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Abstract We introduce the optimality question to the relaxation in multiple control
problems described by Sobolev-type nonlinear fractional differential equations with
nonlocal control conditions inBanach spaces.Moreover,we consider theminimization
problem of multi-integral functionals, with integrands that are not convex in the con-
trols, of control systems with mixed nonconvex constraints on the controls. We prove,
under appropriate conditions, that the relaxation problem admits optimal solutions.
Furthermore, we show that those optimal solutions are in fact limits of minimizing
sequences of systems with respect to the trajectory, multicontrols, and the functional
in suitable topologies.
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1 Introduction

The memory and hereditary properties of various materials and processes in electrical
circuits, biology, biomechanics, etc., such as viscoelasticity, electrochemistry, control,
porous media, and electromagnetic processes, are widely recognized to be well pre-
dicted by using fractional differential operators [1–6]. During the past decades, the
subject of fractional calculus and its potential applications have gained an increase
in importance, mainly because it has become a powerful tool with more accurate and
successful results in modeling several complex phenomena in numerous seemingly
diverse and widespread fields of science and engineering [7–10].

There has been a significant development in nonlocal problems for (fractional)
differential equations or inclusions (see for instance [11–17]). Indeed, nonlinear frac-
tional differential equations have, in recent years, been object of an increasing interest
because of their wide applicability in nonlinear oscillations of earthquakes, in many
physical phenomena such as seepage flow in porousmedia, and in fluid dynamic traffic
model [18–20]. On the other hand, there could be no manufacturing, no vehicles, no
computers, and no regulated environment, without control systems. Control systems
are most often based on the principle of feedback, whereby the signal to be controlled
is compared to a desired reference signal and the discrepancy used to compute correc-
tive control actions [21]. Over the last years, one of the fields of science that has been
well established is the fractional calculus of variations (see [22–24] and references
therein).Moreover, a generalization of this area, namely the fractional optimal control,
is a topic of research by many authors [25,26].

The fractional optimal control of a distributed system is an optimal control problem
for which the system dynamics is defined with partial fractional differential equa-
tions [27]. The calculus of variations with constraints being sets of solutions of control
systems, allow us to justify, while performing numerical calculations, the passage from
a nonconvex optimal control problem to the convexified optimal control problem. We
then approximate the latter problem by a sequence of smooth and convex optimal
control problems, for which the optimality conditions are known and methods of their
numerical resolution are well developed.

Sobolev-type semilinear equations serve as an abstract formulation of partial dif-
ferential equations, which arise in various applications such as in the flow of fluid
through fissured rocks, thermodynamics, and shear in second-order fluids. Further,
the fractional differential equations of Sobolev type appear in the theory of control of
dynamical systems, when the controlled system and/or the controller is described by a
fractional differential equation of Sobolev type. Furthermore, the mathematical mod-
eling and simulations of systems and processes are based on the description of their
properties in termsof fractional differential equations of Sobolev type. These newmod-
els are more adequate than previously used integer-order models, so fractional-order
differential equations of Sobolev type have been investigated by many researchers:
see, for example, Fec̆kan et al. [28] and Li et al. [29]. In our previous works [30,31],
we have introduced the notion of nonlocal control condition and presented a new kind
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of Sobolev-type condition that appears in terms of two linear operators. Kamocki [32]
studied the existence of optimal solutions to fractional optimal control problems. Liu
et al. [33] established the relaxation for nonconvex optimal control problems described
by fractional differential equations. Motivated by the above facts and results, we intro-
duce here a new kind of Sobolev-type condition and another form of a nonlocal control
condition for nonlinear fractionalmultiple control systems. The newSobolev condition
is given in terms of two linear operators and requires formulating two other character-
istic solution operators and their properties, such as boundedness and compactness.
Further,we consider an optimal control problem (P) ofmulti-integral functionals,with
integrands that are not convex in the controls. We establish an interrelation between
the solutions of problem (P) and the relaxation problem (RP). Under certain assump-
tions, it is proved that (RP) has a solution and that for any solution of (RP) there is a
minimizing sequence for (P) converging, in the appropriate topologies, to the solution
of (RP). The convergence takes place simultaneously with respect to the trajectory,
the control, and the functional. This property is usually called relaxation [34,35].

The paper is organized as follows. In Sect. 2, we formulate and define the problems
under study and we review some essential facts from fractional calculus [4,18], semi-
group theory [36,37], and multivalued analysis [38,39], which are used throughout
the work. In Sect. 3, we prove some auxiliary results that are required for the proof of
our main results. Section 4 deals with existence results for multiple control systems.
The main results are given in Sect. 5. We end with Sect. 6 of conclusions.

2 Preliminaries

Consider the following nonlocal nonlinear fractional control system of Sobolev type:

L C Dα
t [Mx(t)] + Ex(t) = f (t, x(t), B1(t)u1(t), . . . , Br−1(t)ur−1(t)), t ∈ I

(1)

x(0) + h(x(t), Br (t)ur (t)) = x0, (2)

with mixed nonconvex constraints on the controls

u1(t), . . . , ur (t) ∈ U (t, x(t)) a.e. on I, (3)

where C Dα
t is the Caputo fractional derivative of order α, 0 < α ≤ 1, and t ∈ I :=

[0, a]. Let X,Y , and Z be three Banach spaces such that Z is densely and continuously
embedded in X , the unknown function x(·) takes its values in X , and x0 ∈ X . We
assume that the operators E : D(E) ⊂ X → Y, M : D(M) ⊂ X → Z , L :
D(L) ⊂ Z → Y , and B1, . . . , Br : I → L(T, X) are linear and bounded from
T into X . The space T is a separable reflexive Banach space modeling the control
space. It is also assumed that f : I × Xr → Y and h : C(X2, X) → X are given
abstract functions, to be specified later, and U : I × X ⇒ 2T \{∅} is a multivalued
map with closed values, not necessarily convex. Let ̂R :=] − ∞,+∞]. For functions
g1, . . . , gr : I × X × T → R, we consider the problem
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max

⎧

⎪

⎨

⎪

⎩

J1, . . . , Jr

∣

∣

∣

∣

J1(x, u1) := ∫

I g1 (t, x(t), u1(t)) dt
...

Jr (x, ur ) := ∫

I gr (t, x(t), ur (t)) dt

⎫

⎪

⎬

⎪

⎭

−→ inf (P)

on solutions of the control system (1)–(2) with constraint (3). Let g1,U , . . . , gr,U :
I × X × T → ̂R be the functions defined by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

g1,U (t, x, u1) :=
{

g1(t, x, u1), u1 ∈ U (t, x),
+∞, u1 /∈ U (t, x),

...

gr,U (t, x, ur ) :=
{

gr (t, x, ur ), ur ∈ U (t, x),
+∞, ur /∈ U (t, x),

and g∗∗
1 (t, x, u1), . . . , g∗∗

r (t, x, ur ) be the bipolar of u1 → g1,U (t, x, u1), . . . , ur →
gr,U (t, x, ur ), respectively. Along with problem (P), we also consider the relaxation
problem

max

⎧

⎪

⎨

⎪

⎩

J ∗∗
1 , . . . , J ∗∗

r

∣

∣

∣

∣

J ∗∗
1 (x, u1) = ∫

I g
∗∗
1 (t, x(t), u1(t))dt

...

J ∗∗
r (x, ur ) = ∫

I g
∗∗
r (t, x(t), ur (t))dt

⎫

⎪

⎬

⎪

⎭

−→ inf (RP)

on the solutions of control system (1)–(2) with the convexified constraints

u1(t), . . . , ur (t) ∈ cl conv U (t, x(t)) a.e. on I (4)

on the controls, where conv denotes the convex hull and cl the closure. In our results,
we will denote by RU and T rU (Rcl conv U and T rcl conv U ) the sets of all solutions
and all trajectories of control system (1)–(3) [control system (1)–(2),(4), respectively].

Definition 2.1 The fractional integral of order α > 0 of a function f ∈ L1([a, b],R)

is given by

Iα
a f (t) := 1

Γ (α)

∫ t

a
(t − s)α−1 f (s)ds,

where Γ is the classical gamma function.

If a = 0, then we can write I α f (t) := (gα ∗ f )(t), where

gα(t) :=
{ 1

Γ (α)
tα−1, t > 0,

0, t ≤ 0

and, as usual, ∗ denotes convolution. Moreover, limα↓0 gα(t) = δ(t) with δ the delta
Dirac function.
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Definition 2.2 The Riemann–Liouville fractional derivative of order α > 0, n− 1 <

α < n, n ∈ N, is given by

L Dα f (t) := 1

Γ (n − α)

dn

dtn

∫ t

0

f (s)

(t − s)α+1−n
ds, t > 0,

where function f has absolutely continuous derivatives up to order (n − 1).

Definition 2.3 The Caputo fractional derivative of order α > 0, n− 1 < α < n, n ∈
N, is given by

C Dα f (t) := L Dα

(

f (t) −
n−1
∑

k=0

tk

k! f
(k)(0)

)

, t > 0,

where function f has absolutely continuous derivatives up to order (n − 1).

If f is an abstract function with values in X , then the integrals that appear in
Definitions 2.1–2.3 are taken in Bochner’s sense.

Remark 2.1 Let n − 1 < α < n, n ∈ N. The following properties hold:

(i) If f ∈ Cn([0,∞[), then

C Dα f (t) = 1

Γ (n − α)

∫ t

0

f (n)(s)

(t − s)α+1−n
ds = I n−α f (n)(t), t > 0;

(ii) The Caputo derivative of a constant function is equal to zero;
(iii) The Riemann–Liouville derivative of a constant function is given by

L Dα
a+C = C

Γ (1 − α)
(t − a)−α, 0 < α < 1.

We make the following assumptions:

(H1) L : D(L) ⊂ Z → Y and M : D(M) ⊂ X → Z are linear operators, and
E : D(E) ⊂ X → Y is closed.
(H2) D(M) ⊂ D(E), Im(M) ⊂ D(L), and L and M are bijective.
(H3) L−1 : Y → D(L) ⊂ Z and M−1 : Z → D(M) ⊂ X are linear, bounded,
and compact operators.
Note that (H3) implies that L and M are closed. Indeed, if L−1 and M−1 are closed
and injective, then their inverse is also closed. From (H1)–(H3) and the closed
graph theorem, we obtain the boundedness of the linear operator L−1EM−1 :
Z → Z . Consequently, L−1EM−1 generates a semigroup {Q(t), t ≥ 0}, Q(t) :=
eL

−1EM−1t . We assume that M0 := supt≥0 ‖Q(t)‖ < ∞, and for short, we denote
C1 := ‖L−1‖ and C2 := ‖M−1‖. According to previous definitions, it is suitable
to rewrite problem (1)–(2) as the equivalent integral equation
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Mx(t) = Mx(0)

+ 1

Γ (α)

∫ t

0
(t − s)α−1

[

−L−1Ex(s)

+ L−1 f (s, x(s), B1(s)u1(s), . . . , Br−1(s)ur−1(s))
]

ds, (5)

provided the integral in (5) exists a.e. in t ∈ J . Before formulating the definition
of mild solution of system (1)–(3), we first introduce some necessary notions. Let
I := [0, a] be a closed interval of the real line with the Lebesgue measure μ and
the σ -algebra Σ of μ measurable sets. The norm of the space X (or T ) will be
denoted by ‖ · ‖X (or ‖ · ‖T ). We denote by C(I, X) the space of all continuous
functions from I into X with the supnorm given by ‖x‖C := supt∈I ‖x(t)‖X for
x ∈ C(I, X). For any Banach space V , the symbol ω-V stands for V equipped
with the weak topology σ(V, V ∗). The same notation will be used for subsets of
V . In all other cases, we assume that V and its subsets are equipped with the strong
(normed) topology.

Throughout the paper, A := −L−1EM−1 : D(A) ⊂ Z → Z is the infinitesimal
generator of a compact analytic semigroup of uniformly bounded linear operators Q(·)
in X . Then, there exists a constant M0 ≥ 1 such that ‖Q(t)‖ ≤ M0 for t ≥ 0. The
operators Bi ∈ L∞(I,L(T, X)), and we let ‖Bi‖ stand for ‖Bi‖L∞(I,L(T,X)).

We now proceed with some basic definitions and results frommultivalued analysis.
For more details on multivalued analysis, we refer to the books [38,39]. We use the
following symbols: Pf (T ) is the set of all nonempty closed subsets of T ; Pbf (T ) is
the set of all nonempty, closed, and bounded subsets of T . On Pbf (T ), we have a
metric, known as the Hausdorff metric, defined by

dH (A, B) := max

{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}

,

where d(x,C) is the distance from a point x to a setC .We say that amultivaluedmap is
H -continuous if it is continuous in the Hausdorff metric dH (·, ·). Let F : I ⇒ 2T \{∅}
be a multifunction. For 1 ≤ p ≤ +∞, we define S p

F := { f ∈ L p(I, T ) : f (t) ∈ F(t)
a.e. on I }. We say that a multivalued map F : I ⇒ Pf (T ) is measurable if F−1(E) =
{t ∈ I : F(t) ∩ E = ∅} ∈ Σ for every closed set E ⊆ T . If F : I × T → Pf (T ),
then the measurability of F means that F−1(E) ∈ Σ ⊗ BT , where Σ ⊗ BT is the
σ -algebra of subsets in I × T generated by the sets A× B, A ∈ Σ, B ∈ BT , and BT

is the σ -algebra of the Borel sets in T .
Suppose that V1 and V2 are two Hausdorff topological spaces and F : V1 →

2V2\{∅}. We say that F is lower semicontinuous in the sense of Vietoris (l.s.c., for
short) at a point x0 ∈ V1, if for any open set W ⊆ V2, F(x0) ∩ W = ∅, there is a
neighborhood O(x0) of x0 such that F(x) ∩ W = ∅ for all x ∈ O(x0). Similarly, F
is said to be upper semicontinuous in the sense of Vietoris (u.s.c., for short) at a point
x0 ∈ V1, if for any open set W ⊆ V2, F(x0) ⊆ W , there is a neighborhood O(x0) of
x0 such that F(x) ⊆ W for all x ∈ O(x0). For more properties of l.s.c and u.s.c, we
refer to the book [39]. Besides the standard norm on Lq(I, T ) (here, T is a separable
reflexive Banach space), 1 < q < ∞, we also consider the so-called weak norm:
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‖ui (·)‖ω := sup
0≤t1≤t2≤a

∥

∥

∥

∥

∫ t2

t1
ui (s)ds

∥

∥

∥

∥

T

, ui ∈ Lq(I, T ), i = 1, . . . , r. (6)

The space Lq(I, T ) furnished with this norm will be denoted by Lq
ω(I, T ). The fol-

lowing result gives a relation between convergence in ω-Lq(I, T ) and convergence in
Lq

ω(I, T ).

Lemma 2.1 (see [40]) If sequences {u1,n}n≥1, . . . , {ur,n}n≥1 ⊆ Lq(I, T ) are
bounded and converge to u1, . . . , ur in Lq

ω(I, T ), respectively, then they converge
to u1, . . . , ur in ω-Lq(I, T ), respectively.

We make use of the following assumptions on the data of our problems.

(H1) The nonlinear function f : I × Xr → Y satisfies the following:
(1) t → f (t, x1, . . . , xr ) is measurable for all (x1, . . . , xr ) ∈ Xr ;
(2) ‖ f (t, x1, . . . , xr ) − f (t, y1, . . . , yr )‖Y ≤ k1(t)

∑r
i=1 ‖xi − yi‖X a.e. on

I, k1 ∈ L∞(I,R+);
(3) there exists a constant 0 < β < α such that ‖ f (t, x1, . . . , xr )‖Y ≤ a1(t) +

c1
∑r

i=1 ‖xi‖X a.e. in t ∈ I , where a1 ∈ L1/β(I,R+) and c1 > 0.
(H2) The nonlocal function h : C(J : X, X) → X satisfies the following:

(1) t → h(x, y) is measurable for all x, y ∈ X ;
(2) ‖h(x1, y1) − h(x2, y2)‖X ≤ k2(t){‖x1 − x2‖X + ‖y1 − y2‖X } a.e. on I, k2 ∈

L∞(I,R+);
(3) there exists a constant 0 < β < α such that ‖h(x, y)‖X ≤ a2(t)+c2{‖x‖X +

‖y‖X } a.e. in t ∈ I and all x, y ∈ X , where a2 ∈ L1/β(R+) and c2 > 0.
(H3) The multivalued map U : I × X ⇒ Pf (T ) is such that:

(1) t → U (t, x) is measurable for all x ∈ X ;
(2) dH (U (t, x),U (t, y)) ≤ k3(t)‖x − y‖X a.e. on I, k3 ∈ L∞(I,R+);
(3) there exists a constant 0 < β < α such that

‖U (t, x)‖T = sup{‖v‖T : v ∈ U (t, x)} ≤ a3(t) + c3‖x‖X a.e. in t ∈ I,

where a3 ∈ L1/β(I,R+) and c3 > 0.
(H4) Functions gi : I × X × T → R, i = 1, . . . , r , are such that:

(1) the map t → gi (t, x, ui ) is measurable for all (x, ui ) ∈ X × T ;
(2) |gi (t, x, ui ) − gi (t, y, vi )| ≤ k′

4(t)‖x − y‖X + k′′
4‖ui − vi‖T a.e., k′

4 ∈
L1(I,R+), k′′

4 > 0;
(3) |gi (t, x, ui )| ≤ a4(t) + b4(t)‖x‖X + c4‖ui‖T a.e. t ∈ I, a4, b4 ∈

L1/β(I,R+), c4 > 0.

Definition 2.4 A solution of the control system (1)–(3) is defined to be a vector of
functions (x(·), u1(·), . . . , ur (·)) consisting of a trajectory x ∈ C(I, X) and r multiple
controls u1, . . . , ur ∈ L1(I, T ) satisfying system (1)–(2) and the inclusion (3) almost
everywhere.

A solution of control system (1)–(2), (4) can be defined similarly.
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Definition 2.5 (see [17,30,41]) A vector of functions (x, u1, . . . , ur ) is a mild solu-
tion of the control system (1)–(3) iff x ∈ C(I, X) and there exist u1, . . . , ur ∈
L1(I, T ) such that u1(t), . . . , ur (t) ∈ U (t, x(t)) a.e. in t ∈ I, x(0) = x0 −
h(x(t), Br (t)ur (t)), and the following integral equation is satisfied:

x(t) = Sα(t)M [x0 − h(x(t), Br (t)ur (t))]

+
∫ t

0
(t−s)α−1Tα(t−s)L−1 f (s, x(s), B1(s)u1(s), . . . , Br−1(s)ur−1(s)) ds,

where

Sα(t) :=
∫ ∞

0
M−1ζα(θ)Q(tαθ)dθ, Tα(t) := α

∫ ∞

0
M−1θζα(θ)Q(tαθ)dθ,

ζα(θ) := 1

α
θ−1− 1

α �α(θ− 1
α ) ≥ 0, �α(θ)

�α(θ) := 1

π

∞
∑

n=1

(−1)n−1θ−αn−1Γ (nα + 1)

n! sin(nπα), θ ∈]0,∞[,

with ζα the probability density function defined on ]0,∞[, that is, ζα(θ) ≥ 0, θ ∈
]0,∞[, and ∫∞

0 ζα(θ)dθ = 1.

A similar definition can be introduced for the control system (1)–(2),(4).

Remark 2.2 (see [41]) One has
∫∞
0 θξα(θ)dθ = 1

Γ (1+α)
.

Lemma 2.2 (see [41]) The characteristic operators Sα and Tα have the following
properties:

(1) for any fixed t ≥ 0, Sα(t) and Tα(t) are linear and bounded operators, i.e., for
any x ∈ X,

‖Sα(t)x‖X ≤ C2M0‖x‖X , ‖Tα(t)x‖X ≤ C2M0

Γ (α)
‖x‖X ;

(2) {Sα(t), t ≥ 0} and {Tα(t), t ≥ 0} are strongly continuous;
(3) for every t > 0, Sα(t) and Tα(t) are compact operators.

Lemma 2.3 (see [42]) Let x(t) be continuous and nonnegative on [0, a]. If

x(t) ≤ ψ(t) + λ

∫ t

0

x(s)

(t − s)γ
ds, 0 ≤ t ≤ a,

where 0 ≤ γ < 1, ψ(t) is a nonnegative monotonic increasing continuous function
on [0, a], and λ is a positive constant, then

x(t) ≤ ψ(t)E1−γ

(

λΓ (1 − γ )t1−γ
)

, 0 ≤ t ≤ a,
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where E1−γ (z) is the Mittag-Leffler function defined for all γ < 1 by

E1−γ (z) :=
∞
∑

n=0

zn

Γ (n(1 − γ ) + 1)
.

3 Auxiliary Results

In this section, we give some auxiliary results, which are required for the proof of our
main results. We begin with a prior estimation of the trajectory of the control system.

Lemma 3.1 For any admissible trajectory x of the control system (1)–(2), (4), that
is, for any x ∈ T rcl conv U , there is a constant L0 such that

‖x‖C ≤ L0. (7)

Proof From Definition 2.5, there exist u1(t), . . . , ur (t) ∈ cl conv U (t, x(t)) a.e. in
t ∈ I for any x ∈ T rcl conv U , and

x(t) = Sα(t)M[x0 − h(x(t), Br (t)ur (t))]
+
∫ t

0
(t−s)α−1Tα(t−s)L−1 f (s, x(s), B1(s)u1(s), . . . , Br−1(s)ur−1(s))ds.

Then, by Lemma 2.2, (H1.3), (H2.3), (H3.3), and Hölder’s inequality, one gets

‖x(t)‖X ≤ C2M0‖M‖ {‖x0‖X + a2(t) + c2 [‖x‖X + ‖Br‖ (a3(t) + c3‖x‖X )]}
+ C1C2M0

Γ (α)

∫ t

0
(t − s)α−1 {a1(s)

+ c1

[

‖x‖X +
r−1
∑

i=1

‖Bi‖ (a3(s) + c3‖x‖X )

]}

ds

≤ C2M0‖M‖ {‖x0‖X + a2(t) + c2 [‖x‖X + ‖Br‖ (a3(t) + c3‖x‖X )]}

+ C1C2M0

Γ (α)

[

(1 − β)

α − β
a

α−β
1−β

]1−β
[

‖a1‖
L

1
β

+ c1

r−1
∑

i=1

‖Bi‖‖a3‖
L

1
β

]

+ C1C2M0

Γ (α)

(

c1 + c1c3

r−1
∑

i=1

‖Bi‖
)

∫ t

0
(t − s)α−1‖x‖Xds.

From the above inequality, using the well-known singular version of Gronwall’s
inequality (see Lemma 2.3), we can deduce that the inequality (7) is satisfied, that
is, there exists a constant L0 > 0 such that ‖x‖C ≤ L0. ��
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Let prL0
: X → X be a L0-radial retraction, that is,

prL0
(x) :=

{

x, ‖x‖X ≤ L0,
L0x‖x‖X , ‖x‖X > L0.

This map is Lipschitz continuous. We define U1(t, x) := U (t, prL0
x). Evidently, U1

satisfies (H3.1) and (H3.2). Moreover, by the properties of prL0
, we have, a.e. in t ∈ I ,

all x ∈ X and all u1, . . . , ur ∈ U1(t, x), that

sup{‖u1‖T , . . . , ‖ur‖T } ≤ a3(t) + c3L0 and sup{‖u1‖T , . . . , ‖ur‖T }
≤ a3(t) + c3‖x‖X .

Hence, Lemma 3.1 is still valid with U (t, x) substituted by U1(t, x). Consequently,
without loss of generality, we assume that, a.e. in t ∈ I and all x ∈ X ,

sup {‖v‖T : v ∈ U (t, x)} ≤ ϕ(t) = a3(t) + c3L0, with ϕ ∈ L1/β(I,R+). (8)

Now we consider the following fractional nonlocal semilinear auxiliary problem of
Sobolev type:

L C Dα
t [Mx(t)] + Ex(t) = f (t, x(t)), t ∈ I, (9)

x(0) = h(x(t)). (10)

It is clear that, for every f ∈ L1/β(I × X,Y ), h ∈ L1/β(I : X, X), 0 < β < α, the
problem (9)–(10) has a unique mild solution H( f, h) ∈ C(I, X), which is given by

H( f, h)(t) = Sα(t)Mh(x(t)) +
∫ t

0
(t − s)α−1Tα(t − s)L−1 f (s, x(s))ds.

Let ϕ be defined by (8). We put

Tϕ =
{

ui ∈ L1/β(I, T ) : ‖ui (t)‖ ≤ ϕ(t) a.e. t ∈ I, i = 1, . . . , r
}

,

Xϕ =
{

f, h| f ∈ L1/β(I × X,Y ), h ∈ L1/β(I : X, X)
}

.

The following lemma gives a property of the solution map S : Tϕ → C(I, X) of
(1)–(2), which is crucial in our investigation.

Lemma 3.2 The solution map S : Tϕ → C(I, X) is continuous from ω-Tϕ into
C(I, X).

Proof The operator H : L1/β(I × X,Y ) × L1/β(I : X, X) → C(I, X) is linear. The
estimation

‖H( f, h)‖C ≤ C2M0‖M‖‖h‖
L

1
β

+ C1C2M0

Γ (α)

[

(1 − β)

α − β
a

α−β
1−β

]1−β

‖ f ‖
L

1
β
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shows that H is continuous. Hence, H is also continuous from ω-L1/β(I × X,Y ) ×
L1/β(I : X, X) to ω-C(I, X). Let C ∈ Pb(L1/β(J, X)) and suppose that for any
f, h ∈ C, ‖ f ‖L1/β (I×X,Y ) ≤ K1 and ‖h‖L1/β (I :X,X) ≤ K2 (K1, K2 > 0). Next we
will show that H is completely continuous.

Step 1. From Lemma 3.1, we have that the map ‖H( f, h)(t)‖X is uniformly
bounded.
Step 2. H is equicontinuous on C . Let 0 ≤ t1 < t2 ≤ a. For any f, h ∈ C , we
obtain

‖H( f, h)(t2) − H( f, h)(t1)‖X
≤ ‖[Sα(t2)−Sα(t1)]Mh(x)‖X +

∥

∥

∥

∥

∫ t2

t1
(t2−s)α−1Tα(t2−s)L−1 f (s, x(s))ds

∥

∥

∥

∥

X

+
∥

∥

∥

∥

∫ t1

0

[

(t2 − s)α−1 − (t1 − s)α−1
]

Tα(t2 − s)L−1 f (s, x(s))ds

∥

∥

∥

∥

X

+
∥

∥

∥

∥

∫ t1

0
(t1 − s)α−1

[

Tα(t2 − s) − Tα(t1 − s)
]

L−1 f (s, x(s))ds

∥

∥

∥

∥

X

=: I1 + I2 + I3 + I4.

By using analogous arguments as in Lemma 3.1, we have

I1 ≤ K2‖M‖ sup ‖Sα(t2) − Sα(t1)‖,
I2 ≤ C1C2M0K1

Γ (α)

[ 1 − β

α − β

]1−β

(t2 − t1)
α−β,

I3 ≤ C1C2M0K1

Γ (α)

(∫ t1

0

(

(t1 − s)α−1 − (t2 − s)α−1
)1/(1−β)

ds

)1−β

≤ C1C2M0K1

Γ (α)

(∫ t1

0

(

(t1 − s)
α−1
1−β − (t2 − s)

α−1
1−β

)

ds

)1−β

= C1C2M0K1

Γ (α)

[

1 − β

α − β

]1−β (

t
α−β
1−β

1 − t
α−β
1−β

2 + (t2 − t1)
α−β
1−β

)1−β

≤ C1C2M0K1

Γ (α)

[ 1 − β

α − β

]1−β(
t2 − t1

)α−β
.

For t1 = 0 and 0 < t2 ≤ b, it is easy to see that I4 = 0. For t1 > 0 and ε > 0
small enough,

I4 ≤
∥

∥

∥

∥

∫ t1−ε

0
(t1 − s)α−1

(

Tα(t2 − s) − Tα(t1 − s)
)

L−1 f (s, x(s))ds

∥

∥

∥

∥

X

+
∥

∥

∥

∥

∫ t1

t1−ε

(t1 − s)α−1
(

Tα(t2 − s) − Tα(t1 − s)
)

L−1 f (s, x(s))ds

∥

∥

∥

∥

X
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≤ sup
s∈[0,t1−ε]

‖Tα(t2 − s) − Tα(t1 − s)‖C1K1

[ 1 − β

α − β

]1−β
(

t
α−β
1−β

1 − ε
α−β
1−β

)1−β

+ 2C1C2M0K1

Γ (α)

[ 1 − β

α − β

]1−β

εα−β.

Combining the estimations for I1, I2, I3, and I4 and letting t2 → t1 and ε → 0
in I4, we conclude that H is equicontinuous. For more details, see [17].
Step 3. The set Π(t) := {H( f, h)(t) : f, h ∈ C} is relatively compact in X .
Clearly, Π(0) is compact. Hence, it is only necessary to consider t > 0. For each
g ∈]0, t[, t ∈]0, a], f, h ∈ C , and δ > 0 being arbitrary, we define Πg,δ(t) :=
{Hg,δ( f, h)(t) : f, h ∈ C}, where

Hg,δ( f, h)(t) =
∫ ∞

δ

M−1ξα(θ)Q(tαθ)Mh(x)dθ

+ α

∫ t−g

0

∫ ∞

δ

θ(t−s)α−1ξα(θ)Q((t−s)αθ)L−1 f (s, x(s))dθds

= Q(gαδ)

∫ ∞

δ

M−1ξα(θ)Q(tαθ − gαδ)Mh(x)dθ

+ αQ(gαδ)

∫ t−g

0

∫ ∞

δ

θ(t−s)α−1ξα(θ)Q
(

(t−s)αθ − gαδ
)

L−1

× f (s, x(s))dθds

:= Q(gαδ)y(t, g).

Because Q(gαδ) is compact and y(t, g) is bounded, we obtain that the set Πg,δ(t) is
relatively compact in X for any g ∈]0, t[ and δ > 0. Moreover, we have

‖H( f, h)(t) − Hg,δ( f, h)(t)‖X
=
∥

∥

∥

∥

∫ δ

0
M−1ξα(θ)Q(tαθ)Mh(x)dθ

+ α

∫ t

0

∫ δ

0
M−1θ(t − s)α−1ξα(θ)Q((t − s)αθ)L−1 f (s, x(s))dθds

+ α

∫ t

0

∫ ∞

δ

M−1θ(t − s)α−1ξα(θ)Q((t − s)αθ)L−1 f (s, x(s))dθds

− α

∫ t−g

0

∫ ∞

δ

M−1θ(t − s)α−1ξα(θ)Q((t − s)αθ)L−1 f (s, x(s))dθds

∥

∥

∥

∥

X

≤
∥

∥

∥

∥

∫ δ

0
M−1ξα(θ)Q(tαθ)Mh(x)dθ

∥

∥

∥

∥

X

+ α

∥

∥

∥

∥

∫ t

0

∫ δ

0
M−1θ(t − s)α−1ξα(θ)Q((t − s)αθ)L−1 f (s, x(s))dθds

∥

∥

∥

∥

X

+ α

∥

∥

∥

∥

∫ t

t−g

∫ ∞

δ

M−1θ(t − s)α−1ξα(θ)Q((t − s)αθ)L−1 f (s, x(s))dθds

∥

∥

∥

∥

X
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≤ C2M0

∫ δ

0
ξα(θ)dθ‖M‖‖h(x)‖L1/β

+ C1C2M0α

(∫ t

0
(t − s)

α−1
1−β ds

)1−β

‖ f ‖L1/β

∫ δ

0
θξα(θ)dθ

+ C1C2M0α

(∫ t

t−g
(t − s)

α−1
1−β ds

)1−β

‖ f ‖L1/β

∫ ∞

δ

θξα(θ)dθ

≤ C2M0‖M‖K2

∫ δ

0
ξα(θ)dθ

+ C1C2M0K1α

[

1 − β

α − β

]1−β (

bα−β

∫ δ

0
θξα(θ)dθ + 1

Γ (1 + α)
gα−β

)

.

From Definition 2.5 and Remark 2.2, we deduce that the right-hand side of the last
inequality tends to zero as g → 0 and δ → 0. Therefore, there are relatively compact
sets arbitrarily close to the setΠ(t), t > 0.Hence, the setΠ(t), t > 0 is also relatively
compact in X .

Since Tϕ is a convex compact metrizable subset ofω-L1/β(I, T ), it suffices to prove
the sequential continuity of the map S. Let {u1,n}n≥1, . . . , {ur,n}n≥1 ⊆ Tϕ be such
that

(u1,n, . . . , ur,n) → (u1, . . . , ur ) in ω − L1/β(I, T ), u1, . . . , ur ∈ Tϕ. (11)

Set fn := fn
(·, ·, B1(·)u1,n(·), . . . , Br−1(·)ur−1,n(·)

)

and hn := hn
(·, Br (·)ur,n(·)

)

.
By the properties of the operator H together with (11), we have H( fn, hn) →
H( f, h) in ω − C(I, X), where ( fn, hn) → ( f, h) in ω − L1/β(I × Xr ,Y ) ×
L1/β(X2, X) and the limit functions are f = f (·, ·, B1(·)u1(·), . . . , Br−1(·)ur−1(·))
and h = h(·, Br (·)ur (·)). Since { fn}n≥1 and {hn}n≥1 are bounded, there are subse-
quences { fnk }k≥1 and {hnk }k≥1 of the sequences { fn}n≥1 and { fn}n≥1, respectively,
such that H( fnk , hnk ) → z in C(I, X) for some z ∈ C(I, X). From the fact that
H( fn, hn) → H( f, h) in ω-C(I, X) and H( fnk , hnk ) → z inC(I, X), we obtain that
z = H( f, h) and H( fn, hn) → H( f, h) in C(I, X). Based on the definitions of oper-
ators S and H , we know that S(u1, . . . , ur )(t) = Sα(t)Mx0 + H( f, h)(t). According
to the arguments above, we conclude that S

(

u1,n, . . . , ur,n
)

(t) → S(u1, . . . , ur )(t)
in C(I, X). ��

Now, we consider the space T := T × R. The elements of the space T will be
denoted by ui := (ui , τi ), such that ui ∈ T, τi ∈ R, and i = 1, . . . , r . The space
T is endowed with the norm ‖u‖T = max{max(‖u1‖T , |τ1|), . . . ,max(‖ur‖T , |τr |)}.
Then T is a separable reflexive Banach space. In view of (6), the norm on the space
Lq

ω(I, T ) becomes

‖u‖ω = sup
0≤t1≤t2≤a

{

max

{

max

(∥

∥

∥

∥

∫ t2

t1
u1(s)ds

∥

∥

∥

∥

T

,

∣

∣

∣

∣

∫ t2

t1
τ1(s)ds

∣

∣

∣

∣

)

,

. . . ,max

(∥

∥

∥

∥

∫ t2

t1
ur (s)ds

∥

∥

∥

∥

T

,

∣

∣

∣

∣

∫ t2

t1
τr (s)ds

∣

∣

∣

∣

)}}

.
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Let the multivalued map F : I × X ⇒ T be defined by

F(t, x) :=

⎧

⎪

⎨

⎪

⎩

(ui , τi ) ∈ T

∣

∣

∣

∣

u1 ∈ U (t, x), τ1 = g1(t, x, u1)
...

ur ∈ U (t, x), τr = gr (t, x, ur )

⎫

⎪

⎬

⎪

⎭

. (12)

Lemma 3.3 The multivalued map F given by (12) has bounded closed values and
satisfies:

(1) the map t → F(t, x) is measurable;
(2) dH (F(t, x), F(t, y)) ≤ l(t)‖x − y‖X a.e., with l ∈ L1(I,R+);
(3) for any ui = (ui , τi ) ∈ F(t, x), we have |τi | ≤ a4(t) + b4(t)‖x‖X + c4(a3(t) +

c3‖x‖X ) and ‖ui‖T ≤ a3(t) + c3‖x‖X , i = 1, . . . , r .

Proof From (H3.3) and (H4.3), we have the boundedness of F(t, x). Moreover,
item (3) also follows. Since the graphs of functions u1 → g1(t, x, u1), . . . , ur →
gr (t, x, ur ) are closed on the set U (t, x), we obtain the closedness of F(t, x).
The measurability of the multivalued map is concluded and extended from [43,44].
To prove item (2), we consider x, y ∈ X , such that x = y, and any arbitrary
εi > 0, i = 1, . . . , r . Then, for each ui ∈ U (t, x), there exists vi ∈ U (t, y)
satisfying ‖ui − vi‖T ≤ (k3(t) + εi )‖x − y‖X and |gi (t, x, ui ) − gi (t, y, vi )| ≤
k4(t)‖x − y‖X + k′

4((k3(t) + εi )‖x − y‖X ). From above, we get

max

{

sup d

(

(u1, g1(t, x, u1)), F(t, y)

)

, . . . , sup d

(

(ur , gr (t, x, ur )), F(t, y)

)}

≤ l(t)‖x − y‖X ,

where l(t) := max{k3(t), k4(t) + k′
4k3}. Similarly, we can get

max

{

sup d

(

(v1, g1(t, y, v1)), F(t, x)

)

, . . . , sup d

(

(vr , gr (t, y, vr )), F(t, x)

)}

≤ l(t)‖x − y‖X .

We apply max between the two last max-sets, to get our result. ��
Let Effg∗∗(t, x) be the effective set, and Epig∗∗(t, x) the epigraph of functions

u1 → g∗∗
1 (t, x, u1), . . . , ur → g∗∗

r (t, x, ur ), that is,

(1) Effg∗∗(t, x) := {ui ∈ T : max{g∗∗
1 (t, x, u1), . . . , g∗∗

r (t, x, ur )} < +∞},
(2) Epig∗∗(t, x) := {(ui , τi ) ∈ T : g∗∗

1 (t, x, u1) ≤ τ1, . . . , g∗∗
r (t, x, ur ) ≤ τr }.

Now, we present some properties of functions g∗∗
i (t, x, ui ) via the following lemma.

Lemma 3.4 For a.e. in t ∈ I , one has:

(1) Effg∗∗(t, x) = cl conv U (t, x(t));
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(2) g∗∗
1 (t, x, u1) + · · · + g∗∗

r (t, x, ur ) = min{τ1 + · · · + τr ∈ R : (ui , τi ) ∈
cl conv F(t, x)} for every u1, . . . , ur ∈ Effg∗∗(t, x) and hence (ui , g∗∗

i (t, x, ui ))
∈ cl conv F(t, x) when ui ∈ cl conv U (t, x) and x ∈ X;

(3) for any εi > 0, there exist closed sets Iεi ⊆ I, μ(I \ Iεi ) ≤ εi , such that
(t, x, ui ) → g∗∗

i (t, x, ui ) are l.s.c. on Iεi × X × T, i = 1, . . . , r .

Proof It is well known that the bipolar g∗∗
1 (t, x, u1), . . . , g∗∗

r (t, x, ur ) are the Γ -
regularization of u1 → g1,U (t, x, u1), . . . , ur → gr,U (t, x, ur ), respectively. Let
x ∈ I a.e. be arbitrary. By (H4.3), each function of u1 → g1,U (t, x, u1), . . . , ur →
gr,U (t, x, ur ) has an affine continuous minorant. Then,

Epig∗∗(t, x) = cl conv
r
⋃

i=1

Epigi,U (t, x). (13)

Therefore, items (1) and (2) follow from (13) and (11) (for more details, see [45]).
Using Corollary 2.1 of [44] and items (1) and (2) of Lemma 3.3, for every ε1, . . . , εr >

0, there are closed sets Iε1 , . . . , Iεr ⊆ I withμ(I \ Iε1) ≤ ε1, . . . , μ(I \ Iεr ) ≤ εr such
that the map cl conv F(t, x), restricted to Iε1 × X, . . . , Iεr × X , has a closed graph
in I × X × T . To show item (3), let us consider (tn, xn, ui,n)n≥1 ∈ Iεi × X × T ,
such that (tn, xn, ui,n) → (t, x, ui ). If limn→∞ g∗∗

i (tn, xn, ui,n) = +∞, then
g∗∗
i (t, x, ui ) are l.s.c. at points (t, x, ui ), i = 1, . . . , r . If limn→∞ g∗∗

i (tn, xn, ui,n) =
λi , with λi = +∞, then by using (H4.3), we get λi = −∞. Hence, we can
assume, without loss of generality, that g∗∗

i (tn, xn, ui,n) < +∞. Then we have
(ui,n, g∗∗

i (tn, xn, ui,n)) ∈ cl conv F(tn, xn). From the last formula, and based on the
above, the map cl conv F(t, x) restricted to Iε1 × X, . . . , Iεr × X has a closed graph
in I × X × T . We obtain that (ui , λi ) ∈ cl conv F(t, x). By the second item of this
lemma, we have g∗∗

i (t, x, ui ) ≤ λi = limn→∞ g∗∗
i (tn, xn, ui,n)). Consequently, the

maps (t, x, ui ) → g∗∗
i (t, x, ui ) are l.s.c. on Iεi × X × T . ��

4 Existence for Multiple Control Systems

In this section, we shall prove existence of solutions for the multiple control system
(1)–(3) and (1)–(2),(4). Let Λ := S(Tϕ). From Lemma 3.2, we have that Λ is a
compact subset of C(I, X). It follows from (8) and the definitions of Tϕ and Xϕ that

T rU ⊆ T rcl conv U ⊆ Λ. Let the set-valued mapU : C(I, X) ⇒ 2L
1/β (I,T ) be defined

by

U (x) := {θi : I → T measurable : θi (t) ∈ U (t, x(t)) a.e., i = 1, . . . , r} ,

x ∈ C(I, X).

Theorem 4.1 The set RU is nonempty, and the set Rcl conv U is a compact subset of
the space C(J, X) × ω-L1/β(I, T ).

Proof By hypotheses (H3.1) and (H3.2), we have that for any measurable function
x : I → X , the map t → U (t, x(t)) is measurable and has closed values [39,
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Proposition2.7.9]. Therefore, it has measurable selectors [43]. So the operator U is
well defined, and its values are closed decomposable subsets of L1/β(I, T ). We claim
that x → U (x) is l.s.c. Let x∗ ∈ C(I, X), θi,∗ ∈ U (x∗), i = 1, . . . , r , and let
{xn}n≥1 ⊆ C(I, X) be a sequence converging to x∗. It follows from [46, Lemma3.2]
that there are sequences θi,n ∈ U (xn) such that

r
∑

i=1

‖θi,∗(t) − θi,n(t)‖T ≤
r
∑

i=1

{

dT (θi,∗(t),U (t, xn(t))) + 1

in

}

, a.e. t ∈ I. (14)

Since the map y → U (t, y) is H -continuous a.e. in t ∈ I [by (H3.2)], then a.e. in
t ∈ I , the map y → U (t, y) is l.s.c. [39, Proposition1.2.66]. Hence, each function
y → dT (θi,∗(t),U (t, y)) is u.s.c. for a.e. t ∈ I . It follows from (14) that, a.e. in t ∈ I ,

lim
n→∞

r
∑

i=1

‖θi,∗(t) − θi,n(t)‖T ≤ lim
n→∞

r
∑

i=1

sup dT
(

θi,∗(t),U (t, xn(t))
)

≤
r
∑

i=1

dT
(

θi,∗(t),U (t, x∗(t))
) = 0.

The last inequality together with (8) implies that θi,n → θi,∗ in L1/β(I, T ), i =
1, . . . , r . Therefore, the map x → U (x) is l.s.c. By [47] (see also [39, Theo-
rem2.8.7]), there exists a continuous function m : Λ → L1/β(I, T ) such that
m(x) ∈ U (x) for all x ∈ Λ. Consider the map P : L1/β(I, T ) → L1/β(I, T )

defined by P(θ1, . . . , θr ) := m(S(θ1, . . . , θr )). According to (8) and the definition of
Tϕ, P(θ1, . . . , θr ) ∈ Tϕ for every θ1, . . . , θr ∈ Tϕ . Due to Lemma 3.2 and the continu-
ity of m, the map P : ω-Tϕ → ω-Tϕ is continuous. Since ω-Tϕ is a convex metrizable
compact set in ω-L1/β(I, T ), by applying Schauder’s fixed point theorem, we deduce
that this map has a fixed point (θ1,∗, . . . , θr,∗) ∈ T r

ϕ , that is, (θ1,∗, . . . , θr,∗) =
P(θ1,∗, . . . , θr,∗) = m(S(θ1,∗, . . . , θr,∗)). Let (u1,∗, . . . , ur,∗) := (θ1,∗, . . . , θr,∗) and
x∗ := S(θ1,∗, . . . , θr,∗). Then, (u1,∗, . . . , ur,∗) = m(x∗) and x∗ = S(u1,∗, . . . , ur,∗).
Thus, we have

x∗(t) = S(u1,∗, . . . , ur,∗)(t) = Sα(t)M[x0 − h(x∗(t), Br (t)ur,∗(t))]
+
∫ t

0
(t − s)α−1Tα(t − s)L−1 f (s, x∗(s), B1(s)u1,∗(s), . . . ,

Br−1(s)ur−1,∗(s))ds,
u1,∗, . . . , ur,∗ ∈ U (t, x∗(t)) a.e. t ∈ I,

which imply that (x∗(·), u1,∗(·), . . . , ur,∗(·)) is a solution of the control system (1)–
(3). Hence, RU is nonempty. It is easy to see that Rcl conv U ⊆ Λ × Tϕ . Since Λ is
compact in C(I, X) and Tϕ is metrizable convex compact in ω-L1/β(I, T ), we have
that Rcl conv U is relatively compact in C(I, X) × ω-L1/β(I, T ). Hence, to complete
the proof of this theorem, it is sufficient to prove thatRcl conv U is sequentially closed
in C(I, X) × ω-L1/β(I, T ). Let {(xn(·), u1,n(·), . . . , ur,n(·)}n≥1 ⊆ Rcl conv U be a
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sequence converging to (x(·), u1(·), . . . , ur (·)) in the space C(I, X) × ω-L1/β(I, T ).
Then we have xn = S(u1,n, . . . , ur,n) and (u1,n, . . . , ur,n) → (u1, . . . , ur ) in ω-
L1/β(I, T ). Denote z := S(u1, . . . , ur ). From Lemma 3.2, we obtain that z = x ,
that is, x is a solution of (9)–(10) corresponding to u1, . . . , ur . Hence, to prove
that (x(·), u1(·), . . . , ur (·)) ∈ Rcl conv U , we only need to verify that u1, . . . , ur ∈
cl conv U (t, x(t)) a.e. in t ∈ I . Since u1,n → u1, . . . , ur,n → ur in ω-L1/β(I, T ),
by Mazur’s theorem, we have

u1(t) ∈
∞
⋂

n=1

cl conv

( ∞
⋃

k=n

u1,k(t)

)

, . . . , ur (t) ∈
∞
⋂

n=1

cl conv

( ∞
⋃

k=n

ur,k(t)

)

for a.e. t ∈ I. (15)

From hypothesis (H3.2) and the fact that dH (cl conv A, cl conv B) ≤ dH (A, B) for
sets A, B, the map x → cl conv U (t, x) is H -continuous. Then, from Proposition
1.2.86 in [39], we conclude that the map x → cl conv U (t, x) has property Q. There-
fore, we have

∞
⋂

n=1

cl conv

( ∞
⋃

k=n

cl conv U (t, xk(t))

)

⊆ cl conv U (t, x(t))

for a.e. t ∈ I. (16)

By (15) and (16), we obtain that u1(t), . . . , ur (t) ∈ cl conv U (t, x(t)) a.e. in t ∈ I .
This means thatRcl conv U is compact in C(I, X) × ω-L1/β(I, T ). ��

5 Main Results

In order to state and prove our main results, we firstly show the following helpful
lemma.

Lemma 5.1 For any function x∗ ∈ C(I, X) and any measurable selectors
u1,∗, . . . , ur,∗ of the map t → cl conv U (t, x∗(t)), there are sequences u1,n(t), . . . ,
ur,n(t), n ≥ 1, of measurable selectors of the map t → U (t, x∗(t)), such that

sup
0≤t1≤t2≤a

r
∑

i=1

∥

∥

∥

∥

∫ t2

t1
(ui,∗(s) − ui,n(s))ds

∥

∥

∥

∥

T
≤

r
∑

i=1

1

in
, (17)

sup
0≤t1≤t2≤a

r
∑

i=1

∣

∣

∣

∣

∫ t2

t1
(g∗∗

i (s, x∗(s), ui,∗(s)) − gi (s, x∗(s), ui,n(s)))ds
∣

∣

∣

∣

≤
r
∑

i=1

1

in
.

(18)

The sequences ui,n converge to ui,∗ in ω-L1/β(I, T ).

Proof Let ui,∗(t) := (

ui,∗, g∗∗
i (t, x∗(t), ui,∗(t))

)

, i = 1, . . . , r . According to
Lemma 3.4, we know that ui,∗(t) are measurable selectors of the map t →
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cl conv F(t, x∗(t)). From Lemma 3.3, the map t → F(t, x∗(t)) is measurable and
integrally bounded. Hence, by using [47, Theorem2.2], we have that, for any n ≥ 1,
there exist measurable selections u1,n(t), . . . , ur,n(t) of the map t → F(t, x∗(t)) such
that

sup
0≤t1≤t2≤a

∥

∥

∥

∥

∫ t2

t1
(ui,∗(s) − ui,n(s))ds

∥

∥

∥

∥

T
≤ 1

in
, i = 1, . . . , r.

The definitions of F and theweak normon L1/β(I, T ) give ui,n(t) = (ui,n, gi (t, x∗(t),
ui,n(t))) andui,n ∈ U (t, x∗(t)), i = 1, . . . , r , a.e. Then formulas (17) and (18) follow.
Hence, from Lemma 2.1, ui,n → ui,∗ in ω-L1/β(I, T ). ��

Theorem 5.1 Let any (x∗(·), u1,∗(·), . . . , ur,∗(·)) ∈ Rcl conv U . Then there exists a
sequence

(xn(·), u1,n(·), . . . , ur,n(·)) ∈ RU , n ≥ 1,

such that

xn → x∗ in C(I, X), (19)

ui,n → ui,∗ in L
1
β
ω (I, T ) and ω-L

1
β (I, T ), (20)

lim
n→∞ sup

0≤t1≤t2≤a

r
∑

i=1

∣

∣

∣

∣

∫ t2

t1
(g∗∗

i (s, x∗(s), ui,∗(s)) − gi (s, xn(s), ui,n(s)))ds

∣

∣

∣

∣

= 0.

(21)

Proof Let (x∗(·), u1,∗(·), . . . , ur,∗(·)) ∈ Rcl conv U . From Lemma 5.1, for any n ≥
1, there are measurable selectors v1,n(t), . . . , vr,n(t) of the multivalued map t ⇒
U (t, x∗(t)) such that

sup
0≤t1≤t2≤a

r
∑

i=1

∥

∥

∥

∥

∫ t2

t1
(ui,∗(s) − vi,n(s))ds

∥

∥

∥

∥

T
≤

r
∑

i=1

1

in
,

sup
0≤t1≤t2≤a

r
∑

i=1

∣

∣

∣

∣

∫ t2

t1
(g∗∗

i (s, x∗(s), ui,∗(s)) − gi (s, x∗(s), vi,n(s)))ds
∣

∣

∣

∣

≤
r
∑

i=1

1

in
.

(22)

The sequences vi,n → ui,∗ in ω-L
1
β (I, T ), i = 1, . . . , r . For each fixed n ≥ 1, by

(H3.2), we have that, for any x ∈ X and a.e. in t ∈ I , there exist vi ∈ U (t, x), i =
1, . . . , r , such that

‖vi,n(t) − vi‖T < ki (t)‖x∗(t) − x‖X + 1

in
. (23)
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Let the map Υn : I × X → 2T be defined by

Υn(t, x) := {vi ∈ T : vi , i = 1, . . . , r, satisfy inequality (23)} . (24)

It follows from (23) that Υn(t, x) is well defined a.e. on I and all x ∈ X , and its
values are open sets. Using [44, Corollary2.1] (since we can assume, without loss of
generality, thatU (t, x) is Σ ⊗BX measurable, see [39, Proposition2.7.9]), we obtain
that, for any ε1, . . . , εr > 0, there are compact sets Iε1 , . . . , Iεr ⊆ I with μ(I\Iε1) ≤
ε1, . . . , μ(I\Iεr ) ≤ εr , such that the restrictions of U (t, x) to Iε1 × X, . . . , Iεr × X
are l.s.c and the restrictions of v1,n(t), . . . , vr,n(t) and k1(t), . . . , kr (t) to Iε1 , . . . , Iεr ,
respectively, are continuous. It means that (23) and (24) imply that the graphs of
the restrictions of Υn(t, x) to Iεi × X are open sets in Iεi × X × T, i = 1, . . . , r ,
respectively. Let themapΥ : I×X → 2T be defined byΥ (t, x) := Υn(t, x)∩U (t, x).
Clearly, a.e. in t ∈ I and all x ∈ X, Υ (t, x) = ∅. Due to the arguments above and
Proposition 1.2.47 in [39], we know that the restrictions of Υ (t, x) to Jεi × X are l.s.c.
and so does Υ (t, x) = Υ (t, x). Here the bar stands for the closure of a set in T . Now
consider the system (1)–(2) with the constraint on the controls

u1(t), . . . , ur (t) ∈ Υ (t, x(t)) a.e. on I. (25)

Since Υ (t, x) ⊆ U (t, x), the estimate of Lemma 3.1 also holds in this mat-
ter. Repeating the proof of Theorem 4.1, we obtain that there is a solution
(xn(·), u1,n(·), . . . , ur,n(·)) of the control system (1)–(2), (25). The definition of Υ

implies that (xn(·), u1,n(·), . . . , ur,n(·)) ∈ RU and

‖vi,n(t) − ui,n(t)‖T ≤ ki (t)‖x∗(t) − xn(t)‖X + 1

in
, i = 1, . . . , r. (26)

Since (xn(·), u1,n(·), . . . , ur,n(·)) ∈ RU , n ≥ 1, and (x∗(·), u1,∗(·), . . . , ur,∗(·)) ∈
Rcl conv U , we have

x∗(t) = Sα(t)M[x0 − h(x∗(t), Br (t)ur,∗(t))]
+
∫ t

0
(t − s)α−1Tα(t − s)L−1 f (s, x∗(s), B1(s)u1,∗(s),

. . . , Br−1(s)ur−1,∗(s))ds (27)

and

xn(t) = Sα(t)M[x0 − h(xn(t), Br (t)ur,n(t))]
+
∫ t

0
(t − s)α−1Tα(t − s)L−1 f (s, xn(s), B1(s)u1,n(s),

. . . , Br−1(s)ur−1,n(s))ds. (28)

Theorem 4.1 and {(xn(·), u1,n(·)), . . . , ur,n(·))}n≥1 ⊆ RU ⊆ Rcl conv U imply that
we can assume, possibly up to a subsequence, that (xn(·), u1,n(·), . . . , ur,n(·)) →
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(x(·), u1(·), . . . , ur (·)) ∈ Rcl conv U in C(I, X) × ω-L1/β(I, T ). Subtracting (28)
from (27), we obtain that

‖x∗(t) − xn(t)‖X
≤ ‖Sα(t)M

[

h(x∗(t), Br (t)ur,∗(t)) − h(x∗(t), Br (t)vr,n(t))
] ‖X

+ ‖Sα(t)M
[

h(x∗(t), Br (t)vr,n(t)) − h(xn(t), Br (t)ur,n(t))
] ‖X

+
∥

∥

∥

∥

∫ t

0
(t−s)α−1Tα(t−s)L−1 [ f (s, x∗(s), B1(s)u1,∗(s), . . . , Br−1(s)ur−1,∗(s))

− f (s, x∗(s), B1(s)v1,n(s), . . . , Br−1(s)vr−1,n(s))
]

ds

∥

∥

∥

∥

X

+
∥

∥

∥

∥

∫ t

0
(t−s)α−1Tα(t−s)L−1[ f (s, x∗(s), B1(s)v1,n(s), . . . , Br−1(s)vr−1,n(s))

− f (s, xn(s), B1(s)u1,n(s), . . . , Br−1(s)ur−1,n(s))]ds
∥

∥

∥

∥

X
.

(29)
We use the previous estimations of our sufficient set of conditions, together with the
property of the operator Υ defined in the proof of Lemma 3.2, and since vi,n →
ui,∗, i = 1, . . . , r , in ω-L

1
β (I, T ) and xn → x in C(I, X), then by letting n → ∞ in

(29) and realizingLemma2.3,we get x∗ = x , that is, xn → x∗ inC(I, X). Hence, from

(26), we have (vi,n − ui,n) → 0 in L
1
β (I, T ). Thus, ui,n = (ui,n − vi,n)+ vi,n → ui,∗

in ω-L
1
β (I, T ) and in L

1
β
ω (I, T ). Hence, (19) and (20) hold. Moreover, we have

sup
0≤t1≤t2≤a

r
∑

i=1

∣

∣

∣

∣

∫ t2

t1
(g∗∗

i (s, x∗(s), ui,∗(s)) − gi (s, xn(s), ui,n(s)))ds

∣

∣

∣

∣

≤ sup
0≤t1≤t2≤a

r
∑

i=1

∣

∣

∣

∣

∫ t2

t1
(g∗∗

i (s, x∗(s), ui,∗(s)) − gi (s, x∗(s), vi,n(s)))ds
∣

∣

∣

∣

≤ sup
0≤t1≤t2≤a

r
∑

i=1

∣

∣

∣

∣

∫ t2

t1
(gi (s, x∗(s), vi,n(s)) − gi (s, xn(s), ui,n(s)))ds

∣

∣

∣

∣

(30)
and assumption (H4.2) and (26) give

|gi (t, x∗(t), vi,n(t)) − gi (t, xn(t), ui,n(t))|
≤ (k′

4(t) + k′′
4ki (t))‖x∗(t) − xn(t)‖X + k′′

4

in
.

Therefore, the last inequality together with (22) and (30) implies that (21) holds. ��
Theorem 5.2 Problem (RP) has a solution and

min
(x,ui )∈Rcl conv U

J ∗∗
i (x, ui ) = inf

(x,ui )∈RU

Ji (x, ui ), i = 1, . . . , r. (31)
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For any solution (x∗, u1,∗, . . . , ur,∗) of problem (RP), there exists a minimizing
sequence

(

xn, u1,n, . . . , ur,n
) ∈ RU , n ≥ 1,

for problem (P), which converges to (x∗, u1,∗, . . . , ur,∗) in the spaces C(I, X) ×
ω-L

1
β (I, T ) and in C(I, X) × L

1
β
ω (I, T ), and the following formula holds:

lim
n→∞ sup

0≤t1≤t2≤a

r
∑

i=1

∣

∣

∣

∣

∫ t2

t1
(g∗∗

i (s, x∗(s), ui,∗(s)) − gi (s, xn(s), ui,n(s)))ds

∣

∣

∣

∣

= 0. (32)

Conversely, if (xn, u1,n, . . . , ur,n), n ≥ 1, is a minimizing sequence for prob-
lem (P), then there is a subsequence (xnk , u1,nk , . . . , ur,nk ), k ≥ 1, of the
sequence (xn, u1,n, . . . , ur,n), n ≥ 1, and a solution (x∗, u1,∗, . . . , ur,∗) of prob-
lem (RP) such that the subsequence (xnk , u1,nk , . . . , ur,nk ), k ≥ 1, converges to

(x∗, u1,∗, . . . , ur,∗) in C(I, X) × ω-L
1
β (I, T ) and relation (32) holds for this sub-

sequence (xnk , u1,nk , . . . , ur,nk ), k ≥ 1.

Proof By definition of functions gi,U (t, x, ui ), i = 1, . . . , r , (H3.3), (H4.3), and
the boundedness of the trajectories T rcl conv U of the control system (1)–(2), (4)
(Lemma 3.1), we can get functions mi ∈ L1(I,R+) such that

− mi (t) = −[a4(t) + b4(t)L0 + c4(a3(t) + c3L0)] ≤ gi,U (t, x, ui ), a.e. t ∈ I,

with all x ∈ Q = {g ∈ X : ‖g‖X ≤ L0}, ui ∈ U (t, x), i = 1, . . . , r.
(33)

Inequality (33) and the properties of the bipolar (see [34]) directly imply that

− mi (t) ≤ g∗∗
i (t, x, ui ) ≤ gi,U (t, x, ui ), a.e. t ∈ I, x ∈ Q, ui ∈ T . (34)

Hence, from item (3) of Lemma 3.4, (34), and [48, Theorem2.1], the functional

J ∗∗
i , i = 1, . . . , r , are lower semicontinuous onRcl conv U ⊆ C(I, X)×ω-L

1
β (I, T ).

Theorem 4.1 implies thatRcl conv U is compact in C(I, X) × ω-L
1
β (I, T ). Therefore,

problem (RP) has a solution (x∗, u1,∗, . . . , ur,∗). By item (1) of Lemma 3.4, we have

J ∗∗
i (x∗, ui,∗) ≤ inf

(x,ui )∈RU

Ji (x, ui ), i = 1, . . . , r. (35)

Now, for every solution (x∗, u1,∗, . . . , ur,∗) of problem (RP), by using Theorem 5.1,
we obtain that there exists a sequence (xn, u1,n, . . . , ur,n) ∈ RU , n ≥ 1, such that
(19)–(21) hold. Since
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r
∑

i=1

∣

∣

∣

∣

∫

I
(g∗∗

i (s, x∗(s), ui,∗(s)) − gi (s, xn(s), ui,n(s)))ds

∣

∣

∣

∣

≤ sup
0≤t1≤t2≤a

r
∑

i=1

∣

∣

∣

∣

∫ t2

t1
(g∗∗

i (s, x∗(s), ui,∗(s)) − gi (s, xn(s), ui,n(s)))ds

∣

∣

∣

∣

,

(36)

by formulas (21), (35), and (36), we get that (31), (32) hold and (xn(·), u1,n(·), . . . ,
ur,n(·)) ∈ RU , n ≥ 1, is a minimizing sequence for problem (P). Let (xn(·), u1,n(·),
. . . , ur,n(·)) ∈ RU , n ≥ 1, be a minimizing sequence for problem (P). According to
Theorem 4.1, without loss of generality, we can assume that (xn, u1,n, . . . , ur,n) →
(x∗, u1,∗, . . . , ur,∗) ∈ Rcl conv U in C(I, X) × ω-L

1
β (I, T ) and

min(RP) = lim
n→∞

r
∑

i=1

∫

I
gi (s, xn(s), ui,n(s))ds. (37)

It follows from (34) and the properties of function g∗∗
i (t, x, ui ) that

∫

I
g∗∗
i (s, x∗(s), ui,∗(s))ds ≤ lim

n→∞ inf
∫

I
g∗∗
i (s, xn(s), ui,n(s))ds

≤ lim
n→∞

∫

I
gi (s, xn(s), ui,n(s))ds.

(38)

From (37) and (38), we obtain that

min(RP) =
r
∑

i=1

∫

I
g∗∗
i (s, x∗(s), ui,∗(s))ds = lim

n→∞

r
∑

i=1

∫

I
gi (s, xn(s), ui,n(s))ds.

(39)
Hence, (x∗(·), u1,∗(·), . . . , ur,∗(·)) ∈ Rcl conv U is a solution of problem (RP).
Hypotheses (H3.3) and (H4.3) and Lemma 3.1, imply that {gi (s, xn(s), ui,n(s))}n≥1
is uniformly integrable. Therefore, by the Dunford–Pettis theorem, we have that there
exists a subsequence {gi (s, xnk (s), ui,nk (s))}k≥1 of the sequence
{gi (s, xn(s), ui,n(s))}n≥1 converging to certain functions λi (t) in the topology of
the space ω-L1(I,R). Since (ui,nk (s), gi (s, xnk (s), ui,nk (s)) ∈ F(s, xnk (s)) a.e. in
s ∈ I , Lemma 3.3 implies that (ui,∗, λi (s)) ∈ cl conv F(s, x∗(s)), a.e. s ∈ I . From
Lemma 3.4, we obtain that

g∗∗
i (s, x∗(s), ui,∗(s)) ≤ λi (s), a.e. s ∈ I. (40)
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Hence,

r
∑

i=1

∫ t

0
g∗∗
i (s, x∗(s), ui,∗(s))ds ≤

r
∑

i=1

∫ t

0
λi (s)ds

= lim
k→∞

r
∑

i=1

∫ t

0
gi (s, xnk (s), ui,nk (s))ds (41)

for any t ∈ I . Now we can obtain from (39)–(41) that g∗∗
i (t, x∗(t), ui,∗(t)) = λi (t),

a.e. t ∈ I . Hence the subsequence gi (s, xnk (s), ui,nk (s)) → g∗∗
i (s, x∗(s), ui,∗(s)) as

k → ∞, in ω-L1(I,R). This implies that

lim
k→∞ sup

0≤t1≤t2≤a

r
∑

i=1

∣

∣

∣

∣

∫ t2

t1
(g∗∗

i (s, x∗(s), ui,∗(s)) − gi (s, xnk (s), ui,nk (s)))ds

∣

∣

∣

∣

= 0.

Hence, we proved that (32) holds for the subsequence (xnk , ui,nk ), k ≥ 1. ��

6 Conclusions

We studied optimality and relaxation of multiple control problems, described by
Sobolev-type nonlinear fractional differential equations with nonlocal control con-
ditions in Banach spaces. The optimization problems were defined by multi-integral
functionals with integrands that are not convex in the controls, subject to control
systems with mixed nonconvex constraints on the controls. We proved appropriate
sufficient conditions assuring existence of optimal solutions for the relaxed problems.
Moreover, we have shown, in suitable topologies, that the optimal solutions are limits
of minimizing sequences of systems with respect to the trajectory, multicontrols, and
the functional.
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