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Abstract Some properties of Hausdorff distance are studied. It is shown that, in every
infinite-dimensional normed space, there exists a pair of closed and bounded sets such
that the distance between every two points of these sets is greater than the Hausdorff
distance between these sets. A relation of the obtained result to set-valued analysis is
discussed.
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1 Introduction

The concept of distance between sets was introduced and studied in [1] by Hausdorff.
At the present time, the Hausdorff metric is widely used in both abstract and applied
areas of mathematics including nonsmooth analysis (see, for example, [2,3]), opti-
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mization theory (see, for example, [2,4]) and calculus of variations (see, for example,
[4]). Moreover, the sets approximation problem uses this concept sufficiently. Various
concepts, that are widely used in optimization, such as metric regularity, covering and
relative covering properties, Lipschitz and pseudo-Lipschitz properties of set-valued
mappings, are also based on the Hausdorff metric (see, for example, [2]). Moreover,
the concept of Hausdorff distance is closely connected with the metric fixed point and
coincidence point theorems (see, for instance, the Nadler’s fixed point theorem [5]
and coincidence point theorem from [6]).

The present paper is devoted to some properties of Hausdorff distance, that are
closely related to optimization theory, fixed point theory and coincidence point prob-
lems.

2 Statement of the Problem

First, let us recall the definition of the Hausdorff distance. Let (X, ρ) be a metric space
with the metric ρ. Denote by B(x, r) a closed ball centered at x ∈ X with the radius
r ≥ 0. Denote by B(M, r) the set ∪x∈M B(x, r), where M ⊂ X is a nonempty set.
Let M ⊂ X , N ⊂ X be two closed and nonempty sets. Define the Hausdorff distance
between them by formula

h(M, N ) := inf{r > 0 : N ⊂ B(M, r), M ⊂ B(N , r)}, (1)

if there exists a number r such that N ⊂ B(M, r) and M ⊂ B(N , r); otherwise set
h(M, N ) := ∞. It is known that on the set of closed, nonempty and bounded subsets
of X , the Hausdorff distance is a metric.

The definition ofHausdorff distance arises the following natural question. Let M, N
be two closed, nonempty and bounded subsets of X. Then, according to (1), for each
x ∈ M and for each ε > 0, there exists y ∈ N such that ρ (x, y) ≤ h(M, N ) + ε.
The question is whether there exists a pair (x, y) such that x ∈ M, y ∈ N and
ρ (x, y) ≤ h(M, N ).

Below we answer this question. At first, we prove that, under additional assump-
tions, known also as Bolzano–Weierstrass condition, for each x ∈ M there exists
y ∈ N such that ρ (x, y) ≤ h(M, N ). Then, we show in Theorem 4.1 that in general,
the answer is negative. More precisely, we prove that, for every infinite-dimensional
normed space, there exist closed and bounded sets M, N such that ‖x −y‖ > h(M, N )

for all x ∈ M, y ∈ N . We conclude this paper by applying these results to the inves-
tigation of Lipschitz set-valued mappings.

3 Hausdorff Distance Between Sets Satisfying Bolzano–Weierstrass
Condition

Theorem 3.1 Let the sets M and N be closed, the set N satisfy the Bolzano–
Weierstrass condition, i.e., each bounded sequence in N has a convergent subsequence.
Then
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∀ x ∈ M ∃y ∈ N : ρ (x, y) ≤ h(M, N ). (2)

Proof Set r = h(M, N ). Without loss of generality, assume that r < ∞. Let x ∈ M .
The definition of Hausdorff distance implies that, for each natural n, there exists
yn ∈ N such that ρ (yn, x) ≤ r + 1/n. So, {yn} is bounded. Therefore, there exists
subsequence {ynm } and a point y ∈ X such that {ynm } converges to y. By assumption,
N is closed that means y ∈ N . Finally, passing to the limit asm → ∞ in the inequality
ρ(ynm , x) ≤ r + 1/nm , we obtain ρ (x, y) ≤ r . �


Obviously, every compact set satisfies the Bolzano–Weierstrass condition. More-
over, if X = R

n, then the Bolzano–Weierstrass theorem implies that every closed set
N ⊂ R

n satisfies the Bolzano–Weierstrass condition.

Remark 3.1 The converse of this implication is not true. More precisely, in space with
infinite number of elements with respect to the discrete metric condition (2) is satisfied
for every closed sets M, N ; however, there exists a bounded sequence without limit
points. Indeed, let X be an infinite set, ρ be a discrete metric on X , i.e.,

ρ (x, y) :=
{
0, x = y,

1, x �= y.

Obviously, all the subsets of X are closed. Furthermore, h(M, N ) = 1 if and only
if M �= N . So, (2) is satisfied. At the same time, let {xn} be a sequence such that
xn �= xm for all n �= m. It is, obviously, bounded, but it has no limit points.

Remark 3.2 In the assumptions of Theorem 3.1, the inequality in (2) cannot be
replaced with the equality. Moreover, in the following example, all the assumptions
of Theorem 3.1 are satisfied, however,

∀ x ∈ M ∀ y ∈ N : ρ(x, y) < h(M, N ).

Let X = l2,

N = {0}, M = {xn = (xn
1 , xn

2 , . . .) : n ∈ N, xn
n = 1 − n−1, xn

j = 0 ∀ j �= n}.

Then h(M, N ) = 1, however, ρ(0, xn) = 1 − n−1 < 1 for each n.

Let us present one more example such that the space X satisfies the Bolzano–
Weierstrass condition, however,

∀ x ∈ M ∀ y ∈ N : ρ(x, y) �= h(M, N )

and there exist points x, u ∈ M, y, v ∈ N such that

ρ(x, y) < h(M, N ), ρ(u, v) > h(M, N ).

Let X = R,

M = {xn = 3n : n = 2, 3, . . .}, N = {yn = 3n − 1 + n−1 : n = 2, 3, . . .}.
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Then for all n ≥ 2 and j ≥ 2, we have ρ(xn, y j ) = |3(n − j) + 1 − j−1| �= 1.
However, ρ(xn, yn) = 1 − n−1 < 1 for all n, and ρ(x2, y3) = 2 + 3−1 > 1.

Let us now introduce a proposition that guaranties existence of points x ∈ M and
y ∈ N such that the distance between them coincides with the Hausdorff distance
between M and N .

Proposition 3.1 Let the sets M and N be compact. Then

∃ x ∈ M ∃ y ∈ N : ρ(x, y) = h(M, N ).

Proof The definition of the Hausdorff distance implies

h(M, N ) = max

{
sup
x∈M

(
inf
y∈N

ρ(x, y)

)
, sup

y∈N

(
inf

x∈M
ρ(x, y)

)}
.

Without loss of generality, assume that

h(M, N ) = sup
x∈M

(
inf
y∈N

ρ(x, y)

)
.

Since the function x �→ inf
y∈N

ρ(x, y) is continuous and the set M is compact, there

exists a point x ∈ M such that inf
y∈N

ρ(x, y) = h(M, N ). Since the function y �→
ρ(x, y) is continuous and the set N is compact, there exists a point y ∈ N such that
ρ(x, y) = h(M, N ). �


Note that, if the set M is bounded and h(M, N ) < ∞, then the set N is bounded. It
is obvious that in this case, the set N is compact, if it satisfies the Bolzano–Weierstrass
condition.

4 Hausdorff Distance Between Subsets of Normed Spaces

Let us now answer the question stated in the Introduction. First, recall the definition
of the Birkhoff–James orthogonality (see [7,8]) in normed spaces and prove some
auxiliary propositions.

Remark 4.1 A vector x is called orthogonal to a vector y in a normed space X, iff

‖x‖ ≤ ‖x + αy‖ ∀ α.

Denote this by x ⊥ y. A vector x is called orthogonal to a subspace L ⊂ X, iff

x ⊥ y ∀ y ∈ L ,

which is equivalent to the following:

‖x‖ ≤ ‖x + y‖ ∀ y ∈ L . (3)
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The sequence {en}∞n=1 is called orthonormal in normed space X, iff for all positive
integer n

‖en‖ = 1, en+1 ⊥ L(e1, . . . , en), (4)

where L(e1, . . . , en) denotes a linear hull of the vectors e1, . . . , en .

Lemma 4.1 Let X be a finite-dimensional space and L be a subspace such that
L �= X. Then there exists x ∈ X such that x �= 0 and x ⊥ L.

Proof Since L �= X , there exists y ∈ X such that y /∈ L . Define a function g : L → R

by formula g(v) = ‖v + y‖ , for all v ∈ L . Obviously, g is continuous and

∃R ≥ 0 : inf
v∈B(0,R)∩L

g(v) = inf
v∈L

g(v).

So, the Weierstrass theorem implies that there exists v0 ∈ L such that

g(v0) = inf
v∈L

g(v). (5)

Set x = y + v0. It follows from (5) that

‖x‖ = g(v0) ≤ g(v0 + v) = ‖y + v0 + v‖ = ‖x + v‖

for all v ∈ L . In addition, x �= 0. Otherwise, y = −v0 ∈ L that contradicts the
assumption that y /∈ L . �

Lemma 4.2 In every infinite-dimensional normed space, there exists an orthonormal
[in the sense of (4)] sequence.

Proof Let X be an infinite-dimensional normed space. We will carry out the proof
by induction on k. At first, let us choose a unit vector e1 ∈ X . By the infinite-
dimensionality of X , there exists a vector f2 ∈ X such that the vectors e1, f2 are
linearly independent. So, L(e1) is a proper subspace of the finite-dimensional space
L(e1, f2). According to Lemma 4.1, there exists a unit vector e2 ∈ L(e1, f2) such that
e2 ⊥ e1. Assume now that the unit vectors e1, . . . , ek such that ei ⊥ L(e1, . . . , ei−1)

for all i = 2, k are already constructed. Since X is infinite-dimensional, there
exists vector fk+1 such that vectors e1, . . . , ek, fk+1 are linearly independent. So,
L(e1, . . . , ek) is a proper space of the finite-dimensional space L(e1, . . . , ek, fk+1).
According to Lemma 4.1, there exists a unit vector ek+1 ∈ L(e1, . . . , ek, fk+1) such
that ek+1 ⊥ L(e1, . . . , ek). By induction, the desired orthonormal sequence exists. �


Let us now present a statement that provides the negative answer to the question
stated in the Introduction.

Theorem 4.1 In every infinite-dimensional normed space X,, there exist nonempty,
bounded and closed sets N and M such that ‖x − y‖ > h(M, N ) for all x ∈ M and
y ∈ N.
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Proof Let us construct the sets M and N . According to Lemma 4.2, there exists an
orthonormal sequence {en}∞n=1. Set fn = n+1

n en . Then

∥∥∥∥∥ fn −
n−1∑
k=1

αk fk

∥∥∥∥∥ ≥ ‖ fn‖ = 1 + 1

n
. (6)

Denote by M the set of all the vectors x ∈ X that can be represented as a sum of
even amount of vectors f1, f2, . . .. Every vector x ∈ M can be uniquely represented
in such a form because f1, f2, . . . are linearly independent. For all x ∈ M denote by
m(x) the greatest number of the corresponding summands.

Denote by N the set of all the vectors y ∈ X that can be represented as a sum of
odd amount of vectors f1, f2, . . .. Every vector y ∈ N can be uniquely represented in
such a form because f1, f2, . . . are linearly independent. For every y ∈ N denote by
n(y) the greatest number of the corresponding summands.

By inequality (6), we have that M and N are closed. Furthermore, we have

‖y − x‖ ≥ 1 + 1

max{n(x), m(y)} > 1

for arbitrary x ∈ M, y ∈ N . Now let us estimate the Hausdorff distance h(M, N ). For
all x ∈ M , the vector y = x + fk belongs to the set N for every k > m(x). Moreover,
‖y − x‖ = ‖ fk‖ → 1 as k → ∞. In a similar manner, for all y ∈ N , the vector
x = y + fk belongs to the set M for every k > n(y). Further, ‖x − y‖ = ‖ fk‖ → 1
when k → ∞. Hence, h(M, N ) ≤ 1. Thus, we constructed closed and bounded sets
M ⊂ X and N ⊂ X such that h(M, N ) ≤ 1 and ‖x − y‖ > 1 for all x ∈ M,

y ∈ N . �

Theorems 3.1 and 4.1 imply the following characterization of finite-dimensional

normed spaces.

Proposition 4.1 A normed space X is finite-dimensional if and only if for all nonempty
and closed subsets M ⊂ X and N ⊂ X, the following relation holds:

∀ x ∈ M ∃y ∈ N : ρ (x, y) ≤ h(M, N ).

5 Comparison of Lipschitzian Set-Valued Mappings

Using the above example, let us compare two well-known definitions of Lipschitz
set-valued mappings, commonly used in set-valued analysis (see, for example, [2]).
Let us recall them. Let (X, ρX ), (Y, ρY ) be metric spaces, β be nonnegative number.
Hausdorff distance in a space of closed subsets of Y we denote by hY . An analogous
modification of notation we use for the balls. Namely a closed ball in a space X
we denote by BX (x, r). Everywhere below, we assume that a set-valued mapping
Φ : X ⇒ Y is a mapping that transforms each point x ∈ X to a closed and nonempty
subset Φ(x) ⊂ Y .
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Definition 5.1 A set-valued mapping Φ : X ⇒ Y is called β-Lipschitz in the sense
of Hausdorff metric, iff

hY (Φ(x),Φ(u)) ≤ βρX (x, u) ∀ x, u ∈ X. (7)

Definition 5.2 (cf [2]) A set-valued mapping Φ : X ⇒ Y is called β-Lipschitz, iff

Φ(u) ⊂ BY (Φ(x), βρX (x, u)) ∀ x, u ∈ X. (8)

The result below directly follows from the definitions above.

Proposition 5.1 1. If set-valued mapping Φ : X ⇒ Y is β-Lipschitz, i.e., relation
(8) holds, then it is β-Lipschitz in the sense of Hausdorff metric, i.e., inequality
(7) holds.

2. If set-valued mapping Φ : X ⇒ Y is β-Lipschitz in the sense of Hausdorff metric,
i.e., inequality (7) holds, then for every ε > 0, this mapping is (β + ε)-Lipschitz,
i.e., Φ(u) ⊂ BY (Φ(x), (β + ε)ρX (x, u)) for all x, u ∈ X.

In Proposition 5.1.2, in general, one cannot take ε = 0. Consider the corresponding
example.

Example 5.1 Let Y be an infinite-dimensional normed space. In Theorem 4.1, it is
proved that there exist closed and nonempty sets M, N ⊂ Y such that hY (M, N ) ≤ 1
and ρY (y, v) > 1 for all y ∈ M, v ∈ N . Let X be a metric space consisting of two
different points x1, x2 such that ρX (x1, x2) = 1. Let us defineΦ : X ⇒ Y as follows:

Φ(x1) := M, Φ(x2) := N .

Since hY (M, N ) ≤ 1,Φ is 1-Lipschitz in the sense of Hausdorffmetric, i.e., inequality
(7) holds. However, ρY (y, v) > 1 for all y ∈ M, v ∈ N . Thus, Φ is not 1-Lipschitz,
i.e., the relation (8) does not hold for β = 1.

Example 5.1 shows that a β-Lipschitz in the sense of Hausdorff metric mapping
might be not β-Lipschitz, i.e., property (7) does not imply (8).

Note that, traditionally, the results on fixed and coincidence point existence use
Definition 5.1. However, sometimes it is more convenient to use Definition 5.2 instead
of Definition 5.1. Let us explain this reasonings using theNadler’s fixed point theorem.

Theorem 5.1 Assume that X is a complete metric space, a set-valued mapping Φ :
X ⇒ X is β-Lipschitz in the sense of Hausdorff metric for some β ∈ [0, 1[, i.e.,
relation (7) holds. Then for each x ∈ X and for each y ∈ Φ(x)

∀ ε > 0 ∃ ξ ∈ X : ξ ∈ Φ(ξ) and ρX (x, ξ) ≤ ρX (x, y) + ε

1 − β
.

This result is a version of Nadler’s fixed point theorem (see, for example, [9]). The
following proposition is a direct corollary of Theorem 2 from [10].
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Theorem 5.2 Assume that X is a complete metric space, a set-valued mapping Φ :
X ⇒ X is β-Lipschitz for some β ∈ [0, 1[, i.e., relation (8) holds. Then for each
x ∈ X and for each y ∈ Φ(x)

∃ ξ ∈ X : ξ ∈ Φ(ξ) and ρX (x, ξ) ≤ ρX (x, y)

1 − β
.

It is a straightforward task to ensure that Theorem 5.1 is a direct corollary of
Theorem 5.2. Furthermore, if the mapping Φ is a single-valued contraction with the
contraction constant 0 ≤ β < 1, then Φ is both β-Lipschitz and β-Lipschitz in the
sense of Hausdorff metric, i.e., (7) and (8) hold. However, in this case, Theorem 5.1
states that

∀ ε > 0 ∃ ξ ∈ X : ξ = Φ(ξ) and ρX (x, ξ) ≤ ρX (x, Φ(x)) + ε

1 − β
,

whereas Theorem 5.2 states this property with ε = 0, which is a stronger proposition
and coincides with Banach’s contraction mappings theorem.

6 Perspectives

The described in the previous section reasonings are applicable not only to fixed
point theorems but also to various results on solvability of equations and inclusion
in metric spaces. For instance, in [6], the estimate of a coincidence point of single-
valuedmappings does not follow from the estimate of a coincidence point of set-valued
mappings. However, the use of Definition 5.2 may allow to derive an estimate, that
is valid in both single-valued and set-valued cases. So, the presented results can be
applied to solve the following problems.

(A) For coincidence point of two set-valued mappings, obtain exact estimates that are
equivalent to the estimates of coincidence point of two single-valued mappings.

(B) Describe and investigate the class of set-valuedmappings, forwhich the properties
(7) and (8) are equivalent.

7 Conclusions

Let us summarize the results obtained in this article.

(A) There was considered the following question. If for two arbitrary closed and
nonempty subsets of a metric space, there exists a point in each set such that the
distance between these points is less or equal than the Hausdorff distance between
these sets? Under assumption that one of the set satisfies the Bolzano–Weierstrass
condition, the answer is positive, i.e., such points exist. In an infinite-dimensional
normed space, the answer is negative, i.e., there exists a pair of closed and bounded
sets such that the distance between every two points belonging to these sets is
greater than the Hausdorff distance between these sets.
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(B) These two facts imply the following characterization of finite-dimensional
normed spaces. A normed space is finite-dimensional if and only if for each
two closed subsets of this space, there exists a point in each subset such that the
distance between these points is less or equal than the Hausdorff distance between
these sets.
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