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Abstract This paper studies an optimal dividend problem for a company with non-
exponential discounting. The surplus process is described by a dual model, and the
target is to find adividend strategy thatmaximizes the expected discounted value of div-
idends until ruin. The non-exponential discount function leads to a time-inconsistent
problem. We aim at seeking the equilibrium strategy derived by taking our problem
as a non-cooperate game, which is a time-consistent strategy. An extended Hamilton–
Jacobi–Bellman equation system and a verification theorem are provided to derive
the equilibrium strategy and the equilibrium value function. For the case of pseudo-
exponential discount function, closed-form expressions for the equilibrium strategy
and the equilibrium value function are derived. In addition, some numerical illustra-
tions of our results are showed.
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1 Introduction

The problem of optimal dividend is a classical topic in finance and actuarial science.
The idea of the problem is that a company wants to pay out some of its surplus as
dividends and to determine a dividend strategy thatmaximizes the expected discounted
dividends received by the shareholders until the time of ruin. In the pioneering work
of De Finetti [1], a barrier strategy1 that maximizes the expected discounted dividends
until the ruin time of a company, is derived under a random walk model, where the
discount rate is a constant. Since then, with the development of mathematical tools, in
particular with the establishment of dynamic programming approach and stochastic
control theory, the problem of optimal dividend has been extensively studied under
more general situations.

In the literature on the problem of optimal dividend, the surplus process of a
company is usually described by the diffusion approximationmodel or by the Cramér–
Lundberg (C–L) model. Under the diffusion approximation model and the bounded
dividend rate assumption, Jeanblanc-Picqué and Shiryaev [2] and Asmussen and Tak-
sar [3] show that the optimal dividend strategy is a barrier strategy. For some related
works on this subject, see [4–7] and references therein. Under the C–L model, the
problem of optimal dividend is first studied by Gerber [8], who solves a general divi-
dend problem via a limit of an associated discrete problem. Later on, Azcue andMuler
[9] and Gerber and Shiu [10] study the optimal dividend problem by using stochastic
control theory. In addition, some scholars adopt more general models to describe the
surplus process. For example, Jin and Yin [11] study the problem of optimal dividend
under a regime-switching jump-diffusion model with numerical methods.

Recently, the dual model has been used in some interesting papers. It is well known
that the C–L model is appropriate to model an insurance company, whereas its dual
model seems to be natural and appropriate to model a company, such as a pharmaceu-
tical company and a petroleum company, which has occasional gains. Particularly, the
dual model might be appropriate to describe an annuity or a pension fund. For this type
of companies, the surplus process is assumed to follow a Lévy process with positive
jumps, where the jumps are viewed as the net value of future gains from inventions or
discoveries. Zajic [12] considers an optimal dividend problem with compound Pois-
son income. Avanzi et al. [13] study an optimal dividend problem by using Laplace
transforms in the dual model. In the context of the dual model, the optimal dividend
problem is also considered by Yao et al. [14], Bayraktar et al. [15], Afonso et al. [16],
Dimitrova et al. [17], etc.

1 A barrier strategy is that, when the controlled surplus is above a barrier, whatever amount exceeds the
barrier level is paid out as dividend, but no dividend is paid out when the controlled surplus is below the
barrier.
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Among the literature mentioned above, the discount rate is constant, namely, the
discount factor is an exponential discount function. However, there is solid evidence
that people discount the future rewards with non-exponential discounting and they
may indulge in immediate gratification even if the delayed cost is high. Ainslie [18]
adopts empirical studies on human and animal behavior and finds that individual
behavior is well described by hyperbolic discounting. Loewenstein and Prelec [19]
present four anomalies of exponential discount functions, propose a model which
accounts for these anomalies, and discuss some implications. Due to empirical results,
hyperbolic discounting has received much attention in the area of behavioral eco-
nomics and behavioral finance. This paper aims at studying an optimal dividend
problem in the case,where the psychological discount function is non-exponential. The
problem of optimal dividend with non-exponential discounting is challenging since
non-exponential discounting leads to a time-inconsistent problem. That is, Bellman’s
principle of optimality does not hold and the dynamic programming approach cannot
be applied in this case. As a result, a strategy which is optimal for the decision-maker
at time 0 is no longer optimal for the decision-maker at some time t > 0, and hence, it
will not be implemented by the decision-maker at time t > 0 unless there exists some
commitment mechanism. In other words, the strategy is time-inconsistent.

The time-inconsistent problem is first formally treated by Strotz [20] and then stud-
ied by Peleg and Menahem [21], Goldman [22], Harris and Laibson [23], Krusell and
Smith [24], Ekeland and Lazrak [25], Ekeland and Pirvu [26], and so on. Recently,
Björk and Murgoci [27] develop a general theory of time-inconsistent stochastic
control problems with various forms of time-inconsistent objective functions in a
Markovian setting and derive an extension of the standard Hamilton-Jacobi-Bellman
(HJB) equation system. Björk et al. [28] study the mean-variance portfolio selection
problem with a state-dependent risk aversion. Ekeland et al. [29] study the optimal
consumption and investment problems with non-exponential discounting.

For insurers’ time-inconsistent problems, Zeng and Li [30] are the first to consider
the time-consistent investment and reinsurance strategies. Chen et al. [31] consider
an optimal dividend problem with a class of time-inconsistent preferences, where the
surplus process is described by a compound Poisson process perturbed by a Brownian
motion, and Zhao et al. [32] study the dividend strategies for a shareholder with non-
constant discount rate in a diffusion approximation model.

In this paper, we study a dividend problem for a company when the psychological
discount function is not exponential and the surplus process of the company is mod-
eled by a dual model. In order to make the problem tractable, the jump sizes of the
compound Poisson process are assumed to be exponentially distributed. With non-
exponential discounting, the optimal dividend problem is time-inconsistent. To seek
a time-consistent strategy, we follow [26,27,29] to consider an equilibrium strategy
from the game theoretic point of view and characterize the equilibrium value func-
tion by an extension of HJB equation system. Particularly, for the pseudo-exponential
discount function, we derive closed-form expressions for the equilibrium strategy and
the equilibrium value function.

It is worth noting that the present paper differs from [32] in the following aspects.
Firstly, in this paper, the surplus of the company is described by a dual model which is
a compound Poisson process with negative drift and positive jumps, while in [32], it is
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described by a diffusion model. Secondly, compared with the extended HJB equation
system in [32], this paper provides a simplified extended HJB equation system, which
is more concise, at least, in form. Thirdly, the HJB equation system of [32] is a second-
order differential equation, while that of this paper involves an integral–differential
equation. Therefore, the results of [32] cannot be applied to our dual model.

In addition, this paper also differs from [31] in three aspects. Firstly, the discount
functions are different. The quasi-hyperbolic discount function is adopted in [31],
while a pseudo-exponential discount function is used in this paper. Secondly, the
surplus processes are different. A dual model is adopted to describe the surplus in
this paper, while the C–L model with a Brownian motion is used in [31]. Since the
HJB equation system is a variational inequality in [31]; therefore, the third difference
between the two articles lies in different verification theorems.

The contribution of this paper is threefold. Firstly, it is the first to study a time-
inconsistent dividend problem in a dual model within a game theoretic framework.
Secondly, it derives closed-form expressions of the equilibrium dividend strategy and
the equilibrium value function for the case of pseudo-exponential discount function.
Finally, the results in this paper show a significant effect of non-exponential dis-
counting on the equilibrium dividend strategy and the equilibrium value function. We
also illustrate that both the dividend threshold and corresponding value function will
increase with the decreasing of the discount rate.

The remainder of this paper is organized as follows. Section 2 models our problem.
An extended HJB equation system and a verification theorem are presented in Sect. 3.
Closed-form expressions for the equilibrium dividend strategy and the equilibrium
value function are derived when the pseudo-exponential discount function is adopted
in Sect. 4. Numerical analysis and economic explanations are provided in Sect. 5.
Section 6 concludes this paper. Proofs are provided in appendices as supplementary
material.

2 Mathematical Model

Let (Ω,F , P) be a probability space with a filtration F = (Ft )t≥0 satisfying the
usual conditions, i.e., F is right-continuous and P-complete, where Ft represents the
information available at time t , and any decision made at time t is based on this
information. Suppose that all stochastic processes and random variables below are
defined on the filtered probability space (Ω,F ,F, P).

2.1 Surplus Process

Without dividend control, the surplus of a company is assumed to follow

Rt = x − μt + St , (1)

where x > 0 is the initial surplus level; μ > 0 can be viewed as the rate of expenses;
and St = ∑N (t)

k=1 Yk is the total gain/income amount up to time t , in which N (t)
represents the number of gains up to time t ≥ 0 and Yk represents the amount of
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the kth gain. We assume that St is a compound Poisson process, that is, {N (t)}t≥0 is
an F-adapted homogeneous Poisson process with intensity λ, i.e., N (t) ∼ Poi(λt),
and {Yk}k∈N is a sequence of positive independent and identically distributed random
variables following the exponential distribution f (y) = δe−δy, y ≥ 0. Furthermore,
we assume that N (t) and {Yk}k∈N are independent. Eq. (1) is known as the dual model2

of the classical C–L model. We assume that the net profit condition, μ < E(S1) = λ
δ
,

is valid, where 1
δ

= E(Y1). This condition means that the expected gain per unit of
time is larger than the expense. In addition, suppose that the company will not be able
to obtain external finance, so the company will declare ruin when its level of reserve
falls below zero.

A dividend strategy L := {Lt }t≥0 is an F-adapted nonnegative process which
is left continuous and right limits, where Lt represents the cumulative amount of
dividends distributed up to time t . In this paper, we restrict ourselves to the class
of bounded dividend strategies, i.e., the dividend strategy L has a bounded density
process. More precisely, the dividend strategy {Lt }t≥0 admits an adapted nonnegative
density process � := {lt }t≥0 such that Lt = ∫ t

0 lsds, where the density process is
bounded, 0 ≤ lt ≤ M < +∞ for all t ≥ 0, and the positive constant M is the
maximum dividend rate. Since {Lt }t≥0 is determined by {lt }t≥0 uniquely, we need
only to consider the bounded dividend rate {lt }t≥0 rather than the cumulative amount
of dividends {Lt }t≥0. Instead of L , we call � = {lt }t≥0 a dividend strategy. Moreover,
we restrict ourselves to Markov feedback controls, namely, lt is given by lt = l(t, x),
where x is the surplus level at time t . Under the dividend strategy �, the controlled
surplus process evolves according to

R�
t = x − (μ + l(t, R�

t ))t + St . (2)

A dividend strategy � is said to be admissible if 0 ≤ lt ≤ M for all t ≥ 0. We
denote by L the set of all admissible dividend strategies �.

Definition 2.1 The time of ruin τ �
t,x is defined as the first entrance time of the con-

trolled surplus process R�
s to ] − ∞, 0[ after time t when R�

t = x , i.e.,

τ �
t,x = inf{s : s > t, R�

s < 0, R�
t = x}.

Due to the fact that R�
s is Markovian, τ �

t,x − t only depends on x , or more accurately,
τ �
t,x − t equals to τ �

0,x in distribution. To avoid payments after ruin, we additionally

require ls = 0 for s ≥ τ �
t,x .

2 We note that the classical C–L model, Rt = x + μt − St , is a Lévy process with sample paths that are
skip-free upwards. However, the sample paths of stochastic process, in Eq. (1), are skip-free downwards,
and if we turn the sample paths of C–L model upside down (rotate 180◦) and look at them from right to left,
we get the shape of sample paths of model (1) (see [16]). Because of the symmetry of the two processes’
sample paths, the model (1) is called the dual model of the classical C–L model in the actuarial literature.
About the more detailed discussion of the connection between the classical C–L model and the dual model,
we can refer to Avanzi et al. [13], Afonso et al. [16], Dimitrova et al. [17].
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2.2 Discount Factor

In conventional dividend problems, the discount rate is assumed to be a constant, and
the discount factor is an exponential discount function. In this paper, we do not restrict
ourselves to the framework of exponential discounting. Let ϕ : [0,+∞[→ R be the
discount function, which is continuously differentiable and

ϕ(0) = 1, ϕ(t) ≥ 0, ϕ′(t) < 0,
∫ +∞

0
ϕ(t)dt < +∞.

We note that ϕ(t) = e−ρt is the exponential case when the discount rate ρ is
constant. This paper considers non-exponential discounting. In particular, we will
concern on a special non-exponential discounting

ϕ(t) = ωe−ρ1t + (1 − ω)e−ρ2t , (3)

where 0 < ρ1 ≤ ρ2, 0 ≤ ω ≤ 1 and are constant. It is called the pseudo-exponential
discount function and is first considered in [25]. For a more detailed discussion about
the pseudo-exponential discount function, see [25,26].

2.3 Optimization Problem and Equilibrium Strategy

The target of the company is to choose an admissible strategy � ∈ L to maximize the
expected value of discounted dividend payments until the time of ruin:

J (t, x, �) = Et,x

[ ∫ τ�
t,x

t
ϕ(s − t)l(s, R�

s )ds

]

, (4)

where Et,x [·] = E[·|R�
t = x] and ϕ(·) is the discount factor.

Since ϕ(s − t) is non-exponential, this problem is time-inconsistent in the sense
that Bellman’s principle of optimality does not hold. As a result, a strategy that is
optimal at time 0 will not be optimal at later time. More precisely, if for some fixed
initial point (0, x), we determine a strategy �̃ ∈ L that maximizes J (0, x, �), then at
some later point (s, R�̃

s ), the strategy �̃ will be no longer optimal. That is, the strategy
�̃ is time-inconsistent.3

We can treat our problem as a non-cooperate game. When the decision-maker
chooses a strategy at time t , she should be aware that she will have different objective
functionals at future times. We can take this as a game with an infinite number of
distinct players at every time t . The player at time t is named as player t . From the

3 We can also state the time-inconsistent strategy as follows: We determine the optimal strategy �̃ =
{l̃(t)}t≥0 for the objective functional J (0, x, �) at initial point (0, x); and at some intermediate time s, we

also determine the optimal strategy �̄ = {l̄(t)}t≥s at state (s, R�̃
s ). If l̃(t) 
= l̄(t) at least some t ≥ s, then l̃

is a time-inconsistent strategy.
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game theoretic point of view, we will study the subgame perfect Nash equilibrium
strategies. Next, we present a formal definition of equilibrium strategy.

Definition 2.2 For an admissible strategy �̂ = {l̂s}s≥0 ∈ L, construct a strategy �h by

�h(s, y) =
{

l, for t ≤ s < t + h, y ∈ R+,

l̂(s, y), for t + h ≤ s < +∞, y ∈ R+,

where l ∈ [0, M], h > 0 and (t, x) ∈ [0,+∞[×R+ are arbitrarily chosen. We say
that �̂ is an equilibrium strategy iff

lim inf
h→0

J (t, x, �̂) − J (t, x, �h)

h
≥ 0

for all l ∈ [0, M] and (t, x) ∈ [0,+∞[×R+. The equilibrium value function V is
defined as V (t, x) := J (t, x, �̂).

Based on the definition above, the equilibrium strategy is a time-consistent one.
About this, the readers can refer to [29] for detailed discussion. In fact, the decision-
maker takes possible future revisions into account and thereby makes her strategy
time-consistent. Moreover, we note that the definitions of the equilibrium strategy and
the equilibrium value function coincide with the definitions of the optimal strategy
and the optimal value function in a time-consistent setting.

3 Extended HJB Equation System and Verification Theorem

This section provides an extendedHJB equation system to characterize the equilibrium
value function and presents a verification theorem to guarantee that the solution of the
extended HJB equation system is the equilibrium value function.

Following [27], we assume that there exists an equilibrium strategy �̂, and define the
extended HJB equation system for the equilibrium strategy �̂ and the corresponding
equilibrium value function V . For convenience, denote

C1,2([0,+∞[×R+) :=
{
g(t, x) : g(t, x) with continuous derivatives w.r.t.

t ∈ [0,+∞[ and continuous derivatives up to order 2 w.r.t. x ∈ R+
}
,

and for any g(t, x) ∈ C1,2 and � ∈ L, define the infinitesimal generator

A�g(t, x) = gt (t, x)−(μ+l(t, x))gx (t, x)+λδ

[ ∫ ∞

0
(g(t, x+y)−g(t, x))e−δydy

]

,

where gt (t, x) = ∂g(t,x)
∂t and gx (t, x) = ∂g(t,x)

∂x . In addition, we rewrite (4) as

J (t, x, �) = Et,x

[ ∫ τ�
t,x

t
U (t, s, l(s, R�

s ))ds

]

, (5)
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where U (t, s, l(s, R�
s )) = ϕ(s − t)l(s, R�

s ).

Definition 3.1 For the dividend problem with objective function (5), the extended
HJB equation system for the equilibrium value function V is defined as follows: For
all r ≥ t ≥ 0, x ≥ 0,

sup
l∈[0,M]

{
A�V (t, x) +U (t, t, l) − A�us(t, t, x) + A�uts(t, x)

}
= 0, (6)

V (t, 0) = 0, (7)

A�̂urs(t, x) +U (r, t, �̂) = 0, (8)

urs(t, 0) = 0, (9)

where l = l(t, x), �̂ is the dividend strategy, which realizes the supremum in (6),
us(t, t, x) is defined by

us(t, t, x) := uts(t, x), 0 ≤ t ≤ s,

and

A�us(t, t, x) = −ϕ(t − t)l̂(t, R�̂
t ) − Et,x

[ ∫ τ �̂
t,x

t
ϕ′(s − t)l̂(s, R�̂

s )ds

]

− (μ + l)usx (t, t, x) + λδ

[ ∫ ∞

0
(us(t, t, x+y) −us(t, t, x))e−δydy

]

.

Remark 3.1 In Definition 3.1, the difference between us(t, t, x) and uts(t, x) is that,
we view us as a function of the three variables t ′, t and x with t ′ = t , whereas uts is,
for a fixed s, viewed as a function of the two variables t and x .

Remark 3.2 (i) We have a system of deterministic recursion equations for the simul-
taneous determination of V (t, x) and us(t, t, x); (ii) in order to obtain V by solving
(6), we need to know uts , but it is determined by the optimal control law �̂, which in
turn is determined by (6); (iii) we can view the system as a fixed point problem, and
for detailed discussion, the readers are refereed to [27]; in fact, we rather expect this
fixed point property because we are looking for a Nash equilibrium point; (iv) we have
the probabilistic interpretations

us(t, t, x) = Et,x

[ ∫ τ �̂
t,x

t
U (t, s, l̂(s, R�̂

s ))ds

]

.

Theorem 3.1 (Verification Theorem) Assume that (V, urs) is a solution of the
extended HJB equation system in Definition 3.1, and that the dividend strategy �̂

realizes the supremum in (6). Then, �̂ is an equilibrium strategy, and V is the corre-
sponding equilibrium value function.

The extended HJB equation system in Definition 3.1 can further be simplified.
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Proposition 3.1 The extended HJB equation system for the dividend problem with
objective function (5) has the following form:

sup
l∈[0,M]

{

A�V (t, x) + l

}

+ Et,x

[ ∫ τ �̂
t,x

t
ϕ′(s − t)l̂(s, R�̂

s )ds

]

= 0,

V (t, 0) = 0,

(10)

where l = l(t, x), and �̂ is the strategy which realizes the supremum in (10).

For convenience and simplifying the notation, we denote

Φ(t, x) := Et,x

[ ∫ τ �̂
t,x

t
ϕ′(s − t)l̂(s, R�̂

s )ds

]

. (11)

It is a complicated problem to seek the equilibrium strategy and the correspond-
ing equilibrium value function for the non-exponential discounting dividend problem.
We are able to deal with some specific discount functions and will adopt the pseudo-
exponential discount function in next section. Before doing that, we first discuss the
extended HJB equation system for a general discount function. According to Propo-
sition 3.1, (10) can be rewritten as

sup
l∈[0,M]

{
[1 − Vx (t, x)]l

}
+ Vt (t, x)− μVx (t, x)− λV (x)

+ λδ
( ∫ ∞

0
V (x + y)e−δydy

)
+ Φ(t, x) = 0, t ≥ 0, x > 0,

V (t, 0) = 0, t ≥ 0.

(12)

Motivated by the conventional optimal dividend theory, we assume that there exists
a constant b ≥ 0 such that Vx (t, x) ≥ 1 when 0 ≤ x < b, while Vx (t, x) < 1 when
x ≥ b. It follows from (12) and the verification theorem that the equilibrium strategy
�̂ = {l̂(t, x)}t≥0 is given by:

l̂(t, x) =
{
0, 0 ≤ x < b,

M, x ≥ b.

Since R�̂
s is a Markov process, (R�̂

t+s, τ
�̂
t,x − t) conditioning on Rt = x has the

identical distribution with (R�̂
s , τ

�̂
0,x ) conditioning on R0 = x . And because l̂(t, x) is

independent of t , we have

V (t, x) = Et,x

[ ∫ τ �̂
t,x

t
ϕ(s − t)l̂(s, R�̂

s )ds

]

=Et,x

[ ∫ τ �̂
t,x−t

0
ϕ(s̄)l̂(t + s̄, R�̂

t+s̄)ds̄

]

= E0,x

[ ∫ τ �̂
0,x

0
ϕ(s)l̂(s, R�̂

s )ds

]

= V (0, x).
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This means that V (t, x) is independent of t , i.e., V can be taken as a function of only
x . Henceforth, let V (x) denote the equilibrium value function. Therefore, (12) can be
simplified as

− μV ′(x) + λδ

(∫ ∞

0
V (x + y)e−δydy

)

− λV (x) + Φ(t, x) = 0, 0 < x < b,

− (μ + M)V ′(x) + λδ

(∫ ∞

0
V (x + y)e−δydy

)

− λV (x) + Φ(t, x) + M = 0, x ≥ b,

V (0) = 0.
(13)

4 Case of Pseudo-Exponential Discount Function

This section considers the case of pseudo-exponential discount function (3).According
to (11), we can derive

Φ(t, x) = Et,x

[

−
∫ τ �̂

t,x

t
[ωρ1e

−ρ1(s−t) + (1 − ω)ρ2e
−ρ2(s−t)]1{X �̂

s≥b}Mds

]

.

Let

V1(x) = Et,x

[ ∫ τ �̂
t,x

t
e−ρ1(s−t)1{X �̂

s≥b}Mds

]

, (14)

V2(x) = Et,x

[ ∫ τ �̂
t,x

t
e−ρ2(s−t)1{X �̂

s≥b}Mds

]

. (15)

Then we can obtain

Φ(t, x) = −ωρ1V1(x) − (1 − ω)ρ2V2(x).

Moreover,

V (x) =V (t, x) = Et,x

[ ∫ τ �̂
t,x

t
ϕ(s − t)l̂(s, R�̂

s )ds

]

= Et,x

[ ∫ τ �̂
t,x

t
[ωe−ρ1(s−t) + (1 − ω)e−ρ2(s−t)]1{X �̂

s≥b}Mds

]

=ωEt,x

[ ∫ τ �̂
t,x

t
e−ρ1(s−t)1{X �̂

s≥b}Mds

]

+ (1 − ω)Et,x

[ ∫ τ �̂
t,x

t
e−ρ2(s−t)1{X �̂

s≥b}Mds

]
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=ωV1(x) + (1 − ω)V2(x). (16)

Hence, to derive V (x), we only need to derive V1(x) and V2(x). According to (13),
we assume that, for i = 1, 2, Vi (x) satisfies the following equations

−μV ′
i (x) + λδ

(∫ ∞

0
Vi (x + y)e−δydy

)

− (λ + ρi )Vi (x) = 0, 0 < x < b,

−(μ + M)V ′
i (x) + λδ

(∫ ∞

0
Vi (x + y)e−δydy

)

−(λ + ρi )Vi (x) + M = 0, x ≥ b,

Vi (0) = 0. (17)

In terms of the analogous techniques in [10], we can obtain the solution to (17).
Applying operator ( ddx − δ) to (17) yields

μV ′′
i (x) − (μδ − λ − ρi )V

′
i (x) − ρiδVi (x) = 0, 0 < x < b,

(18)

(μ+M)V ′′
i (x)−(μδ+Mδ−λ−ρi )V

′
i (x)−ρiδVi (x)+Mδ = 0, x ≥ b. (19)

The solution of (18)–(19) under condition Vi (0) = 0 in (17) is given by

Vi (x)=
{
Ai (eζ1(μ,μδ−λ−ρi ,ρi δ)x − eζ2(μ,μδ−λ−ρi ,ρi δ)x ), 0 < x < b,
M
ρi

+ Bieζ1(μ+M,μδ+Mδ−λ−ρi ,ρi δ)x + B̄i eζ2(μ+M,μδ+Mδ−λ−ρi ,ρi δ)x , x ≥ b,
(20)

where ζ1 and ζ2 are the roots of α y2 − β y − η = 0 and are given by

ζ1(α, β, η) = β − √
β2 + 4αη

2α
, ζ2(α, β, η) = β + √

β2 + 4αη

2α
.

We note that ζ1(μ + M, μδ + Mδ − λ − ρi , ρiδ) < 0 and ζ2(μ + M, μδ +
Mδ − λ − ρi , ρiδ) > 0. Moreover, Vi (x) > 0 for x > 0, and Vi (x) will not exceed∫ ∞
0 e−ρi zMdz = M

ρi
for x ≥ 0, i = 1, 2. Therefore Bi < 0 and B̄i = 0, i = 1, 2.

According to the smooth-fit condition at b, we can derive the following equations
and obtain the value of A1, A2, B1, B2 and b by solving them:

V1(b+) = V1(b−), V ′
1(b+) = V ′

1(b−),

V2(b+) = V2(b−), V ′
2(b+) = V ′

2(b−), V ′(b+) = 1.
(21)

Here, the first four equations hold because Vi (x) are continuously differentiable, and
the last one holds due to (12) and related discussion in Sect.3.
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Taking (16) and (20) into (21), we have

A1(e
ξ1b − eξ2b) = M

ρ1
+ B1e

ξ5b, (22)

A1(ξ1e
ξ1b − ξ2e

ξ2b) = B1ξ5e
ξ5b, (23)

A2(e
ξ3b − eξ4b) = M

ρ2
+ B2e

ξ6b, (24)

A2(ξ3e
ξ3b − ξ4e

ξ4b) = B2ξ6e
ξ6b, (25)

ωB1ξ5e
ξ5b + (1 − ω)B2ξ6e

ξ6b = 1, (26)

where

ξ1 = ζ1(μ,μδ−λ−ρ1, ρ1δ), ξ2 = ζ2(μ,μδ−λ−ρ1, ρ1δ),

ξ3 = ζ1(μ,μδ−λ−ρ2, ρ2δ), ξ4 = ζ2(μ,μδ−λ−ρ2, ρ2δ),

ξ5 = ζ1(μ+M, μδ+Mδ−λ−ρ1, ρ1δ), ξ6 = ζ1(μ+M, μδ+Mδ−λ−ρ2, ρ2δ).

From (22)–(25), Ai and Bi can be expressed as

A1 = Mξ5

ρ1
[(ξ5 − ξ1)e

ξ1b + (ξ2 − ξ5)e
ξ2b]−1, (27)

A2 = Mξ6

ρ2
[(ξ6 − ξ3)e

ξ3b + (ξ4 − ξ6)e
ξ4b]−1, (28)

B1 = M

ρ1

ξ1eξ1b − ξ2eξ2b

eξ5b[(ξ5 − ξ1)eξ1b + (ξ2 − ξ5)eξ2b] , (29)

B2 = M

ρ2

ξ3eξ3b − ξ4eξ4b

eξ6b[(ξ6 − ξ3)eξ3b + (ξ4 − ξ6)eξ4b] . (30)

Moreover, we present some properties of Ai and Bi in the following lemma.

Lemma 4.1 A1, A2, B1 and B2 given by (27)–(30) are negative, i.e.,

A1 < 0, A2 < 0, B1 < 0 and B2 < 0.

Substituting B1 and B2 given by (29)–(30) into (26), we have

ωP [ξ1eξ1b − ξ2eξ2b]
[
(ξ5 − ξ1) eξ1b + (ξ2 − ξ5) eξ2b

] + (1 − ω)Q
[
ξ3eξ3b − ξ4eξ4b

]

[
(ξ6 − ξ3)eξ3b + (ξ4 − ξ6)eξ4b

] = 1 (31)

with P = Mξ5
ρ1

and Q = Mξ6
ρ2

.
Define

F(b) := ωP
[
ξ1eξ1b − ξ2eξ2b

]

[(ξ5 − ξ1)eξ1b + (ξ2 − ξ5)eξ2b] + (1 − ω)Q [ξ3eξ3b − ξ4eξ4b]
[(ξ6 − ξ3)eξ3b + (ξ4 − ξ6)eξ4b] − 1.
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Then F(0) = −[ ωP + (1− ω)Q + 1 ]. To show that F(b) = 0 has a unique positive
root, we need the following lemma, which is analogous to Lemma 2.1 of [3].

Lemma 4.2 P and Q have the following properties:

(i) (P + 1)ξ2 > ξ5 and (Q + 1)ξ4 > ξ6;
(ii) If ωP + (1 − ω)Q + 1 < 0, then F(b) = 0 has a unique positive root.

Theorem 4.1 For pseudo-exponential discount function ϕ(t), there exists a continu-
ously differentiable concave function V (x) which satisfies (12), and

(i) If ωP + (1−ω)Q+1 ≥ 0, then b = 0, that is, the equilibrium strategy is always
to pay dividend according to the maximal dividend rate M, and the equilibrium
value function is given by

V (x) = ω
M

ρ1
(1 − eξ5x ) + (1 − ω)

M

ρ2
(1 − eξ6x ), x ≥ 0; (32)

(ii) If ωP + (1 − ω)Q + 1 < 0, then the dividend threshold b is the unique positive
root of F(b) = 0 and the equilibrium value function is given by

V (x) =
{

ωA1(eξ1x − eξ2x ) + (1 − ω)A2(eξ3x − eξ4x ), 0 < x < b,

ω
(
M
ρ1

+ B1eξ5x
)

+ (1 − ω)
(
M
ρ2

+ B2eξ6x
)

, x ≥ b,
(33)

where A1, A2, B1, B2 are given by (27)–(30).

Remark 4.1 Note that when M → ∞, our problem becomes an unrestricted dividend
optimization problem. So we can take the unrestricted dividend payment problem as
the limit of the bounded dividend rate problem.

5 Numerical Illustrations

This section provides some numerical examples to illustrate our results and analyze the
influence of parameters μ, λ, δ, M , ρ1, ρ2 and ω to the equilibrium dividend strategy
and the equilibrium value function.

Figure1 depicts the equilibrium value function with parameters μ = 1, λ = 2,
δ = 1.2, M = 1.2, ρ1 = 0.2 and ρ2 = 0.4 for different ω. We find that the larger the
weightω, the larger the function V (x). Specially,ω = 0 and 1 are extreme cases. In the
case of ω = 0 or 1, our dividend problem is time-consistent, and the equilibrium value
function V (x) is the optimal value function in the case of a standard time-consistent
setting. Figure1 shows that equilibrium value functions V (x) with ω = 0.3 and 0.8
are both between the two optimal value functions with ω = 0 and 1. We also obtain
that the dividend threshold b are 0.4644, 0.6487, 1.0295 and 1.1997, respectively, for
corresponding ω = 0, 0.3, 0.8 and 1. It means that the larger the weight ω, the larger
the dividend threshold b.

Figure2 plots the equilibrium value function with parameters μ = 1, λ = 2,
δ = 1.2, M = 1.2 and ω = 0.8 for different ρ1 and ρ2, which reveals that the
larger both the discount rates ρ1 and ρ2, the less the function V (x). We also derive
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Fig. 2 Equilibrium value function V (x) for different ρ1, ρ2

that the dividend threshold b are 1.0295, 0.6262, 0.4033 and 0.2813, respectively, for
corresponding (ρ1, ρ2) = (0.2, 0.4), (ρ1, ρ2) = (0.3, 0.5), (ρ1, ρ2) = (0.4, 0.6) and
(ρ1, ρ2) = (0.5, 0.6). This implies that the larger both the discount rates ρ1 and ρ2, the
less the dividend threshold b. From the above numerical results, Figs. 1 and 2, we can
see that the time-inconsistent preference has a significant impact on the equilibrium
strategy and the equilibrium value function. In fact, we can see from the numerical
results, Figs. 1 and 2, that the less the discount rate−ϕ′/ϕ, the larger both the dividend
threshold b and the value function V (x). This is identical with our intuition.

The influence of parameters μ and λ to equilibrium dividend threshold b is illus-
trated in Fig. 3, which plots the equilibrium dividend threshold b against μ with
parameters δ = 1.2, M = 1.2, ρ1 = 0.2, ρ2 = 0.4 and ω = 0.3 for different λ.
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Fig. 4 Influence of parameters M and δ to equilibrium dividend threshold b

From this figure, we find that the equilibrium dividend threshold b increases at the
beginning and then decreases with the increasing of the parameterμ for each λ. More-
over, for each λ, there exists some point μ∗, the larger the parameter λ, the less the
equilibrium dividend threshold b beforeμ∗, while the larger the parameter λ, the larger
the equilibrium dividend threshold b after μ∗.

Figure4 shows the influence of parameters M and δ to equilibrium dividend thresh-
old b and plots the equilibrium dividend threshold b againstM with parametersμ = 1,
λ = 2, ρ1 = 0.2, ρ2 = 0.4 andω = 0.8 for different δ. In this figure, we find that for all
δ, the equilibrium dividend threshold b increases (but is bounded and has a limit) with
parameter M , which is the admissible maximum dividend rate. This means that the
larger the admissible maximum dividend rate M , the larger the equilibrium dividend
threshold b in order to prevent the company from ruin, while the larger the parameter
δ, the less the equilibrium dividend threshold b. Since E(S1) = λ

δ
is the expected gain
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or income per unit of time, the larger the parameter δ, the less the expected gain or
income per unit of time. A possible interpretation is as follows: When the expected
gain or income of the company decreases, the decision-maker of the company will
reduce the dividend threshold b to maximize the discounted dividend payment.

6 Conclusions

Different from the traditional optimal dividend model with an exponential discount
function, in this paper,we have investigated a dividend problemwith a non-exponential
discount function. The non-exponential discounting leads the dividend problem to be
time-inconsistent, in the sense that Bellman’s principle of optimality does not hold.
From a game theoretic point of view, we focus on the equilibrium (time-consistent)
strategy of the dividend problem. As far as we know, it is the first to study a time-
inconsistent dividend problem in a dual model. In the case of a pseudo-exponential
discount function, we have derived the closed-form solution, and showed that the non-
exponential discounting (time-inconsistent preference) has a significant impact on the
dividend strategy and value function. In particular, we have illustrated that the dividend
threshold value will increase with the decreasing of the discount rate. Furthermore,
the equilibrium dividend strategy and the equilibrium value function in the pseudo-
exponential discount function case can degenerate to the optimal dividend strategy
and the optimal value function in the case of the exponential discount function.

In future research, it would be interesting to extend our analysis to some more
general situations. For example,we can consider a restricted optimal dividendproblem,
or study the case, where the surplus process follows a jump-diffusion process or a
general Lévy process, or adopt other non-exponential discount functions. Furthermore,
we can also consider the optimal dividend problems involving some other controls,
such as investment, financing. These problems may be more complicated. To solve
them, we may need to adopt some more sophisticated techniques.
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Appendix 1: Proof of Theorem 3.1

We first show that V is the value function corresponding to �̂, i.e., that V (t, x) =
J (t, x, �̂). Note that

A�̂urs(t, x) +U (r, t, l̂) = 0. (34)

By Dynkin’s Theorem for urs , we have

Et,x

[ ∫ τ �̂
t,x

t
A�̂urs(s, R�̂

s )ds

]

= Et,x [urs(τ �̂
t,x , R

�̂

τ �̂
t,x

)] − urs(t, x).
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Thus, using (34) and boundary condition urs(t, 0) = 0, we have

urs(t, x) = Et,x

[ ∫ τ �̂
t,x

t
U (r, s, l̂(s, R�̂

s ))ds

]

= Et,x

[ ∫ τ �̂
t,x

t
ϕ(s − r)l̂(s, R�̂

s )ds

]

and

us(t, t, x) = uts(t, x) = Et,x

[ ∫ τ �̂
t,x

t
ϕ(s − t)l̂(s, R�̂

s )ds

]

.

Next, by the extended HJB equation system for V , we have

A�̂V (t, x) +U (t, t, l̂) − A�̂us(t, t, x) + A�̂uts(t, x) = 0

and (34). Thus we have equation

A�̂V (t, x) − A�̂us(t, t, x) = 0.

Using Dynkin’s Theorem for V , we thus have

Et,x

[

V

(

τ �̂
t,x , R

�̂

τ �̂
t,x

)]

= V (t, x) + Et,x

[ ∫ τ �̂
t,x

t
A�̂V (s, R�̂

s )ds

]

.

Hence, we get

Et,x

[

V

(

τ �̂
t,x , R

�̂

τ �̂
t,x

)]

= V (t, x) + Et,x

[ ∫ τ �̂
t,x

t
A�̂us(r, r, R�̂

r )dr

]

. (35)

By using Dynkin’s Theorem for us , we have

Et,x

[ ∫ τ �̂
t,x

t
A�̂us

(
r, r, R�̂

r

)
dr

]

= Et,x

[

us
(

τ �̂
t,x , τ

�̂
t,x , R

�̂

τ �̂
t,x

)]

− us(t, t, x). (36)

Using (35), (36) and boundary conditions for V and us , we can derive

V (t, x) = Et,x

[ ∫ τ �̂
t,x

t
U

(
t, s, l̂

(
s, R�̂

s

))
ds

]

= J
(
t, x, �̂

)
.

We now show that �̂ is indeed an equilibrium strategy. For any h > 0 and an
arbitrary l ∈ [0, M], define the strategy �h as in Definition 2.2. Without loss of
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generality, suppose that t + h < τ
�h
t,x . Then we have

J (t, x, �h) = Et,x

[ ∫ τ
�h
t,x

t
U (t, s, lh(s, R

�h
s ))ds

]

= Et,x

[ ∫ t+h

t
U (t, s, lh(s, R

�h
s ))ds

]

+ Et,x

[ ∫ τ
�h
t,x

t+h
U (t, s, lh(s, R

�h
s ))ds

]

= Et,x

[ ∫ t+h

t
U (t, s, lh(s, R

�h
s ))ds

]

+ Et,x

[

V (t + h, R�h
t+h)

]

+ Et,x

[ ∫ τ
�h
t,x

t+h
U (t, s, lh(s, R

�h
s ))ds − V (t + h, R�h

t+h)

]

.

Using Dynkin’s Theorem for V , we have

Et,x

[
V

(
t + h, R�h

t+h

)]
= V (t, x) + Et,x

[ ∫ t+h

t
Alh V

(
s, R�h

s

)
ds

]

.

Then

J (t, x, �h) = Et,x

[ ∫ t+h

t
U (t, s, lh(s, R

�h
s ))ds

]

+ Et,x

[ ∫ t+h

t
Alh V (s, R�h

s )ds

]

+ V (t, x) + Et,x

[ ∫ τ
�h
t,x

t+h
[ϕ(s − t) − ϕ(s − t − h)]lh(s, R�h

s )ds

]

.

Noting the fact that V (t, x) = J (t, x, �̂), we obtain

J (t, x, �̂) − J (t, x, �h) = −Et,x

[ ∫ t+h

t
U (t, s, l(s, R�h

s ))ds

]

−Et,x

[ ∫ t+h

t
Alh V (s, R�h

s )ds

]

−Et,x

[ ∫ τ
�h
t,x

t+h
[ϕ(s − t) − ϕ(s − t − h)]lh(s, R�h

s )ds

]

.

So

lim inf
h→0

J (t, x, �̂) − J (t, x, �h)

h
= lim inf

h→0

{

− A�̂V (t, x) −U (t, t, l̂(t, x))

−Et,x

[ ∫ τ �̂
t,x

t
ϕ′(s − t)l̂(s, R�̂

s )ds

]}

≥ 0.
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The last inequality follows from

sup
l∈[0,M]

{
A�V (t, x) +U (t, t, l) − A�us(t, t, x) + A�uts(t, x)

}
= 0.

�

Appendix 2: Proof of Proposition 3.1

Note that

urs(t, x) = Et,x

[ ∫ τ �̂
t,x

t
ϕ(s − r)l̂(s, R�̂

s )ds

]

and

us(t, t, x) = Et,x

[ ∫ τ �̂
t,x

t
ϕ(s − t)l̂(s, R�̂

s )ds

]

.

Then

A�urs(t, x) = −ϕ(t − r)l̂(t, R�̂
t ) − (μ + l(t, x))ursx (t, x)

+ λδ

[ ∫ ∞

0
(urs(t, x + y) − urs(t, x))e−δydy

]

.

Thus,

A�uts(t, x) = −ϕ(t − t)l̂(t, R�̂
t ) − (μ + l(t, x))utsx (t, x)

+ λδ

[ ∫ ∞

0
(uts(t, x + y) − uts(t, x))e−δydy

]

(37)

and

A�us(t, t, x) = −ϕ(t − t)l̂(t, R�̂
t ) − Et,x

[ ∫ τ �̂
t,x

t
ϕ′(s − t)l̂(s, R�̂

s )ds

]

−(μ + l(t, x))usx (t, t, x) + λδ

[ ∫ ∞

0
(us(t, t, x + y) − us(t, t, x))e−δydy

]

.

(38)

Inserting (37)–(38) into equations of Definition3.1, we complete the proof. �

Appendix 3: Proof of Lemma 4.1

Note that

A1 = Mξ5

ρ1

[
(ξ5 − ξ1) e

ξ1b + (ξ2 − ξ5) e
ξ2b

]−1
.
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(i) If ξ5 − ξ1 > 0, then A1 < 0.
(ii) If ξ5 − ξ1 < 0, then (ξ5 − ξ1)eξ1b > ξ5 − ξ1 and (ξ2 − ξ5)eξ2b > ξ2 − ξ5.

So

(ξ5 − ξ1) e
ξ1b + (ξ2 − ξ5) e

ξ2b > (ξ5 − ξ1) + (ξ2 − ξ5) = ξ2 − ξ1 > 0,

and then A1 < 0.
Similarly, we can prove A2 < 0, B1 < 0, and B2 < 0. �

Appendix 4: Proof of Lemma 4.2

(i) We only prove the first inequality (P + 1)ξ2 > ξ5. The second one is similar.
Inequality (P + 1)ξ2 > ξ5 is equivalent to M

ρ1
< 1

ξ2
− 1

ξ5
.

Firstly, note that

ξ2 = (μδ − λ − ρ1) + √
(μδ − λ − ρ1)2 + 4μρ1δ

2μ
,

−ξ5 = −[(μ + M)δ − λ − ρ1] + √[(μ + M)δ − λ − ρ1]2 + 4(μ + M)ρ1δ

2(μ + M)
.

In addition, according to Cauchy inequality, we have
√
a2 + c − a <

c

2a
, a > 0 and c > 0.

Next, we split the problem into the following three situations.
(1) If (μ + M)δ − λ − ρ1 > 0 and μδ − λ − ρ1 < 0, then we have

−ξ5 <
ρ1δ

(μ + M)δ − λ − ρ1
, ξ2 <

ρ1δ

−μδ + λ + ρ1
,

i.e.,

− 1

ξ5
>

(μ + M)δ − λ − ρ1

ρ1δ
,

1

ξ2
>

−μδ + λ + ρ1

ρ1δ
,

1

ξ2
− 1

ξ5
>

(μ + M)δ − λ − ρ1

ρ1δ
+ −μδ + λ + ρ1

ρ1δ
= M

ρ1
.

(2) If (μ + M)δ − λ − ρ1 ≤ 0, we have μδ − λ − ρ1 < 0. Hence, we have

μ

ρ1
+ M

ρ1
− λ

ρ1δ
− 1

δ
≤ 0,

i.e.,

M

ρ1
≤ λ

ρ1δ
+ 1

δ
− μ

ρ1
= 1

ξ2
.
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(3) If μδ − λ − ρ1 ≥ 0, we have (μ + M)δ − λ − ρ1 > 0. Thus

− 1

ξ5
>

(μ + M)δ − λ − ρ1

ρ1δ
= M

ρ1
+ μδ − λ − ρ1

ρ1δ
≥ M

ρ1
.

Combining (1), (2) and (3), we complete the proof of (i).
(ii) If ωP + (1 − ω)Q + 1 < 0, we have F(0) > 0. Note

F(b) = ωP[ξ1eξ1b − ξ2eξ2b]
[(ξ5 − ξ1)eξ1b + (ξ2 − ξ5)eξ2b] + (1 − ω)Q [ξ3eξ3b − ξ4eξ4b]

[(ξ6 − ξ3)eξ3b + (ξ4 − ξ6)eξ4b] − 1.

According to (i), we have

lim
b→+∞ F(b) = ωP

−ξ2

ξ2 − ξ5
+ (1 − ω)Q

−ξ4

ξ4 − ξ6
− 1

= −ω

[

P
ξ2

ξ2 − ξ5
+ 1

]

− (1 − ω)

[

Q
ξ4

ξ4 − ξ6
+ 1

]

= −ω
(P + 1)ξ2 − ξ5

ξ2 − ξ5
− (1 − ω)

(Q + 1)ξ4 − ξ6

ξ4 − ξ6
< 0.

Furthermore,

F ′(b) = ωP
−ξ5(ξ1 − ξ2)

2e(ξ1+ξ2)b

[(ξ5 − ξ1)eξ1b + (ξ2 − ξ5)eξ2b]2

+ (1 − ω)Q
−ξ6(ξ3 − ξ4)

2e(ξ3+ξ4)b

[(ξ6 − ξ3)eξ3b + (ξ4 − ξ6)eξ4b]2

= −ω
M

ρ1

ξ25 (ξ1 − ξ2)
2e(ξ1+ξ2)b

[(ξ5 − ξ1)eξ1b + (ξ2 − ξ5)eξ2b]2

− (1 − ω)
M

ρ2

ξ26 (ξ3 − ξ4)
2e(ξ3+ξ4)b

[(ξ6 − ξ3)eξ3b + (ξ4 − ξ6)eξ4b]2 < 0.

Therefore, F(b) = 0 has a unique positive root. The proof of (ii) is completed. �

Appendix 5: Proof of Theorem 4.1

(i) We can verify that V (x) defined by (32) is a continuously differentiable concave
function and satisfies V (0) = 0. Since

V ′(0) = −
[

ω
M

ρ1
ξ5 + (1 − ω)

M

ρ2
ξ6

]

≤ 1,

V ′(x) ≤ 1 for all x ≥ 0 and

(M − l)(V ′(x) − 1) ≤ 0, l ∈ [0, M]. (39)
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In addition, we know that the function V given by (32) satisfies

− (μ+M)V ′(x)+λδ

(∫ ∞

0
V (x+y)e−δydy

)

−λV (x)+Φ(t, x)+M = 0. (40)

Adding the inequality (39) to the equality (40), we can obtain (12).
(ii) V (0) = 0 is obvious. The first-order derivative of V (x) given by (33) is:

V ′(x) =
{

ωA1(ξ1eξ1x − ξ2eξ2x ) + (1 − ω)A2(ξ3eξ3x − ξ4eξ4x ), 0 < x < b,

ωB1ξ5eξ5x + (1 − ω)B2ξ6eξ6x , x ≥ b.

From Lemma 4.1, we have that V ′(x) > 0 for all x > 0, which implies that V (x) is a
strictly increasing function.

In addition, we can derive the second-order derivative of V (x) as follows:

V ′′(x) =
{

ωA1(ξ
2
1 e

ξ1x − ξ22 e
ξ2x ) + (1 − ω)A2(ξ

2
3 e

ξ3x − ξ24 e
ξ4x ), 0 < x < b,

ωB1ξ
2
5 e

ξ5x + (1 − ω)B2ξ
2
6 e

ξ6x , x ≥ b.

From Lemma 4.1, we have that V ′′(x) < 0 for all x ≥ b. Now, we consider the case
when 0 < x < b. Note that

V ′′′(x) = ωA1(ξ
3
1 e

ξ1x − ξ32 e
ξ2x ) + (1 − ω)A2(ξ

3
3 e

ξ3x − ξ34 e
ξ4x ), 0 < x < b.

Thus V ′′′(x) > 0 and V ′′(x) is increasing on interval (0, b). Then we have that
V ′′(x) < V ′′(b−) for 0 < x < b.

Besides, from (16), (18) and (19), we have

μV ′′(b−) = ω(μδ − λ − ρ1)V
′
1(b) + ωρ1δV1(b)

+ (1 − ω)(μδ − λ − ρ2)V
′
2(b) + (1 − ω)ρ2δV2(b)

and

(μ + M)V ′′(b+) = ω(μδ + Mδ − λ − ρ1)V
′
1(b) + ωρ1δV1(b) − Mδ

+ (1 − ω)(μδ + Mδ − λ − ρ2)V
′
2(b) + (1 − ω)ρ2δV2(b).

Noting that V ′(b) = 1, we have μV ′′(b−) = (μ + M)V ′′(b+) ≤ 0. Therefore,
V ′′(x) < 0 for 0 < x < b.

In conclusion, V (x) defined by (33) is an increasing and continuously differentiable
concave function on ]0,+∞[. This implies the uniqueness of b.

In addition, we can adopt the same way as (i) to verify that V (x) given by (33)
satisfies Eq. (12), and here we omit it. �
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