

then OE (A) may be empty. Let A=
{

(x, y) ∈ R
2 :−2 ≤ x < 1, y ≥ − 1

x − 1

}

and E = {(x, y) ∈ R
2 : x > 0, xy ≥ 1}. The existence of p ∈ R

n \ {(0, 0)}
verifying the hypothesis of Theorem 4.1 is ensured, but for every (x, y) ∈ A, we
have ((x, y) + E) ∩ A �= ∅.

(iv) If all the components of p are not strictly positive, then OE (A) can be empty.
Let E = {(x, y) ∈ R

2 : x > 0}, A = {(x, y) ∈ R
2 : x < 0, xy ≥ 1} and

p = (1, 0). Then OE (A) = ∅, even though 〈p, e〉 > 0 ∀ e ∈ E , A is closed and
sup {xi : x ∈ A} < +∞ ∀ i = 1, 2.
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(v) If in the previous theorem A is not closed, OE (A) can be empty. In fact, let
E = E+ and A = {(x, y) ∈ R

2 : x < 0, xy > 1}, it turns out OE (A) = ∅. (See
also Corollary 3.1, 2))

(vi) Theorem 4.1 gives sufficient conditions to have OE (A) �= ∅ as Theorem 4.1 of
[5], but, with the exception of the assumption that A is p-upper-bounded, the other
conditions are not comparable. We will see that with the following two examples,
but let us first recall that if p ∈ R

n \ {0} and E ∈ 	n , then p is called a separator
for E iff there exists a positive number t such that 〈p, e〉 > t for each e ∈ E .

Let E = E+ and A = {(x, y) ∈ R
2 : x < 0, xy ≥ 1}, E is not separable from {0},

but if p = (1, 1), it follows 〈p, e〉 > 0 ∀ e ∈ E . So the hypotheses of Theorem 4.1
are verified, whereas those of Theorem 4.1 of [5] are not.

If we consider E = {(x, y) ∈ R
2 : x ≥ 2}, A = {(x, y) ∈ R

2 : x < 0, xy > 1}
and p = (1, 0), then p is a separator of E and 0, but A is not closed, and there exists
a component of p equal to 0. So the hypotheses of Theorem 4.1 in [5] are verified,
while those of the above Theorem 4.1 are not.

Next example shows how the previous theorem can be applied to an economic model
E as described in [13].

Example 4.1 Consider, as commodity space, Rn endowed with the usual norm topol-
ogy, the only Hausdorff linear topology in Rn .

Let I = {1, . . . ,m} a finite number of consumers and, for each i = 1, . . . ,m, let
Ei := {u ∈ R

n : u ≥ ai , ai ∈ R
n+ \ {0}} the consumption set of the i-th consumer.

We let E :=×m

i=1
Ei and define the preference correspondences Pi : E ⇒ Ei as

Pi (u) = ui + Ei , where u will denote, now and in the following, an element of E .
Moreover, letωi the initial endowment of the i-th consumer,ωi ∈ Ei , and ω =

∑

i∈I
ωi

the total endowment.
Hence we consider the pure exchange economy E = (Rn, (Ei , Pi )i∈I , (ωi )i∈I )

and define the set of feasible allocations for the economy E as

A(E) =
{

x ∈ E :
∑

i∈I
xi ≤ ω

}

Furthermore, if u∗ ∈ E , let

P(u∗) := {u = (u1, . . . ,um) ∈ E : ui ∈ Pi (u∗), i = 1, . . . ,m}

The definition of weakly Pareto optimal allocation (see [13], Definition 3.1) is:

Definition 4.1 An allocation u∗ ∈ A(E) is said to be weakly Pareto optimal for the
economy E iff A(E) ∩ P(u∗) = ∅.
Since P(u∗) = u∗ + E , it turns out that u∗ ∈ E such that

∑
i∈I xi ≤ ω is a weakly

Pareto optimal allocation for the economy E iff u∗ ∈ OE
(A(E))

)
. Then, it is sufficient

to verify that Theorem 4.1 can be applied in this framework.
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Clearly, E is an improvement set andA(E) �= ∅, becauseω ∈ A(E), and it is closed
in virtue of the closure of E . Moreover, since 〈p, e〉 = ∑n m

k=1 pk ek , it is sufficient to
choose pk = 1 for every k ∈ {1, . . . , n m} to get 〈p, e〉 > 0.

Finally, A(E) ⊂ E is clearly upper- bounded.
From now on, we will focus our attention on the case in which the improvement set

is E+, so E-optimal points become weak Pareto efficient points with respect to Rn++.
There aremanypapers devoted to establish conditions implying the nonemptiness of

the set of weak Pareto efficient points. Unfortunately, many of the conditions assumed
imply the boundedness of such set. Here, we study the existence of weak Pareto
efficient points of unbounded sets A ⊂ R

n , giving the possibility that the set OE+(A)

is unbounded. In Remark 4.4, we will show that our achievements improve the results
reported in the recent paper [14], where many results previously appeared in the
literature are already encompassed and an improvement of Theorem 3.5 in [15] is
presented.

We start with the two-dimensional case, for which we will give a necessary and
sufficient condition ensuring that the set of the E-optimal points is not empty.

Theorem 4.2 Let A ⊂ R
2 a closed and nonempty set such that there exists ko ∈ R

for which A ∩ {(x, y) ∈ R
2 : x ≥ k} �= ∅ for all k ≥ ko.

Moreover, let I = {x ∈ R : ∃ y ∈ R such that (x, y) ∈ A} and, for x ∈ I ,
ϕ(x) = sup{y ∈ R : (x, y) ∈ A}. If, in addition, sup {ϕ(x) : x ∈ I } < +∞ and
lim sup
x→+∞

ϕ(x) = λ ∈ R, then OE+(A) �= ∅ iff there exists x̄ ∈ I such that ϕ(x̄) ≥ λ.

Proof First we observe that, since sup{ϕ(x) : x ∈ I } < +∞, it follows
(x, ϕ(x)) ∈ bd(A) ⊂ A ∀x ∈ I . Suppose there exists (x̄, ȳ) ∈ OE+(A); we prove
that ϕ(x̄) ≥ λ.

In fact, on the contrary, suppose that ϕ(x̄) < λ. In this case, by the definition of
λ, there exists x̂ ∈ I , x̂ > x̄ such that ϕ(x̂) > ϕ(x̄) and we can choose e1, e2 such
that 0 < e1 := x̂ − x̄, 0 < ϕ(x̂) − ϕ(x̄) ≤ ϕ(x̂) − ȳ := e2. Thus, (e1, e2) ∈ E+,

(x̂, ϕ(x̂)) = (x̄ + e1, ȳ + e2) ∈ A , contrary to (x̄, ȳ) ∈ OE+(A).
Now we assume that there exists x̄ ∈ I such that ϕ(x̄) ≥ λ and let us first consider

the case in which ϕ(x̄) > λ. By definition of lim sup
x→+∞

ϕ(x) = λ ∈ R, there exists

� > 0 such that, for every x > � , it follows ϕ(x) < ϕ(x̄). Let Io = {x ∈ I : x ≥ x̄,
ϕ(x) ≥ ϕ(x̄)}. It turns out that Io ⊂ [x̄, �]. Now let M = sup{ϕ(x) : x ∈ Io}. There
exists a sequence {xm}m∈IN , xm ∈ Io such that lim

m
ϕ(xm) = M and (xm, ϕ(xm)) ∈

A. If, up to a subsequence, lim
m

xm = xo, then lim
m

(xm, ϕ(xm)) = (xo, M) ∈ A, since

A is closed, so that M = ϕ(xo) and ϕ(x) ≤ ϕ(xo) ∀ x ∈ Io. Hence the point
(xo, ϕ(xo)) ∈ OE+(A) and the thesis is achieved.

If we assume that there exists x̄ ∈ I such that ϕ(x̄) = λ and, for every x ∈ I , we
have ϕ(x) ≤ λ, it is immediate to establish that (x̄, ϕ(x̄)) ∈ OE+(A). �
Corollary 4.1 In the hypotheses of the previous theorem, if E is an improvement set
such that d(0, E) = 0 and OE (A) �= ∅, then there exists x̄ ∈ I such that ϕ(x̄) ≥ λ.

By Proposition 3.3 E+ ⊂E , so OE+(A)⊃ OE (A) thanks to Proposition 3.2, i) of [5].
Applying the necessary condition of Theorem 4.2, we may conclude.
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Proposition 4.1 In the hypotheses of Theorem 4.2, if instead we have that
lim sup
x→+∞

ϕ(x) = +∞, then OE+(A) = ∅.

Proof If we consider any point (x̄, ȳ) ∈ A, by definition of lim sup, there exists a
vector (e1, e2) ∈ E+ such that ϕ(x̄ + e1) = ȳ + e2; hence (x̄ + e1, ȳ + e2) ∈ A and
(x̄, ȳ) /∈ OE+(A). �

If there exists k̄ ∈ R such that A ∩ {(x, y) ∈ R
2 : x ≥ k̄} = ∅, we have

Proposition 4.2 Let I = {x ∈ R : ∃ y ∈ R for which (x, y) ∈ A}, where A is a
closed and nonempty set of R2. For x ∈ I, ϕ(x) = sup{y ∈ R : (x, y) ∈ A}.
Moreover, we assume that sup I = ko ∈ R.

1. If ko ∈ I , then OE+(A) �= ∅.
2. If ko /∈ I and lim sup

x→k−
o

ϕ(x) = +∞, then OE+(A) = ∅.
3. If ko /∈ I and lim

x→k−
o

ϕ(x) = −∞, then OE+(A) �= ∅.

Proof Proof of 1): If ko ∈ I , there exists yo ∈ R such that (ko, yo) ∈ A and,
by definition of supremum, if (e1, e2) ∈ E+, (ko + e1, yo + e2) /∈ A, so that
(ko, yo) ∈ OE+(A).

Proof of 2): it is analogous to the one in Proposition 4.1, and therefore, we omit it.
Proof of 3): Let x1 ∈ I be such that μ := sup{ϕ(x) : x ∈ [x1, ko)} < +∞

(such an x1 exists, since lim
x→k−

o

ϕ(x) = −∞ by hypothesis). Consider a sequence

{xm}m∈IN ⊂ [x1, ko) such that limm ϕ(xm) = μ; we can assume (eventually
considering a subsequence) that there exists x̄ := limm xm . From the hypothesis
lim

x→k−
o

ϕ(x) = −∞, it follows x1 ≤ x̄ < ko. Since A is closed, we have (x̄, μ) ∈ A;

it is easy to verify that (x̄, μ) ∈ OE+(A). �
Remark 4.2 In the previous proposition, we do not consider the case in which ko /∈ I
and lim supx→k−

o
ϕ(x) = λ ∈ R. In fact this case cannot happen, since (ko, λ) ∈ A

in virtue of the closedness of A, therefore ko ∈ I .

It is possible to extend Theorem 4.2 to sets A ⊂ R
n with n > 2 only in part. To this

purpose, it is necessary to introduce some new notation.
If x ∈ R

n (n ≥ 2), we consider x ′ := (x1, x2, . . . , xn−1) ∈ R
n−1, so that

x = (x1, x2, . . . , xn−1, xn) = (x ′, xn) ∈ R
n . Moreover, we denote by ||x ′|| the usual

euclidean norm of x ′ ∈ R
n−1, i. e. ||x ′|| :=

{ n−1∑

i=1

x2i

}1/2

Theorem 4.3 Let A ⊂ R
n (n ≥ 3) a closed and nonempty set such that there exists

ko ∈ R for which A ∩ cl(E+) ∩ {(x ′, xn) ∈ R
n : ‖x ′‖ > k} �= ∅ for every k ≥ ko.

Moreover, let I := {x ′ ∈ R
n−1 : ∃xn ∈ R s. t. (x ′, xn) ∈ A ∩ cl(E+)} and, for

x ′ ∈ I, ϕ(x ′) := sup{xn ∈ R : (x ′, xn) ∈ A ∩ cl(E+)}.
If, in addition, sup {ϕ(x ′) : x ′ ∈ I } < +∞, lim sup

‖x ′‖→+∞
ϕ(x ′) = λ ∈ R and there

exists x̄ ′ ∈ I such that ϕ(x̄ ′) ≥ λ, then OE+(A) �= ∅.
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Proof We can follow the one of Theorem 4.2. First, suppose there exists x̄ ′ ∈ I
such that ϕ(x̄ ′) > λ. From the hypothesis and the definition of lim sup, there exists
� > 0 such that, for every x ′ ∈ I with ‖x ′‖ > � , it follows ϕ(x ′) < ϕ(x̄ ′). Let
Io = {x ′ ∈ I : ‖x ′‖ ≥ ‖x̄ ′‖, ϕ(x ′) ≥ ϕ(x̄ ′)}. It turns out that sup{‖x ′‖ : x ′ ∈ Io} ≤ �.
Now let M = sup{ϕ(x ′) : x ′ ∈ Io}. There exists a sequence {x ′

m}m∈IN , x ′
m ∈ Io such

that lim
m

ϕ(x ′
m) = M and (x ′

m, ϕ(xm)) ∈ A.

If, up to a subsequence, lim
m

x ′
m = x ′

o, then limm
(xm, ϕ(xm)) = (x ′

o, M) ∈ A, since A

is closed, so that M = ϕ(x ′
o) and ϕ(x ′) ≤ ϕ(x ′

o) ∀ x ′ ∈ Io. Now we consider a vector
e = (e′, en) ∈ E+. It turns out ‖x ′

o + e′‖ > ‖x ′
o‖, since x ′

o ∈ I and, if x ′
o + e′ /∈ I ,

(x ′
o + e′, ϕ(x ′

o) + en) /∈ A; if x ′
o + e′ ∈ I \ Io, ϕ(x ′

o + e′) < ϕ(x̄ ′) < ϕ(x ′
o) + en ,

so, by definition of ϕ, (x ′
o + e′, ϕ(x ′

o) + en) /∈ A; if x ′
o + e′ ∈ Io, by definition of

supremum, (x ′
o + e′, ϕ(x ′

o) + en) /∈ A. Hence the point (x ′
o, ϕ(x ′

o)) ∈ OE+(A) and
the thesis follows.

In case there exists x̄ ′ ∈ I such that ϕ(x̄) = λ, but ϕ(x̄) ≤ λ for any x ′ ∈ I , the
conclusion is immediate, likewise in Theorem 4.2. �
Remark 4.3 The preceding theorem cannot be inverted. If we have
ϕ(x ′) < lim sup‖y′‖→+∞ ϕ(y′) ∀x ′ ∈ I , it is possible that OE+(A) �= ∅. In fact,
let n = 3 and I := cl(E+) = {(x, y) ∈ R

2 : x ≥ 0, y ≥ 0}. When (x, y) ∈ I , let
ϕ(x, y) := (1 − y) arctan x and A := {(x, y, z) ∈ R

3 : (x, y) ∈ I, z ≤ ϕ(x, y)}.
We obtain lim sup

‖(x,y)‖→+∞
ϕ(x, y) = π/2 and ϕ(x, y) < π/2 ∀ (x, y) ∈ I , but

OE+(A) �= ∅ (for example (1, 1, 0) ∈ OE+(A), as one can easily verify).

Remark 4.4 a) The previous existence results, obtained when the improvement set is
E+, may be regarded as an extension of Theorem 3.2 in [14] in the finite dimensional
setting.

In fact, let A = {(x, y) ∈ R
2 : y ≤ 1+ x2e−|x |}, our Theorem 4.2 and Proposition

3.5 allow us to conclude that OE+(A) is not empty and closed. However, Theo-
rem 3.2 with condition (C) or its Corollary 3.1 in [14] is not applicable. In fact,
condition (C) requires the existence of a nonempty compact set D ⊆ A such that
any point outside D cannot be weak Pareto efficient. Easily, we can compute that

OE+(A) =
{

(−2, 1 + 4

e2
)

}

∪ {(xo, 1 + x2o e
−xo), xo ≥ 2}.

b) First of all, we observe that, in our setting, Problem (3.1) in [15] becomes

find x̄ ∈ A : x̄ + e /∈ A for all e ∈ E+ = int (P)

with P = R
n+ and A ⊂ R

n a closed set. If we consider A, defined in the part a) of this
remark, we see that Theorem 3.5 of [15] is not applicable. In fact, A is only closed
and not convex, but especially condition (*) is not verified.

For the reader’s convenience, we recall such condition in our setting:
(*) for any sequence {xn} in A satisfying:

(i) ‖xn‖ → +∞,
xn

‖xn‖ → w for some w ∈ R1, where R1 := ⋂
y∈A{w ∈ A∞ :

λw /∈ −E+ ∀ λ > 0} and A∞ is the recession cone of A, i.e., A∞ = {x ∈ R
n :

∃ tk ↓ 0, ∃ xk ∈ A, tkxk → x}, and
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(ii) ∀ y ∈ A ∃ ny such that y /∈ xn + E+ ∀ n > ny , we assume the existence of
u ∈ A and n̄, such that ‖u‖ < ‖xn̄‖ and u = xn̄ + e for some e ∈ R

n+.
Then, if we consider the sequence (xn)n∈N , defined by xn = (n, 1 + n2 e−n),

n ≥ 2,wemayverify that lim
n

xn
‖xn‖ = (1, 0) ∈ R1, A ∩ (xn + E+) = ∅ ∀ n ≥ 2,

but, for every u ∈ A and n ≥ 2 such that ‖u‖ < ‖xn‖, we have u /∈ xn + R
n+.

Nowwe give a result when A ⊂ R
n is closed, n ≥ 1, and the improvement set is always

E+. To our knowledge, there are no existence results about weak Pareto efficiency
involving the distance between a set and the cone Rn++.

Theorem 4.4 Let A ⊂ R
n, n ≥ 1, a closed and nonempty set such that

d(A, E+) < lim inf
r→+∞ d(A ∩ CB(0, r), E+ ∩ CB(0, r)), (4)

where CB(0, r) denotes the complement of the ball with center the origin and radius
r > 0. Then OE+(A) �= ∅.
Proof We first take into account the case d(A, E+) = 0. Since y + E+ ⊂ E+ for
each y ∈ E+, thanks to Remark 2.1, it turns out

d(A ∩ CB(0, r), E+ ∩ CB(0, r)) ≤ d(A ∩ CB(0, r), (y + E+) ∩ CB(0, r))

Hence it is possible to find yo ∈ E+ such that

0 < d(A, yo + E+) < lim inf
r→+∞ d(A ∩ CB(0, r), (yo + E+) ∩ CB(0, r))

If now, for simplicity, we carry out a change of coordinates so that the new origin is
at yo, from the previous inequalities it follows

0 < d(A, E+) < lim inf
r→+∞ d(A ∩ CB(−yo, r), E+ ∩ CB(−yo, r))

Thus we are able to consider only the case when d(A, E+) > 0. Taking into
account the definition of distance between two sets, there exist two sequences
{xm}m∈IN ⊂ A, {ym}m∈IN ⊂ E+ such that

lim
m→+∞ d(xm, ym) = d(A, E+) = inf{d(x, y) : x ∈ A, y ∈ E+}

By (4), at least one between {xm} and {ym} is bounded. Without loss of general-
ity we suppose that such a sequence is {xm}. Always according to (4), we have
d(A, E+) ∈ R, so that inf{d(x, y) : x ∈ A, y ∈ E+} ∈ R and consequently also {ym}
is bounded. Therefore, there exist two subsequences, which we still denote by {xm}
and {ym} for convenience, such that lim

m→+∞ xm = â ∈ A; lim
m→+∞ ym = ê ∈ cl(E+) and

d(â, ê) = d(A, cl(E+)) = d(A, E+). We claim that â ∈ OE+(A). Indeed, we know
that â /∈ cl(E+) since d(A, E+) > 0, and thus at least one component of â is negative;
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suppose (for simplicity) such a component is â1. Then let h ∈ E+ and α ∈ R such
that

0 < α < min{h1,−â1} (5)

If w = (h1 − α, h2, . . . , hn), from (5), we have w ∈ E+. We now evaluate

d(â + h, ê + w) =
{
(â1 + α − ê1)2 +

n∑

i=2
(âi − êi )2

}1/2
. From (5) it turns out

â1 + α < 0 and |â1 + α − ê1| = ê1 − â1 − α < ê1 − â1. So we can establish
that d(â + h, ê + w) < d(â + h, ê + h) = d(â, ê) and, since ê + w ∈ E+, it follows
that d(â + h, E+) < d(A, E+), which yields â + h /∈ A, that is â ∈ OE+(A). �

Remark 4.5 (i) Condition (4) in Theorem 4.4 is only a sufficient condition to

have OE+(A) �= ∅. In fact, if f (x) =
{

−x − 2 for x ∈] − ∞,−1]
−1 for x ∈] − 1,+∞] and

A = {(x, y) ∈ R
2 : y ≤ f (x)}, then OE+(A) �= ∅ (as one can easily verify) and

lim inf
r→+∞ d(A ∩ CB(0, r), E+ ∩ CB(0, r)) = 1 = d(A, E+).

(ii) If d(A, E+)= lim inf
r→+∞ d(A ∩ CB(0, r), E+ ∩ CB(0, r)), as in the above exam-

ple, OE+(A) can be empty. Let A = {(x, y) ∈ R
2 : y ≤ exp(x)}, it follows

d(A, E+) = 0 = lim inf
r→+∞ d(A ∩ CB(0, r), E+ ∩ CB(0, r)) and OE+(A) = ∅.

(iii) In the previous example d(A, E+) = 0, but OE+(A) may be empty also when
0 < d(A, E+) = lim inf

r→+∞ d(A ∩ CB(0, r), E+ ∩ CB(0, r)).

In fact, let A =
{

(x, y) ∈ R
2 : −2 ≤ x < −1, y ≥ − 1

x + 1

}

. We have

lim inf
r→+∞ d(A ∩ CB(0, r), E+ ∩ CB(0, r)) = 1 = d(A, E+) and OE+(A) = ∅.

Theorem 4.5 Let A ⊂ R
n, n ≥ 1, be a closed and nonempty set such that

lim sup
r→+∞

{

max
1≤i≤n

xi : x ∈ A ∩ CB(0, r)
}

= +∞ (6)

Then there exist λi ∈ R ∪ {+∞} such that if x ∈ A satisfies xi < λi for every
i ∈ {1, . . . , n}, it turns out x /∈ OE+(A).

Proof Note that assumption (6) implies the existence of ro > 0 such that for each
r ≥ ro it turns out A ∩ CB(0, r) �= ∅. Thus let

λ1 := lim sup
r→+∞

{x1 : x ∈ A ∩ CB(0, r)} ∈ R ∪ {+∞}
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and T1 the set of the sequences {x(1)
k }k∈N ⊂ A such that lim

k→+∞ ‖x(1)
k ‖ = +∞

and lim
k→+∞(x (1)

k )1 = λ1. (We note that T1 is not empty by definition of lim sup).

Let {x(1)
k }k∈N ∈ T1. We define λ2(x

(1)
k ) := lim supk→+∞ (x (1)

k )2 ∈ R ∪ {+∞} and

λ2 := sup{λ2(x(1)
k ) : {x(1)

k }k∈N ∈ T1}. If λ2 ∈ R, then for every ε > 0, there exist

{x(1)
k }k∈N ∈ T1 and ko ∈ N such that λ2 − ε < (x (1)

k )2 ≤ λ2 + ε for infinitely

many k ≥ ko . If λ2 = +∞, then, for every ε > 0, there exist {x(1)
k }k∈N ∈ T1

and ko ∈ N such that (x (1)
k )2 ≥ ε for infinitely many k ≥ ko . Therefore, in

both cases, there exists a subsequence of {x(1)
k }k∈N, denoted by {x(2)

k }k∈N, such that

lim
k→+∞ ‖x(2)

k ‖ = +∞, lim
k→+∞(x (2)

k )1 = λ1, lim
k→+∞(x (2)

k )2 = λ2. Let T2 be the set of

the subsequences {x(2)
k }k∈N, which satisfy the above properties. At the n-th step,

we determine a subsequence of {x(n−1)
k }k∈IN , denoted by {x(n)

k }k∈N, {x(n)
k }k∈N ⊂ A,

such that lim
k→+∞ ‖x(n,k)‖ = +∞ and we have lim

k→+∞(x (n)
k )i = λi ∀ i = 1, 2, . . . , n,

where λi ({x(i−1)
k }k∈N) = lim supk→+∞(x (i−1)

k )i and λi = sup{λi ({x (i−1)
k }k∈N) :

{x(i−1)
k }k∈N ∈ Ti−1}.
Consider now x ∈ A and suppose

xi < λi (i = 1, 2, . . . , n) (7)

where the λi s are constructed as before (of course, if for some i we have λi = +∞,
inequality (7) is automatically verified).

From the above construction, there exists a sequence {yk}k∈N ⊂ A such that

lim
k

(yk)i = λi (i = 1, 2, . . . , n) (8)

From (7) and (8), we obtain the existence of ko ∈ N such that xi < (yko)i
(i = 1, 2, . . . , n). The last inequality means yko − x ∈ E+, therefore, x /∈ OE+(A). �
Remark 4.6 (i) If A ⊂ R

n, n ≥ 1, is a closed and nonempty set and there exist
î ∈ {1, 2, . . . , n}, r̄ > 0, x̂ ∈ A ∩ CB(0, r̄) such that x̂î ≥ xî for every
x ∈ A ∩ CB(0, r̄), then OE+(A) �= ∅.
First, we observe that it is not restrictive to choose the coordinate system in such
a way that x̂i ≥ 0 for every i = 1, 2, . . . , n. If e ∈ E+, it is easy to verify that
x̂ + e ∈ A ∩ CB(0, r̄), therefore x̂ + e /∈ A and finally x̂ ∈ OE+(A).

(ii) If, for every ε > 0, there exists x̂ ∈ A such that x̂i ≥ ε (i = 1, 2, . . . , n), where A
is always a closed and nonempty set of Rn , then OE+(A) = ∅. The simple proof
of this assertion can be left to the reader.

Next theorem gives a necessary condition in order that OE (A) �= ∅, when
E ∈ 	n, E �= E+, satisfies a particular property.

Theorem 4.6 Let A ⊂ R
n (n ≥ 2) be a nonempty set and E ∈ 	n such that

E ⊃ {x ∈ R
n : xi ≤ 0 and xn > −α xi (i = 1, . . . , n − 1)} (where α > 0).
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Then a necessary condition for OE (A) �= ∅ is that there exists x′ ∈ A such that,
for every x′′ ∈ A, for which x ′

i − x ′′
i > 0 for each i = 1, . . . , n − 1, we have

x ′′
n − x ′

n

x ′
j − x ′′

j
≤ α for at least a value of j ∈ {1, 2, . . . , n − 1}.

Proof Suppose, on the contrary, that for every x′ ∈ A, there exists x′′ ∈ A with

x ′
i − x ′′

i > 0 ∀ i ∈ {1, . . . , n−1} such that x ′′
n − x ′

n

x ′
i − x ′′

i
> α for each i ∈ {1, . . . , n−1}.

This inequality gives x ′′
n − x ′

n > −α (x ′′
i − x ′

i ) for every i = 1, . . . , n − 1, so that,
if we consider e = x′′ − x′, it turns out 0 < −α ei < en (i = 1, . . . , n − 1), hence
e ∈ E . Since x′ + e = x′′ ∈ A, we have x′ /∈ OE (A) and, in virtue of arbitrariness of
x′, it follows OE (A) = ∅. �

5 A Situation in the Case n = 1.

In the interesting paper [12], under the convergence of a sequence of sets in the
sense of Wijsman, Ke Quan Zhao and Xin Min Yang prove a stability result with
perturbations concerning improvement sets. We refer two results of this paper for the
reader’s convenience.

Theorem 5.1 ([12], Theorem 3.1) Let E, Em ∈ 	n and A, E be closed. Suppose that
Am → A and Em → E in the sense of Wijsman.

If xm ∈ Oint (Em )(Am) and xm → xo (m → +∞), then xo ∈ Oint (E)(A).

Theorem 5.2 ([12], Theorem 3.2) Let E, Em ∈ 	n and A, E be closed. Suppose
that Am → A and Em → E in the sense of Wijsman. Then, for every x ∈ R

n,
lim inf

m
d(x, Oint (Em )(Am)) ≥ d(x, Oint (E)(A)).

Concerning these results, the authors Zhao andYang proposed the question if, in the
hypothesis, the sets int (Em) and int (E) could be replaced by Em and E , respectively.
The following examples show that the answer is negative.

Example 5.1 Let Am =
{

0, −1 + 1

m

}

(m ∈ N, m ≥ 2), A = {0, −1} be subsets

of R, Em = E = {x ∈ R : x ≥ 1} and xm = −1 + 1

m
.

Then it is easy to see that xm ∈ OEm (Am), lim
m

xm = −1, but −1 /∈ OE (A).

Example 5.2 Let again Am =
{

0, −1 + 1

m

}

(m ≥ 2), A = {0, −1},

Em = E = {x ∈ R : x ≥ 1}. Then it follows OEm (Am) =
{

0, −1 + 1

m

}

,

OE (A) = {0} and, if x = −1, it turns out lim
m

d(−1, OEm (Am)) = lim
m

1

m
= 0,

while d(−1, OE (A)) = 1.
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6 Perspectives

It would be interesting to obtain existence results via topological properties of the sets
for the solutions of the problem formulated by Flores-Bazán and Hernández in [3] and
[1] and briefly described in the Introduction. This improvement may be stimulating
in both finite and infinite dimensions, also for the applications in mathematical eco-
nomics. The importance of finding existence results also through a topological process
in addition to via scalarization and via subdifferentials (for these two last methods see
[3] and [1]) lies in the fact that most numerical procedures or location methods such
as the iterative and heuristic ones yield feasible points near the exact solution.

A topic of future research will be also the study of the existence for approximate
solutions of problems associated with that quoted above and introduced in [3].

7 Conclusions

In this paper, we are mainly interested in the existence of optimal points for multicrite-
ria situations, keeping into account special sets, called improvement sets, as described
in the Introduction. In a finite dimensional setting, we have considered especially the
case in which the order set is the interior of the nonnegative orthant and also the case
where it is a generic improvement set. In both cases, we have provided some con-
ditions (necessary, sufficient or both) for the existence of optimal points, illustrating
their novelty. In particular, our Theorem 4.2 and Theorem 4.3 improve the existence
results given in [14] and [15].
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