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Abstract In this paper, a degree theory for set-valued vector variational inequalities is
built in reflexive Banach spaces. By using themethod of degree theory, some existence
results of solutions for set-valued vector variational inequalities are established under
suitable conditions. Furthermore, some equivalent characterizations for the nonempti-
ness and boundedness of solution sets to single-valued vector variational inequalities
are obtained under pseudomonotonicity assumption. To the best of our knowledge,
there are still no papers dealing with the degree theory for vector variational inequal-
ities.
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1 Introduction

Degree theory is a classical mathematical tool that has diverse applications. Partic-
ularly, it is useful for the study of the existence of a solution to an equation. Many
authors have used degree theory as a tool to study the existence of solutions for various
kinds of variational inequalities.
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In [1], Facchinei and Pang have used degree theory to study existence theorems for
finite-dimensional variational inequalities (see Proposition 2.2.3 and Theorem 2.3.4).
In [2], Kien et al. extended the degree theory of Facchinei and Pang to the case of
generalized set-valued variational inequalities, where the generalized natural map has
no convex values and so its degree is undefined generally. By using the degree theory
developed in Kien et al. [2], He [3] proves some existence results of solutions to
set-valued variational inequalities under a weak coercivity condition. Recently, Wang
and Huang [4] built a degree theory for generalized set-valued variational inequalities
in Banach spaces, which further generalized the results of Facchinei and Pang, Kien,
Wong andYao fromfinite-dimensional spaces to infinite-dimensional spaces. Formore
related works with respect to applications of degree theory to variational inequalities,
we refer the readers to Robinson [5], Gowda [6] and the references therein.

On the other hand, Giannessi [7] first introduced the concept of vector variational
inequality (VVI) in finite-dimensional spaces in 1980, which is the vector-valued ver-
sion of the classical (scalar) variational inequality. Since then, extensive effort has
been devoted to the study of various kinds of vector variational inequalities (VVIs)
and their generalizations (see, e.g., [8–15] and the references therein). Nowadays,
vector variational inequalities and their generalizations have become an effective and
powerful tool in the study of vector optimization, applied sciences, mechanics, struc-
tural analysis and so on. Meanwhile, some important methods have been proposed
to study the existence of solutions for vector variational inequalities, such as KKM
theory and the scalarization method. Then, an interesting question is that, although
the degree method is very effective and there have been a large amount of papers on
the studies of degree theory for scalar variational inequalities, there is still no paper
to deal with the degree theory for vector variational inequalities.

Motivated and inspired by the work mentioned above, we continue to study the
degree theory for vector variational inequalities and investigate the solvability of vec-
tor variational inequalities by applying the method of degree theory directly. The
main purpose of this paper is to build a degree theory for set-valued vector variational
inequalities and to give some results on existence of solutions of this problem. To do
this, we first establish the equivalence between the solvability of vector variational
inequalities and scalar variational inequalities. Then, basing on this equivalence and
using the degree theory due to [16,17], we construct the degree theory for vector vari-
ational inequalities in reflexive spaces. Finally, the degree theory is employed to prove
some existence theorems of solutions for set-valued vector variational inequalities.
Some equivalent characterizations of nonemptiness and boundedness of the solu-
tion set for C-pseudomonotone single-valued vector variational inequalities are also
obtained. Different frommost of previous existence results established in the literature
via KKM theory or the scalarization method, we establish such results using directly
the tool of degree method, which may provide a new perspective for dealing with the
solvability for vector variational inequalities.

The paper is organized as follows. In Sect. 2, we introduce some basic notations
and preliminary results and build a degree theory for set-valued vector variational
inequalities. In Sect. 3, we prove some results on the solvability of vector variational
inequalities, by applying the degree theory established in Sect. 2.

123



J Optim Theory Appl (2015) 167:527–549 529

2 Preliminary

Throughout this paper, unless otherwise stated, let X always be a reflexive Banach
space with X∗ be the topological dual space and Y be a finite-dimensional space,
respectively. By the result due to Lindenstrauss, Asplund and Trojanski, we know that
X can be renormed so that X and X∗ are both locally uniformly convex (see [18],
Theorem 2.11). Let � be a bounded and open set in X . The boundary of � is denoted
by ∂�. The symbols “→” and “⇀” are used to denote strong and weak convergence,
respectively. For a nonempty subset A of X , we denote the closure, interior and convex
hull of A by cl A, int A and conv A, respectively.

Let C be a closed, convex and pointed cone in Y with intC �= ∅. The cone C
introduces a partial ordering in Y , which is defined by z1≤Cz2 if and only if z2 − z1 ∈
C. Let

C∗ := {
y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ C

}

be the dual cone of C . Clearly,

y ∈ C ⇔ 〈y∗, y〉 ≥ 0, ∀y∗ ∈ C∗,
y ∈ intC ⇔ 〈y∗, y〉 > 0, ∀y∗ ∈ C∗\{0}.

Let e ∈ intC be fixed and

C∗0 := {
x∗ ∈ C∗ : 〈x∗, e〉 = 1

}
.

The dual cone C∗ is said to admit a compact base iff there exists a compact set
S1 ⊂ C∗ such that 0 /∈ S1 and C∗ ⊂ ⋃

t≥0 t S1. Since Y is finite dimensional, Lemma
3.4 of [19] shows that C∗0 is a compact base of C∗.

Let F : K ⇒ L(X,Y ) be a set-valuedmapping with nonempty values. Let ξ ∈ C∗0
and u ∈ L(X,Y ). We define

〈ξu, x〉 := 〈ξ, 〈u, x〉〉 = 〈u∗ξ, x〉, ∀x ∈ K

and

ξF(x) :=
⋃

u∈F(x)

ξu, ∀x ∈ K ,

where u∗ ∈ L(Y ∗, X∗) is the conjugate operator of u ∈ L(X,Y ).
Let X , Y be as before and K ⊂ X be a nonempty, closed and convex set. Let

F : K ⇒ L(X,Y ) be a set-valued mapping with nonempty values. In this paper,
we consider the following vector variational inequality (in short, VVI(K , F)), which
consists in finding x ∈ K and u ∈ F(x) such that

〈u, y − x〉 /∈ −intC, ∀y ∈ K . (1)
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If Y = R and C = R+, then vector variational inequality (1) reduces to the
following scalar variational inequality (in short, VI(K , F)), which consists in finding
x ∈ K and u ∈ F(x) such that

〈u, y − x〉 ≥ 0, ∀y ∈ K .

Now we introduce an important mapping g : L(X,Y ) ⇒ X∗, defined by

g(u) :=
⋃

ξ∈C∗0
ξu =

⋃

ξ∈C∗0
u∗ξ = u∗(C∗0), ∀u ∈ L(X,Y ), (2)

where u∗ ∈ L(Y ∗, X∗) is the conjugate operator of u ∈ L(X,Y ). We consider the
problem (in short, VI(K , g ◦ T )) of finding x ∈ K , ξ ∈ C∗0 and u ∈ F(x) such that

〈ξu, y − x〉 ≥ 0, ∀y ∈ K . (3)

The solution sets of VVI(K , F) and VI(K , g◦F)) are denoted by SVVI(K , F) and
SVI(K , g◦F), respectively. The relationship between SVVI(K , F) and SVI(K , g◦F)

will be discussed in Lemma 2.4.
Let K ⊂ X be a nonempty, closed and convex set. The indicator of K , denoted by

δK , is defined by

δK (x) :=
{
0, if x ∈ K ,

+∞, otherwise.

The normal cone of K at x is defined by

NK (x) :=
{ {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀ y ∈ K }, if x ∈ K ,

∅, otherwise.

The barrier cone of K is defined by

barr(K ) := {x∗ ∈ X∗ : sup
x∈K

〈
x∗, x

〉
< ∞}.

The recession cone of K is defined by

K∞ :=
{
d ∈ X : ∃tk → +∞, xk ∈ K such that

xk
tk

⇀ d

}
.

The negative polar cone of K is defined by

K− := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0, ∀x ∈ K }.

The normalized duality mapping J : X ⇒ X∗ is defined by

J (x) := {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ X.
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In locally uniformly convex spaces, the normalized duality mapping J : X ⇒ X∗
is of class (S)+, strictly monotone and a homeomorphism (see [20], Proposition 8 and
[21], Corollary 32.24).

In the following, we will outline below some basic notations and results from [17]
with respect to the degree theory for mappings of the form f + T +G due to [16,17].

Definition 2.1 Let G̃ ⊂ X be a nonempty set and f : G̃ → X∗ be a mapping. Then,

(a) f is said to be of class (S)+ iff for any sequence {xn} in G̃ which converges
weakly to x and lim supn→∞〈 f (xn), xn − x〉 ≤ 0, one has xn → x ;

(b) f is said to be norm to weak continuous iff for any sequence {xn} in G̃ which
converges to x , one has f (xn) ⇀ f (x);

(c) f is said to be compact iff f is continuous and f (A) is relatively compact for
each bounded subset A of G̃.

Let T : X ⇒ X∗ be a set-valued mapping. We call the sets D(T ) = {x ∈ X :
T (x) �= ∅} and R(T ) = {y ∈ T (x) : x ∈ D(A)} the effective domain and the range
of T , respectively. We denote the set Gr(T ) = {(x, y) : y ∈ T (x)} the graph of T .
Throughout this article, we always assume that D(T ) is nonempty and K ⊂ D(T ).

Definition 2.2 Let T : X ⇒ X∗ \ {∅} be a set-valued mapping. Then,

(a) T is said to be pseudomonotone iff for any (x1, y1), (x2, y2) ∈ Gr(T ), one has

〈y1, x2 − x1〉 ≥ 0 ⇒ 〈y2, x2 − x1〉 ≥ 0;

(b) T is said to be monotone iff for any (x1, y1), (x2, y2) ∈ Gr(T ), one has

〈y2 − y1, x2 − x1〉 ≥ 0;

(c) T is said to be maximal monotone iff T is monotone and it follows from

〈v − y, u − x〉 ≥ 0, ∀〈x, y〉 ∈ Gr(T ),

that (u, v) ∈ Gr(T ).

Clearly, maximal monotonicity implies monotonicity and monotonicity implies
pseudomonotonicity. The reverse implication is not true, in general.

The inverse T−1 : R(T ) ⇒ X is defined by T−1(u) := {x ∈ D(T ) : u ∈ T x}.
Clearly, T : X ⇒ X∗ is maximal monotone if and only if T−1 is maximal monotone.
For each ε > 0, we consider the generalized Yosida transformation Tε corresponding
to T , defined by the formula

Tε :=
〈
T−1 + ε J−1

〉−1
,

which is a single-valued mapping (see [18], Proposition 3.10).

123



532 J Optim Theory Appl (2015) 167:527–549

Definition 2.3 ([20],Definition 3) Let� ⊂ X be a bounded and open set. Let { ft , t ∈
[0, 1]} be a family of mappings from� into X∗. Then, { ft } is said to be a homotopy of
class (S)+ iff for any sequence {xn} in� converging weakly to x and for any sequence
{tn} in [0, 1] converging to t for which lim supn→∞〈 ftn (xn), xn − x〉 ≤ 0, one has
xn → x and ftn (xn) ⇀ ft (x).

Remark 2.1 Each affine homotopy between two norm to weak continuous mappings
f and f1 of class(S)+ is a homotopy of class(S)+ (see [20], Proposition 12).

Definition 2.4 [22] Let {Tt , t ∈ [0, 1]} be a family of maximal monotone mappings
from X into 2X

∗
such that their effective domains are nonempty. Then, {Tt } is said to

be a pseudo-monotone homotopy iff for any (x, y) ∈ Gr(Tt ) and a sequence tn → t
in [0, 1], there exists a sequence (xn, yn) ∈ Gr(Ttn ) such that xn → x and yn → y.

Definition 2.5 Let X,Y be two topological spaces and F : X ⇒ Y be a set-valued
mapping with nonempty values. Then,

(a) F is said to be upper semicontinuous (written u.s.c.) at x ∈ X iff for any open
set V ⊂ Y with F(x) ⊂ V , there exists an open neighborhood U of x such that
F(y) ⊂ V for all y ∈ U . Iff F is upper semicontinuous at every x ∈ X , then we
say that F is upper semicontinuous on X ;

(b) F is said to be compact iff F(A) is relatively compact for each bounded subset
A of X .

Definition 2.6 ([16], Definition 3) Let B ⊂ X be a nonempty subset. A mapping
G : B ⇒ X∗\{∅} is said to belong to class (P) iff G satisfies the following conditions:

(i) G maps bounded sets to relatively compact sets;
(ii) for every x ∈ B, G(x) is a closed and convex subset of X∗;
(iii) G(·) is upper semicontinuous on B.

Definition 2.7 ([18], Definition 9) Let � ⊂ X be a bounded and open set. A one-
parameter family of set-valued mappings Gt : cl� ⇒ X∗\{∅}, t ∈ [0, 1], is said to
be a homotopy class (P) iff Gt satisfies the following conditions:

(i) the mapping (t, x) → Gt (x) is upper semicontinuous on [0, 1] × cl�;
(ii) for every (t, x) ∈ [0, 1] × cl�, Gt (x) is a closed and convex subset of X∗;
(iii) the set {⋃Gt (x) : t ∈ [0, 1], x ∈ cl�} is compact in X∗.

Lemma 2.1 [23] Let X and Y be two Banach spaces, B ⊂ X be a nonempty set, and
G : B ⇒ Y be an u.s.c. set-valued mapping with closed and convex values. Then,
given ε > 0, there exists a continuous mapping gε : B → Y such that

gε(x) ∈ G((x + Bε) ∩ B) + B̂ε

for all x ∈ B and gε(B) ⊂ clconv (G(B)), with Bε = {x ∈ X : ‖x‖ < ε} and
B̂ε = {y ∈ Y : ‖y‖ < ε}.

Obviously, if G is compact, then so is the approximate selection gε .
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Let � be a bounded and open set in X . From Lemma 2.1, we know that if G :
� ⇒ X∗\{∅} is a set-valued mapping of class (P) and ε > 0, then we can find
a continuous mapping gε : � → X∗ such that gε(cl�) ⊂ clconv (G(cl�)) and
gε(x) ∈ G((x + Bε) ∩ cl�) + B̂ε for all x ∈ �, where Bε = {x ∈ X : ‖x‖ < ε} and
B̂ε = {y ∈ Y : ‖y‖ < ε}. In what follows, gε(·) will always denote this approximate
selection of G(·).
Lemma 2.2 ([17], Theorem 2.11) Let � be a bounded and open set in X. Let T :
X ⇒ X∗ be a maximal monotone mapping, f : cl� → X∗ be bounded, norm to
weak continuous and of class (S)+ and G : cl� ⇒ X∗\{∅} be a set-valued mapping
of class (P). Let ȳ ∈ X∗ such that ȳ /∈ (T + f + G)(∂�). Then, there exists some
ε̄ > 0 such that the following assertions hold:

(i) ȳ /∈ (Tε + f + gε)(∂�) for all ε ∈]0, ε̄];
(ii) Tε + f + gε is a mapping of class (S)+ and so the Browder degree d(Tε + f +

gε,�, ȳ) is defined for all ε ∈]0, ε̄];
(iii) d(Tε + f + gε,�, ȳ) = d(Tε′ + f + gε′,�, ȳ) for all ε, ε′ ∈]0, ε̄].
Definition 2.8 ([17], Definition 2.12) Let � be a bounded and open set in X , T :
X ⇒ X∗ be a maximal monotone mapping, f : cl� → X∗ be bounded, norm to
weak continuous and of class (S)+ andG : cl� ⇒ X∗\{∅} be a set-valuedmapping of
class (P). Let ȳ ∈ X∗ such that ȳ /∈ (T+ f +G)(∂�). The degree d1(T+ f +G,�, ȳ)
is assigned to be the common value of d(Tε + f + gε,�, ȳ) for ε > 0 sufficiently
small.

Some properties of the degree defined in Definition 2.8 are listed as follows.

Lemma 2.3 ([17], Theorem 2.14) Let� be a bounded and open set in X. Then, degree
function defined by Definition 2.8 has the following properties:

(i) Normalization: d1(J − ȳ,�, 0) = d1(J,�, ȳ) = 1 for all ȳ ∈ J (�);
(ii) Existence: If d1(T + f + G,�, ȳ) �= 0, then there exists an x ∈ � such that

ȳ ∈ f (x) + T (x) + G(x);

(iii) Additivity: If �1, �2 are disjoint open subsets of � and ȳ /∈ (T + f +
G)(cl�\(�1 ∪ �2)), then

d1(T + f + G,�, ȳ) = d1(T + f + G,�1, ȳ) + d1(T + f + G,�2, ȳ);

(iv) Homotopy invariance: Let { ft }t∈[0,1] is a homotopy of class (S)+ of mappings
from cl� into a bounded subset of X∗, {Tt }t∈[0,1] be a pseudomonotone homotopy
of maximal monotone mappings from X into 2X

∗
and {Gt }t∈[0,1] is a homotopy

of class (P) of set-valued mappings from cl� into the nonempty, closed and
convex subsets of X∗. Let {yt : t ∈ [0, 1]} be a continuous path in X∗ such that
yt /∈ (Tt + f + Gt )(∂�) for all t ∈ [0, 1]. Then, d1( ft + Tt + Gt ,�, yt )(∂�)

is independent of t ∈ [0, 1].
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The following lemma establishes the equivalence between the solvability of vector
variational inequalities and scalar variational inequalities.

Lemma 2.4 Let X be a reflexive Banach space, and Y be a finite-dimensional space.
Let K be an nonempty, closed and convex subset of X. Let F : K ⇒ L(X,Y ) be a
set-valued mapping with nonempty values. Let g : L(X,Y ) ⇒ X∗ be defined as in
(2). Then, the following conclusions are equivalent:

(i) x0 ∈ K is a solution of VVI(K , F);
(ii) x0 ∈ K is a solution of VI(K , g ◦ F), i.e., 0 ∈ g ◦ F(x0) + NK (x0).

Proof (i) ⇒ (i i). Suppose that x0 ∈ K solves VVI(K , F). Then, there exists some
u0 ∈ F(x0) such that

〈u0, y − x0〉 /∈ −intC, ∀y ∈ K .

By using a similar discussion as in Theorem 2.1 of [13], there exists some ξ0 ∈ C∗\{0}
such that

〈ξ0u0, y − x0〉 ≥ 0, ∀y ∈ K .

Note that C∗0 is a base of C∗, we have C∗\{0} = ⋃
t>0 tC

∗0. Without any loss of
generality, we can further assume that ξ0 ∈ C∗0. That is, there exists some ξ0 ∈ C∗0
and u0 ∈ F(x0) such that

〈ξ0u0, y − x0〉 ≥ 0, ∀y ∈ K ,

which implies that x0 ∈ K is a solution of VI(K , g ◦ F).
(i i) ⇒ (i). Suppose that x0 ∈ K solves VI(K , g ◦ F). Then, there exists some

ξ0 ∈ C∗0 and u0 ∈ F(x0) such that

〈ξ0u0, y − x0〉 ≥ 0, ∀y ∈ K . (4)

We claim that

〈u0, y − x0〉 /∈ −intC, ∀y ∈ K ,

which implies that x0 ∈ K is a solution of VVI(K , F). Otherwise, there exists some
y0 ∈ K such that

〈u0, y0 − x0〉 ∈ −intC,

and so

〈ξ0u0, y0 − x0〉 < 0.

A contradiction with (4). Thus, the implication (ii) ⇒ (i) holds. This completes the
proof. ��
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Remark 2.2 (i) FromLemma2.4, it is known that the relationship betweenSVI(K , g◦
F) and SVVI(K , F) can be concluded as follows:

SVVI(K , F) = SVI(K , g ◦ F) =
⋃

ξ∈C∗0
SVI(K , ξF).

(ii) As for scalar variational inequalities, many powerful methods and abundant
research achievements have been obtained by the authors. Thus, Lemma 2.4 pro-
vides an effective means to study the existence of solutions for VVI(K , F), by
changing vector variational inequality VVI(K , F) to scalar variational inequality
VI(K , g ◦ F).

Lemma 2.5 Let X be a reflexive Banach space and Y be a finite-dimensional space.
Let K be an nonempty, closed and convex subset of X. Let g : L(X,Y ) ⇒ X∗ be a
set-valued mapping defined as in (2) and F : K ⇒ L(X,Y ) be an upper semicon-
tinuous set-valued mapping with nonempty, compact and convex values. Consider the
following two conclusions:

(i) J − g ◦ F : K ⇒ X∗ is compact;
(ii) for any ξ ∈ C∗0, J − ξF : K ⇒ X∗ is compact.

Then, (i) ⇒ (ii). Moreover, (i) ⇔ (ii) if X is finite dimensional.

Proof (i) ⇒ (ii). Since J −g ◦ F : K ⇒ X∗ is compact, for any bounded set B ⊂ K ,
we have (J − g ◦ F)(B) is a relative compact set. Then, for any ξ ∈ C∗0, it follows
from the definition of g(·) that

(J − ξF)(B) ⊂ (J − g ◦ F)(B),

which implies that (J−ξF)(B) is also a relative compact set and so J−ξF : K ⇒ X∗
is compact.

If X is finite dimensional, thenwe can further claim that (ii) ⇒ (i) and so (i) ⇔ (ii).
To claim that (ii) ⇒ (i), we only need to show that (J − g ◦ F)(xi ) has a convergent
subsequence for any bounded sequence {xi } ⊂ K . Let yi = J (xi ) − ξi ui ∈ J (xi ) −
ξi F(xi ) with ξi ∈ C∗0 and ui ∈ F(xi ). Note that C∗0 is a compact base of Y ∗ and
ξi ∈ C∗0; without any loss of generality, we can assume that ξi → ξ0 ∈ C∗0. Since
X is finite dimensional and {xi } is bounded, there exists a compact set D such that
{xi } ⊂ D. Then, by the upper semicontinuity of F , we have {ui } ⊂ F(D), where
F(D) is compact. This implies that {ui } and {u∗

i } are bounded sequences.
Moreover, since J − ξF is compact for any ξ ∈ C∗0, the sequence {y′

i } with
y′
i = J (xi ) − ξ0ui belonging to J (xi ) − ξ0F(xi ) has a convergent sequence. Without
any loss of generality, still denote it by {y′

i }. Then, we have

‖yi − y′
i‖ = 〈ξi − ξ0, ui 〉 = 〈u∗

i , ξi − ξ0〉 ≤ ‖u∗
i ‖ · ‖ξi − ξ0‖ → 0,

which implies that yi has a convergent sequence and so J − g ◦ F : K ⇒ X∗ is
compact. This completes the proof. ��
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Lemma 2.6 Let X be a reflexive Banach space, Y be a finite-dimensional space, and
g : L(X,Y ) ⇒ X∗ be a set-valued mapping defined as in (2). Then, g is upper
semicontinuous with nonempty, compact and convex values.

Proof By the definition of g, we have

g(u) = u∗(C∗0), ∀u ∈ L(X,Y ),

where u∗ ∈ L(Y ∗, X∗) is the conjugate operator of u ∈ L(X,Y ). Since C∗0 ia a
compact and convex base of C∗ ⊂ Y ∗, the compactness and convexity of the values
of g is obvious.

Now we claim that g is upper semicontinuous on L(X,Y ). Let u0 ∈ L(X,Y ) be
any given point and V be any open set containing g(u0). Since g(u0) is a compact
set, there exists some ε0 > 0 such that g(u0) + ε0 clBX∗ ⊂ V , where clBX∗ denotes
the closed unit ball in X∗. Moreover, the compactness of C∗0 implies that there exists
some constant k0 > 0 such that k0 = maxξ∈C∗0 ‖ξ‖. For any u ∈ L(X,Y ) with
‖u − u0‖ ≤ ε0

k0
and v ∈ g(u), there exists some ξ0 ∈ C∗0 such that v = 〈ξ0, u〉 =

u∗(ξ0). Set v0 = 〈ξ0, u0〉 = u∗
0(ξ0). Clearly, 〈ξ0, u0〉 = u∗

0(ξ0) ∈ g(u0). Moreover,
from the isometric isomorphism property of the mapping u → u∗, we have

‖v − v0‖ = ‖u∗(ξ0) − u∗
0(ξ0)‖

≤ ‖u∗ − u∗
0‖ · ‖ξ0‖

= ‖u − u0‖ · ‖ξ0‖
≤ ε0

k0
· k0

≤ ε0,

which implies that

g(u) ⊂ g(u0) + ε0 clBX∗ ⊂ U, ∀u ∈ L(X,Y ) with ‖u − u0‖ ≤ ε0

k0
.

From the above discussion, we conclude that g is an upper semicontinuous mapping
with nonempty, compact and convex values on L(X,Y ). This completes the proof. ��

Let g : L(X,Y ) ⇒ X∗ be defined as in (2) and F : K ⇒ L(X,Y ) be an upper
semicontinuous mapping with nonempty, compact and convex values. Suppose that
J − g ◦ F : K ⇒ X∗ is a compact and upper semicontinuous mapping. From Lemma
2.4, we know that VVI(K , F) is equivalent to the following inclusion problem: find
x ∈ K satisfies

0 ∈ G(x) + f (x) + T (x), (5)

whereG = g◦F− J is a compact and upper semicontinuous mapping with nonempty
and compact values, f = J is a mapping of bounded, norm to weak continuous and of
class (S)+, and T = NK is a maximal monotone mapping. We would like to mention
that although the values of G = g ◦ F − J may not be convex, there still exists an
approximate selection gε of G = g ◦ F − J , where gε can be taken as an approximate
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selection of ξF− J with ξ ∈ C∗0 being a given point. Indeed, for each x ∈ K , we have
(ξF − J )(x) ⊂ G(x). Moreover, since the mapping ξF − J is upper semicontinuous
with nonempty, closed and convex values, by Lemma 2.1, there exists an approximate
selection gε for the mapping ξF − J . Clearly, gε is also an approximate selection of
G = g◦F− J . Consequently, the degree d1(T+ f +G,�, ȳ) := d(Tε+ f +gε,�, ȳ)
in Definition 2.8 is still well defined for ε > 0 sufficiently small.

Nowwe introduce the degree of vector variational inequalityVVI(K , F) as follows.

Definition 2.9 Let X be a reflexive Banach space with the dual space X∗, K be a
nonempty, closed and convex subset of X . Let g : L(X,Y ) ⇒ X∗ be defined as
in (2) and F : K ⇒ L(X,Y ) be an upper semicontinuous mapping with nonempty,
compact and convex values. Suppose that J −g◦F : K ⇒ X∗ is a compact and upper
semicontinuous mapping. The degree of vector variational inequality VVI(K , F),
denoted by d(g ◦ F + NK ,�, 0), is the degree d1(G + f + T,�, 0) defined in
Definition 2.8, where G = g ◦ F− J is a compact and upper semicontinuous mapping
with nonempty and compact values, f = J is a mapping of bounded, norm to weak
continuous and of class (S)+, and T = NK is a maximal monotone mapping.

Remark 2.3 If Y = R andC = R+, then fromLemma 2.5, the assumption “J−g◦F :
K ⇒ X∗ is a compact and upper semicontinuous mapping” reduces to “J − F is
a compact and upper semicontinuous mapping,” which was applied extensively to
ensure the existence of solutions for scalar complementarity problems and variational
inequalities (see, e.g., [4,24,25] and the references therein).

FromLemma2.3, we know that the degree d(g◦F+NK ,�, 0) of vector variational
inequality VVI(K , F) has the following properties.

Lemma 2.7 Let � be a bounded and open set in X. Then, degree function defined by
Definition 2.9 has the following properties:

(i) Normalization: d(J − ȳ,�, 0) = d(J,�, ȳ) = 1 for all ȳ ∈ J (�);
(ii) Existence: If d(g ◦ F + NK ,�, 0) �= 0, then there exists an x ∈ � such that

0 ∈ g ◦ F(x) + NK (x), i.e., x is a solution of VVI(K , F);

(iii) Additivity: If �1, �2 are disjoint open subsets of � and ȳ /∈ (g ◦ F +
NK )(cl�\(�1 ∪ �2)), then

d(g ◦ F + NK ,�, ȳ) = d(g ◦ F + NK ,�1, ȳ) + d(g ◦ F + NK ,�2, ȳ);

(iv) Homotopy invariance: Suppose that g ◦ F1 − J and g ◦ F2 − J are compact
and upper semicontinuous mappings with nonempty and compact values. If 0 /∈
(tg ◦ F1(x) + (1 − t)g ◦ F2(x) + NK (x))(∂�) for all t ∈ [0, 1], then d(g ◦
F1(x) + NK (x),�, 0) = d(g ◦ F2(x) + NK (x),�, 0).
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3 Solution Existence of Vector Variational Inequalities

In this section, we will apply directly the degree theory developed in Sect. 2 to study
the existence of solution for VVI(K , F) under some suitable conditions. In the sequel,
unless otherwise stated, we always assume that F : K ⇒ L(X,Y ) is an upper semi-
continuous mapping with nonempty, compact and convex values. First, we obtain the
following existence result for VVI(K , F), when J − g ◦ F : K ⇒ X∗ is compact and
upper semicontinuous.

Theorem 3.1 Let X be a reflexive Banach space, Y be a finite-dimensional space, and
K ⊂ X be a nonempty, closed and convex subset. Let g : L(X,Y ) ⇒ X∗ be defined
as in (2). Suppose that J − g ◦ F : K ⇒ X∗ is a compact and upper semicontinuous
mapping. If there exists a vector x̂ ∈ K such that the set

L<(̂x) := {x ∈ K : ∃u ∈ F(x) such that 〈u, x − x̂〉 /∈ C} (6)

is bounded (possibly empty), then VVI(K , F) has a solution.

Proof Let�′ ⊂ K be a bounded and open set containing L<(̂x)∪{̂x}. Then, we have

L<(̂x) ∩ ∂�′ = ∅,

and so
〈u, x − x̂〉 ∈ C, ∀x ∈ K ∩ ∂�′, u ∈ F(x). (7)

If 0 ∈ (g ◦ F + NK )(∂�′) = (g ◦ F − J + J + NK )(∂�′), then VVI(K , F) has
a solution. Otherwise, the degree d(g ◦ F + NK ,�′, 0) is well defined. Define a
homotopy by

H(t, x) := t (g ◦ F(x) + NK (x)) + (1 − t)(J (x) − J (̂x)), ∀(t, x) ∈ [0, 1] × cl�′.

Then, we have H(0, x) = J (x) − J (̂x) and H(1, x) = g ◦ F(x) + NK (x).
We claim that 0 /∈ H(t, ∂�′) for all t ∈ [0, 1]. In fact, if 0 ∈ H(0, ∂�′), then there

exists some x0 ∈ K ∩ ∂�′ such that 0 = J (x0) − J (̂x), which implies that x̂ = x0
by the strictly monotonicity of J (·). This contradicts x0 ∈ ∂�′ and x̂ ∈ �′. Thus,
0 /∈ H(0, ∂�′). If 0 ∈ H(1, ∂�′), then 0 ∈ (g ◦ F + NK )(∂�′). This contradicts the
assumption of 0 /∈ (g ◦ F + NK )(∂�′).

If there exists some t0 ∈]0, 1[ and x ′
0 ∈ K ∩ ∂�′ such that

0 ∈ t0(g ◦ F(x ′
0) + NK (x ′

0)) + (1 − t0)(J (x ′
0) − J (̂x)), (8)

then (8) implies that there exists u′
0 ∈ F(x ′

0) and ξ0 ∈ C∗0 such that

−ξ0u
′
0 − 1 − t0

t0
(J (x ′

0) − J (̂x)) ∈ NK (x ′
0).
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By the definition of NK (·), we have

〈ξ0u′
0 + 1 − t0

t0
(J (x ′

0) − J (̂x)), y − x ′
0〉 ≥ 0, ∀y ∈ K ,

and so

〈ξ0u′
0, y − x ′

0〉 ≥ −1 − t0
t0

〈J (x ′
0) − J (̂x), y − x ′

0〉. (9)

Taking y = x̂ in (9), by the strictly monotonicity of J (·), t0 ∈]0, 1[ and x̂ �= x ′
0 , we

obtain

〈ξ0u′
0, x̂ − x ′

0〉 ≥ −1 − t0
t0

〈(J (x ′
0) − J (̂x)), x̂ − x ′

0〉 > 0,

and so

〈u′
0, x

′
0 − x̂〉 /∈ C.

This contradicts with (7) and so the claim holds true. According to Lemma 2.7 (iv),
we obtain that d(g ◦ F + NK ,�′, 0) = d(J − J (̂x),�′, 0) = d(J,�′, J (̂x)) = 1.
Moreover, by Lemma 2.7 (ii), there exists x0 ∈ K ∩ �′ such that 0 ∈ G ◦ F(x0) +
NK (x0), which implies that x0 is a solution of VVI(K , F). This completes the proof.

��
Remark 3.1 Theorem 3.1 establishes a new existence result for vector variational
inequalities with the mapping J − g ◦ F being compact and upper semicontinuous,
by using the degree method. Meanwhile, Theorem 3.1 generalizes the corresponding
results of Proposition 2.2.3 of [1], Theorem 2.3 of [26], and Theorem 3.1 of [3] from
scalar variational inequalities to vector variational inequalities. Moreover, the spaces
involved are extended from finite-dimensional spaces to infinite-dimensional spaces.

The following example is used to illustrate Theorems 3.1.

Example 3.1 Let X = Y = R
2, K = C = R

2+ and e = (1, 1) ∈ int C . Let F : K ⇒
L(X,Y ) be defined by

F(x) :=
{(

x1 0
a x2

)
: 1 ≤ a ≤ 10

}
, ∀x = (x1, x2)

T ∈ K ,

where (x1, x2) denotes a row vector in R2 and (x1, x2)T denotes its transposition.
Then, C∗0 = {(ξ1, ξ2) ∈ R

2+ : ξ1 + ξ2 = 1} and F is upper semicontinuous on K
with nonempty, compact and convex values, which implies that J − g ◦ F is upper
semicontinuous and compact on K . Moreover, there exists a vector x̂ = (0, 0)T ∈ K
such that the set

L<(̂x) := {x ∈ K : ∃u ∈ F(x) such that 〈u, x − x̂〉 /∈ C} (10)
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is empty. Thus, all the assumptions of Theorem 3.1 are satisfied. By a simple compu-
tation, we have

SVVI(K , F) = {(0, x2)T : x2 ≥ 0} �= ∅,

where (0, x2)T denotes the transposition of a row vector (0, x2) ∈ R
2. Thus, the

conclusion of Theorem 3.1 holds true.

Definition 3.1 Let F : K ⇒ L(X,Y ) be a set-valuedmappingwith nonempty values.
Then, F is said to be C-pseudomonotone on K iff for any (x1, u1), (x2, u2) ∈ Gr(F),
one has

〈u1, x2 − x1〉 /∈ −intC ⇒ 〈u2, x2 − x1〉 ∈ C.

Remark 3.2 The concepts of various pseudomonotonicity were introduced and dis-
cussed in [8,10,14,15] and the references therein. Indeed, the C-pseudomonotonicity
in Definition 3.1 is a set-valued version of Definition 2.2 (4) in [15]. The follow-
ing lemma establishes the equivalence between C-pseudomonotonicity of F and
pseudomonotonicity of g ◦ F in the sense of Definition 2.2 (a), where g : L(X,Y ) ⇒
X∗ is defined as in (2).

Lemma 3.1 Let X be a reflexive Banach space, Y be a finite-dimensional space, and
K ⊂ X be a nonempty, closed and convex subset. Let F : K ⇒ L(X,Y ) be a
set-valued mapping with nonempty values and g : L(X,Y ) ⇒ X∗ be defined as in
(2). Then, F is C-pseudomonotone on K if and only if T = g ◦ F : K ⇒ X∗ is
pseudomonotone on K .

Proof Suppose that F is C-pseudomonotone on K . Then, for any x1, x2 ∈ K and
u1 ∈ F(x1), u2 ∈ F(x2), we have

〈u1, x2 − x1〉 /∈ −intC ⇒ 〈u2, x2 − x1〉 ∈ C. (11)

For any x1, x2 ∈ K , u1 ∈ F(x1) and ξ1 ∈ C∗0, if

〈ξ1(u1), x2 − x1〉 ≥ 0,

then

〈u1, x2 − x1〉 /∈ −intC.

From (11), we have

〈u2, x2 − x1〉 ∈ C,

and so

〈ξ2(u2), x2 − x1〉 ≥ 0, ∀ξ2 ∈ C∗0,

which implies that T = g ◦ F is pseudomonotone on K .
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Conversely, suppose that T = g ◦ F is pseudomonotone on K . Then, for any
x1, x2 ∈ K , u1 ∈ F(x1), u2 ∈ F(x2) and ξ1, ξ2 ∈ C∗0, we have

〈ξ1(u1), x2 − x1〉 ≥ 0 ⇒ 〈ξ2(u2), x2 − x1〉 ≥ 0. (12)

For any x1, x2 ∈ K and u1 ∈ F(x1), if

〈u1, x2 − x1〉 /∈ −intC,

then there exists some ξ1 ∈ C∗0 such that

〈ξ1(u1), x2 − x1〉 ≥ 0.

From (12), it follows that

〈ξ2(u2), x2 − x1〉 ≥ 0, ∀ξ2 ∈ C∗0,

and so

〈u2, x2 − x1〉 ∈ C.

This implies that F is C-pseudomonotone on K . This completes the proof. ��
In the case when F further satisfies the C-pseudomonotonicity assumption on K ,

we can obtain the following equivalent conditions for VVI(K , F) to have a solution.

Theorem 3.2 Let X be a reflexive Banach space, Y be a finite-dimensional space, and
K ⊂ X be a nonempty, closed and convex subset. Let g : L(X,Y ) ⇒ X∗ be defined
as in (2). Suppose that J − g ◦ F : K ⇒ X∗ is a compact and upper semicontinuous
mapping. Suppose in addition that F is C-pseudomonotone on K . Then, the following
statements are equivalent:

(i) There exists a vector x̂ ∈ K such that the set

L<(̂x) := {x ∈ K : ∃u ∈ F(x) such that 〈u, x − x̂〉 /∈ C}

is bounded (possibly empty);
(ii) There exists an open ball � of X and x̂ ∈ K ∩ � such that

〈u, x − x̂〉 ∈ C, ∀x ∈ K ∩ ∂�, u ∈ F(x);

(iii) VVI(K , F) has a solution.

Proof (i)⇒(ii). If (i) holds, then there exists a vector x̂ ∈ K such that the set L<(̂x)
is bounded (possibly empty). In this case, there exists an open ball � of X such that
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the set L<(̂x) ∪ {̂x} ⊂ �. This yields that for any x ∈ C ∩ ∂�, one has x /∈ L<(̂x)
and so

〈u, x − x̂〉 ∈ C, ∀x ∈ K ∩ ∂�, u ∈ F(x).

(ii)⇒(iii). The implication follows directly from the proof of Theorem 3.1.
(iii)⇒(i). Let x̂ be a solution of VVI(K , F). Then, there exists some û ∈ F (̂x)

such that

〈̂u, x − x̂〉 /∈ −intC, ∀x ∈ K .

This implies that there exists some ξ ∈ C∗0 such that

〈ξ û, x − x̂〉 ≥ 0, ∀x ∈ K .

Since ξ û ∈ g ◦ F (̂x), by the pseudomonotonicity of g ◦ F , we have

〈x∗, x − x̂〉 ≥ 0, ∀x∗ ∈ g ◦ F(x),

and so

〈u, x − x̂〉 ∈ C, ∀u ∈ F(x).

Consequently,

L<(̂x) := {x ∈ K : ∃u ∈ F(x) such that 〈u, x − x̂〉 /∈ C} = ∅

and so (i) holds. This completes the proof. ��
Remark 3.3 Theorem 3.2 generalizes the corresponding results of Theorem 3.2 of [3]
from scalar variational inequalities to vector variational inequalities.

When X = R
n , Y = R and C = R+, the following corollary establishes the

existence of solutions for pseudomonotone scalar variational inequality VI(K , F).

Corollary 3.1 Let K ⊂ R
n be a nonempty, closed and convex subset and F : K ⇒ R

n

be an upper semicontinuous mapping with nonempty, compact and convex values.
Suppose that F : K ⇒ R

n is pseudomonotone on K . Then, the following statements
are equivalent:

(i) There exists a vector x̂ ∈ K such that the set

L<(̂x) := {x ∈ K : inf
u∈F(x)

〈u, x − x̂〉 < 0}

is bounded (possibly empty);
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(ii) There exists an open ball � of X and x̂ ∈ K ∩ � such that

inf
u∈F(x)

〈u, x − x̂〉 ≥ 0, ∀x ∈ K ∩ ∂�;

(iii) VI(K , F) has a solution.

Proof Since F : K ⇒ R
n is an upper semicontinuous mapping with nonempty,

compact and convex values, from Lemma 2.6, it is easy to see that g ◦ F : K ⇒ R
n

is a set-valued mapping of class (P) and so is I − g ◦ F . Then, Corollary 3.1 follows
directly from Theorem 3.2. This completes the proof. ��

In the following, we further discuss the nonemptiness and boundedness property
of solution sets for VVI(K , F) in finite-dimensional spaces Rn by using the degree
method.

Theorem 3.3 Let K ⊂ R
n be a nonempty, closed and convex subset, F : K →

L(Rn,Rn) be a single-valued continuous mapping, and g : L(Rn,Rn) ⇒ R
n be

defined as in (2). Suppose that F is C-pseudomonotone on K . Then, the following
statements are equivalent:

(i) SV V I (K , F) is nonempty and bounded;
(ii) K∞ ∩ [(g ◦ F)(K )]− = {0};
(iii) VVI(K , F) is strictly feasible; i.e., (g ◦ F)(K )

⋂
int (−barr(K )) �= ∅.

Proof From Lemmas 2.6 and 3.1, we know that g ◦ F : K ⇒ R
n is upper semicontin-

uous and pseudomonotone on K with nonempty, compact and convex values. Then,
the implication (i)⇔(ii) follows directly from Theorem 2 of [27]. We only need to
claim that (ii)⇔(iii).

(ii)⇒(iii). Suppose that (ii) holds, that is

K∞ ∩ [(g ◦ F)(K )]− = {0}. (13)

Let x̂ ∈ K be any given vector. Define a homotopy by

H(t, x) := t (g ◦ F(x) + NK (x)) + (1 − t)(J (x) − J (x̂)), ∀(t, x) ∈ [0, 1] × K .

(14)

Then, we have H(0, x) = J (x) − J (x̂) and H(1, x) = g ◦ F(x) + NK (x). Define a
set

C := {x ∈ K : 0 ∈ H(t, x) for some t ∈ [0, 1]}.

We claim that C is bounded. Otherwise, there exist {tk} ⊂ [0, 1] and {xk} ⊂ K such
that

lim
k→∞ ‖xk‖ = ∞ and 0 ∈ H(tk, xk), ∀k ∈ N.
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That is,

0 ∈ tk(g ◦ F(xk) + NK (xk)) + (1 − tk)(J (xk) − J (x̂)).

Then, there exists ξk ∈ C∗0 such that

0 ∈ tkξk F(xk) + (1 − tk)(J (xk) − J (x̂)) + NK (xk).

Thus, 〈
tkξk F(xk) + (1 − tk)(J (xk) − J (x̂)), y − xk

〉 ≥ 0, ∀y ∈ K . (15)

If tk = 0, then (15) implies that

〈
J (xk) − J (x̂), y − xk

〉 ≥ 0, ∀y ∈ K .

Taking y = x̂ , it follows that

0 ≥ 〈
J (xk) − J (x̂), xk − x̂

〉
,

which implies that xk = x̂ for all k = 1, 2, . . .. However, limk→∞ ‖xk‖ = ∞. Thus,
it is impossible that tk = 0. Now assuming tk > 0 for k large enough, by (15), we
have

〈ξk F(xk), y − xk〉 ≥ −1 − tk
tk

〈
J (xk) − J (x̂), y − xk

〉
, ∀y ∈ K . (16)

Since 〈J (xk), xk〉 = ‖xk‖2 and ‖xk‖ → +∞, for each fixed but arbitrary y ∈ K ,
the right-hand side of (16) is nonnegative for all k sufficiently large. Thus, by the
pseudomonotonicity of g ◦ F on K , we get that

〈y∗, y − xk〉 ≥ 0, ∀y∗ ∈ g ◦ F(y) (17)

for all k sufficiently large. Since {xk} is an unbounded sequence in the closed and
convex set K , passing to a subsequence, we obtain that

lim
k→∞

xk
‖xk‖ = d,

where d �= 0 and d ∈ K∞. It follows from (17) that

〈
y∗, y − xk

‖xk‖
〉

≥ 0.

Taking the limit in the above inequality, we obtain

0 ≥ 〈y∗, d〉, ∀y∗ ∈ g ◦ F(K ),
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and so

d ∈ K∞\{0} and 〈y∗, d〉 ≤ 0, ∀y∗ ∈ g ◦ F(y),

which contradicts the expression (13). Therefore,C is a bounded set. Let� be an open
and bounded set in X containing C . If there exists x ∈ cl� such that 0 ∈ H(t, x)
for some t ∈ [0, 1], then x ∈ C , and so x /∈ ∂� as � is an open set. Thus, 0 /∈
H([0, 1] × ∂�) and

0 /∈ H(1, ∂�) = (g ◦ F + NK )(∂�) and 0 /∈ H(0, ∂�) = (J − J (x̂))(∂�). (18)

It follows that d(g◦F+NK ,�, 0) and d(J− J (x̂),�, 0) are well defined. By Lemma
2.7, we have

d(g ◦ F + NK ,�, 0) = d(J − J (x̂),�, 0) = 1. (19)

Let q be an arbitrary vector in int(−barr(K )). For any ε > 0, define

Fε(x) := g ◦ F(x) − εq, ∀ x ∈ K

and

H̃(t, x) := t (g ◦ F(x) + NK (x)) + (1 − t)Fε(x), ∀(t, x) ∈ [0, 1] × cl�.

Then,

H̃(t, x) = g ◦ F(x) − (1 − t)εq + NK (x), ∀(t, x) ∈ [0, 1] × cl�,

and so

H̃(0, x) = Fε(x) + NK (x), H̃(1, x) = g ◦ F(x) + NK (x).

Now we claim that for some ε > 0, 0 /∈ H̃([0, 1] × ∂�). Otherwise, for any n ∈ N,
there exist tn ∈ [0, 1], xn ∈ K ∩ ∂� and ξn ∈ C∗0 such that

0 ∈ ξn F(xn) − 1 − tn
n

q + NK (xn),

and so

〈ξn F(xn) − 1 − tn
n

q, y − xn〉 ≥ 0, ∀ y ∈ K . (20)

Since � is bounded, ∂� is a compact set. Without any loss of generality, we may
assume that the sequence {xn} converges to some point x0 ∈ K ∩ ∂�. Similarly, we
assume that ξn → ξ0 ∈ C∗0. It follows from (20) that

〈ξ0F(x0), y − x0〉 ≥ 0, ∀ y ∈ K ,
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which implies that x0 is a solution of VI(K , g ◦ F) and so

0 ∈ g ◦ F(x0) + NK (x0).

This contradicts the first expression in (18), and so the claim is established.
By Lemma 2.7 and (19), we get

d(Fε + NK ,�, 0) = d(g ◦ F + NK ,�, 0) = 1.

So there is a vector x0 ∈ K such that 0 ∈ F(x0) − εq + NK (x0). Thus, there exists
u0 ∈ F(x0) and ξ0 ∈ C∗0 such that

〈ξ0u0 − εq, y − x0〉 ≥ 0, ∀y ∈ K . (21)

For any d ∈ K∞\{0}, we have x0 + d ∈ K . It follows from (21) that

〈ξ0u0 − εq, x0 + d − x0〉 ≥ 0,

and so

〈ξ0u0 − εq, d〉 ≥ 0,

which implies that

〈ξ0u0, d〉 ≥ 〈εq, d〉 > 0, ∀d ∈ K∞\{0}.

Since barr(K )− = K∞ (see Proposition 3.10 in [28]) and d ∈ K∞\{0} is arbitrary,
we obtain that ξ0u0 ∈ int(−barr(K )) and so

(g ◦ F)(K )
⋂

int(−barr(K )) �= ∅.

(iii)⇒(ii). If (g ◦ F)(K )
⋂

int(−barr(K )) �= ∅, then we have

0 ∈ int[barr(K ) + g ◦ F(K )],

and so

[barr(K ) + g ◦ F(K )]− = {0}.

Since barr(K )− = K∞, it follows that

{0} = [barr(K ) + g ◦ F(K )]− ⊃ barr(K )−
⋂

(g ◦ F(K ))−

= K∞
⋂

(g ◦ F(K ))−

= {0},
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which implies that

K∞ ∩ (g ◦ F(K ))− = {0}.

Thus, one can apply again Theorem 2 of [27] to conclude that the solution set of
VI(g ◦ F, K ) is nonempty and bounded, and so is the solution set of VVI(F, K ). This
completes the proof. ��
Remark 3.4 Theorem 3.3 establishes some new equivalent characterizations for C-
pseudomonotone VVI(K , F) to have nonempty and bounded solution set via the
degree theory directly.

Example 3.2 Let X = R,Y = R
2, K = R+,C = R

2+ and e = (1, 1) ∈ intC . Let
F : K → L(X,Y ) be defined by

F(x) := (x2 + 1, ex )T , ∀x ∈ K ,

where (x2 + 1, ex )T denotes the transposition of a row vector (x2 + 1, ex ) in R
2.

Clearly, F is a continuous mapping on K . Moreover, it is not hard to verify that F is
R
2+-pseudomonotone on K . Thus, all the assumptions of Theorem 3.3 are satisfied.

By a simple computation, we have

SVVI(K , F) = {0}.

Furthermore, we get that

K∞ = K = R+, barr(K ) = −R+, int(−barr(K )) = R+\{0},
C∗0 = {(ξ1, ξ2) ∈ R

2+ : ξ1 + ξ2 = 1}

and

(g ◦ F)(K ) = {ξ1(x2 + 1) + ξ2e
x : ∀ξ = (ξ1, ξ2) ∈ C∗0,∀x ∈ K }

= {x ∈ R : x ≥ 1}, [(g ◦ F)(K )]− = −R+.

Consequently,

K∞ ∩ [(g ◦ F)(K )]− = {0}

and

(g ◦ F)(K )
⋂

int(−barr(K )) = {x ∈ R : x ≥ 1} �= ∅.

From the above discussion, we know that the conclusion of Theorem 3.3 holds true.

When Y = R and C = R+, from Theorem 3.3, we obtain the following corollary,
which gives some classical characterizations for the nonempty and boundedness of
solution set for the scalar variation inequalities (in this case, F can be set-valued).
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Corollary 3.2 Let K ⊂ R
n be a nonempty, closed and convex subset and F : K ⇒ R

n

be a pseudomonotone and upper semicontinuous mapping with nonempty, compact
and convex values. Then, the following conclusions are equivalent:

(i) SVI(K , F) is nonempty and bounded;
(ii) K∞ ∩ [F(K )]− = {0};
(iii) VI(K , F) is strictly feasible, i.e., F(K )

⋂
int(−barr(K )) �= ∅.

4 Conclusions

This paper aims to construct a degree theory for set-valued vector variational inequal-
ities in reflexive Banach spaces. As we know, the degree theory is very effective and
has extensive applications in many fields such as differential equation, fixed point
theory. In recent years, many authors further use degree theory as a tool to study the
solution existence for various kinds of scalar variational inequalities and achieve abun-
dant research results. However, there is still no paper to establish the degree theory
for vector variational inequalities, and this motivates us to consider such a problem.
By introducing a set-valued mapping g(·) from L(X,Y ) to X∗ and using the degree
theory for mappings of the form f + T + G, we establish a degree theory for vec-
tor variational inequalities. This enables us to apply degree method directly to obtain
some new existence results for vector variational inequalities, not via some existing
classical method such as KKM theory and the scalarizationmethod. In some sense, the
research of this paper may provide a new and valuable method to study the existence
of solutions for vector variational inequalities and other related problems.
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