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1 Introduction

We are interested in the local boundedness of minimizers of some integrals of the
calculus of variations. The energy density is assumed to satisfy suitable growth condi-
tions, precisely the p, q-growth and the anisotropic growth conditions. The regularity
of local minimizers, under nonstandard growth, has been extensively studied in the last
years, starting byMarcellini [1,2]. In the anisotropic case, if the exponents that appear
in the growth estimate of the integrand from above are the same than those appearing
in the estimate from below, the boundedness has been studied in Boccardo et al. [3],
Stroffolini [4] and Fusco and Sbordone [5,6]; if the exponents from above may be
different than those from below, the local boundedness of minimizers of functionals
has been studied by the authors in [7]; see also [8–10]. We also point out a particular
case of p, q-growth condition considered in the recent interesting papers by Colombo
and Mingione [11,12]; see also Esposito et al. [13]: The functional, there considered,
has an integrand that changes drastically its growth, sharply moving from a p-growth
to a q-growth. Other related boundedness results are in Dall’Aglio et al. [14], Mascolo
and Papi [15] and Moscariello and Nania [16].

The common feature, in these cited results, is that the local boundedness of the
minimizers holds if the exponents are not too spread, otherwise the boundedness may
fail; see Giaquinta [17], Marcellini [18], Hong [19] for counterexamples. Precisely, if
the maximum exponent in the growth estimate from above of the integrand is greater
than the Sobolev exponent of the harmonic average of the exponents appearing in
the growth estimate from below of the integrand, then the minimizers may be locally
unbounded.

In the present paper, we prove that, below this threshold, we get locally bounded
minimizers. The equality case, more delicate, is also treated. We adopt a different
strategy than in [7], where the Euler equation and the Moser iteration scheme were
used. Here, we derive the local boundedness by the De Giorgi method of super(sub)-
level sets; see [20]. This allows to improve the previous results in different directions:
we consider a Carathéodory integrand f , thus not necessarily smooth; we admit the
dependence of f not only on x and Du, but on u too; we obtain the boundedness
of quasi-minimizers and not only of local minimizers. As noted above, we prove
that if q is less then or equal to the Sobolev exponent of the harmonic average of
the exponents {pi } appearing in the growth estimate from below of the integrand f ,
then the quasi-minimizers are locally bounded. We stress that we are able to include
the equality case that the procedure of the Moser iteration argument was unable to
include. The embedding results for anisotropic Sobolev spaces, see Troisi [21] and
Acerbi and Fusco [22], play a crucial role. A delicate case is when the maximum of the
summability exponents {pi } is equal to the Sobolev exponent of their harmonic average
p. In this case, the Sobolev space is no more embedded in the p∗-Lebesgue space; see
Kruzhkov and Kolodii [23] and Haskovec and Schmeiser [24] for counterexamples;
see also Remark 3.1 for further details. In the known literature, this fact is sometimes
not considered and the condition that the minimizers have to be assumed a priori in
the p∗-Lebesgue space is omitted.

Moreover, we study a class of variational integrals with linear growth from below.
Under this assumption, the lack of coercivity is overcome using the relaxed functional,
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acting on a suitable subclass of the BV -functions, and a generalized definition of
minimizers. We prove that there exists a locally bounded minimizer for this new
functional. We refer to Beck and Schmidt [25] for related results.

The contents of the paper is described next briefly. In Sect. 2, we give the precise
hypotheses and statements of the regularity results. We also state regularity results for
minimizers of functionals in suitable Dirichlet classes, dealing with both the coercive
case and the non-coercive case; see Theorems 2.4 and 2.5. Sections 5 and 6 contain
the proofs of Theorems 2.1, 2.2 and 2.5. The proofs rely on embedding results for
anisotropic Sobolev spaces and on a suitable Caccioppoli inequality; these results can
be found in Sects. 3 and 4, respectively.

2 Assumptions and Statement of the Main Results

Define the integral functional

F(u;Ω) :=
∫

Ω

f (x, u, Du(x)) dx, (1)

where Ω is an open and bounded subset of Rn , n ≥ 2, and u ∈ W 1,1(Ω,R).
Assume that f : Ω × R × Rn → R is a Carathéodory function, such that

(H1) either f is convex in the pair (s, ξ)

or
f is separately convex in s and ξ and lim|s|→+∞ f (x, s, ξ) = +∞ uniformly w.r.t. x

and ξ .

(H2) there exist c1, c2 > 0 and 1 ≤ pi ≤ q, i = 1, . . . , n, such that

c1

n∑
i=1

[g(|ξi |)]pi ≤ f (x, s, ξ) ≤ c2
{
1 + [g(|s|)]q + [g(|ξ |)]q} (2)

for a.e. x and every ξ ∈ Rn .

Here, g : R+ → R+ is of class C1, convex, non-decreasing, g(0) = 0, g �≡ 0,
satisfying, for some μ ≥ 1 and some t0 ≥ 0,

g(λt) ≤ λμg(t) for every λ > 1 and every t ≥ t0. (3)

Without any loss of generality, we assume t0 large, so that g(t) ≥ 1 for all t ≥ t0.
Moreover, note that, if the second alternative in (H1) holds, then:

∃ M ≥ 0 such that f (x, ·, ξ) is decreasing in ] − ∞,−M]
and increasing in [M,+∞[. (4)

In this case, we can also assume t0 ≥ 2M .
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Now, we introduce some notation. Given a function ϕ, then suppϕ is the support
of ϕ. The set BR(x0) is the ball inRn of center x0 and radius R. Moreover, given two
sets A, B ⊆ Rn , we write A � B whenever the closure of A is a subset of B.

Let us now give the definition of quasi-minimizers of (1).

Definition 2.1 A function u ∈ W 1,1
loc (Ω) is a quasi-minimizer of (1) iff there exists

Q ≥ 1 such that F(u; suppϕ) < +∞ and

F(u; suppϕ) ≤ QF(u + ϕ; supp ϕ),

for all ϕ ∈ W 1,1(Ω) with suppϕ � Ω . If Q = 1, then u is a local minimizer of (1).

It is well known that restrictions on the exponents {pi } and q are necessary to
have the local boundedness of quasi-minimizers of (1). We denote by p the harmonic

average of {pi }; i.e., 1
p

:= 1

n

∑n

i=1

1

pi
; finally, p∗ is the Sobolev exponent of p:

p∗ :=
{

n p
n−p , if p < n,

any s > p, if p ≥ n.
(5)

Our first result deals with the case q < p∗.

Theorem 2.1 Assume (H1) and (H2). If q < p∗, then any quasi-minimizer u of (1)
is locally bounded. Moreover, fixed BR(x0) � Ω , there exists a constant c, depending
on q, pi , μ, Q, t0, c1, c2, such that

‖g(|u|)‖L∞(B R
2

(x0)) ≤ c

{
1 + 1

R
μ

q p∗
p(p∗−q)

(∫
BR(x0)

gq(|u|) dx
) 1+θ

q
}

, (6)

where θ := p∗(q−p)
p(p∗−q)

, with p := min{pi }.
As far as the borderline case q = p∗ is concerned, we have the following result.

Theorem 2.2 Assume (H1) and (H2). If q = p∗ and

either max{pi } < p∗ or g(|u|) ∈ L p∗
loc(Ω),

then any quasi-minimizer u of (1) is locally bounded.

Example 2.1 Let us consider the functional

F(u) :=
∫

Ω

(
n∑

i=1

|uxi |pi + a(x)|uxn |q
)

dx,

with 1 ≤ p1 ≤ · · · ≤ pn . Assume that a �≡ 0, with a(x) = 0 on a set of positive
measure: If pn < q = p∗, then the quasi-minimizers of F are locally bounded.
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Assume now a(x) ≡ 1: If pn = q = p∗, then we can conclude that any quasi-

minimizer u ∈ L p∗
loc(Ω) of F is locally bounded.

Note that, if the pi ’s are equal, then a straightforward consequence of the above
results is the following.

Theorem 2.3 Assume (H1) and that there exists c1, c2 > 0, such that

c1|ξ |p ≤ f (x, s, ξ) ≤ c2
{
1 + |s|q + |ξ |q} ,

for a.e. x and every s ∈ R and every ξ ∈ Rn.
If 1 ≤ p < q ≤ p∗, then the quasi-minimizers of F are locally bounded.

Now, we deal with the minimization problem in a Dirichlet class. To do this, we
consider g(t) := t ; i.e.,

(H3) there exist c1, c2 > 0 and 1 ≤ pi ≤ q, i = 1, . . . , n, such that

c1

n∑
i=1

|ξi |pi ≤ f (x, s, ξ) ≤ c2
{
1 + |s|q + |ξ |q}

for a.e. x and every s ∈ R and every ξ ∈ Rn .

A first result, with min{pi } > 1, is the following.

Theorem 2.4 Assume (H1) and (H3), with 1 < pi ≤ q ≤ p∗, i = 1, . . . , n. Let
u0 ∈ W 1,1(Ω) ∩ L p∗

loc(Ω) be such that F(u0;Ω) < +∞. If u is a minimizer of

F(·;Ω) in u0 + W 1,(p1,...,pn)
0 (Ω), then u is locally bounded.

Now, let us consider the analogue of Theorem 2.4, under the assumptionmin{pi } =
1.

Fix u0 ∈ W 1,1(Ω), such that F(u0;Ω) < +∞. Since min{pi } = 1, then
W 1,(p1,...,pn)(Ω) is a non-reflexive space and the direct method generally fails. So,
minimizers of F in u0 +W 1,(p1,...,pn)

0 (Ω) may not exist. We claim that minimizers in
BV of the relaxed functional in BV (Ω) of F , i.e.,

F(u) := inf

{
lim inf
k→+∞ F(uk) : uk → u in L1(Ω), uk ∈ u0 + W 1,(p1,...,pn)

0 (Ω)

}
,

exist and are locally bounded.

Theorem 2.5 Assume (H1) and (H3), with 1 ≤ pi ≤ q < p∗, min{pi } = 1.
Fixed u0 ∈ W 1,1(Ω), such that F(u0;Ω) < +∞, there exists a minimizer ū ∈
BV (Ω) of F , such that ū ∈ L∞

loc(Ω) and, for all BR(x0) � Ω ,

‖ū‖L∞(B R
2

(x0)) ≤ c

{
1 + 1

R
μ

q p∗
p∗−q

(
F(ū) + 1 + ‖u0‖W 1,(p1,...,pn )(Ω)

)1+θ
}

,

where θ := p∗(q−1)
p∗−q .
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3 Anisotropic Sobolev Spaces

To prove our results, we use a suitable anisotropic Sobolev space. Precisely, we con-
sider

W 1,(p1,...,pn)(Ω) :=
{
u ∈ W 1,1(Ω) : uxi ∈ L pi (Ω), for all i = 1, . . . , n

}
,

endowed with the norm

‖u‖W 1,(p1,...,pn )(Ω) := ‖u‖L1(Ω) +
n∑

i=1

‖uxi ‖L pi (Ω).

We write W 1,(p1,...,pn)
0 (Ω) in place of W 1,1

0 (Ω) ∩ W 1,(p1,...,pn)(Ω). Note that, in this
last space, an equivalent norm of u is given by

∑n
i=1 ‖uxi ‖L pi (Ω).

We recall the following embedding results for anisotropic Sobolev spaces. We refer
to [21,22].

Theorem 3.1 Let pi ≥ 1, i = 1, . . . , n, and p∗ be as in (5).
If u ∈ W 1,(p1,...,pn)

0 (Ω), with Ω open and bounded set in Rn, then there exists c,
depending on n, pi and, only in the case p ≥ n, also on p∗ and the measure of the
support of u, such that

‖u‖L p∗ (Ω) ≤ c
n∑

i=1

‖uxi ‖L pi (Ω).

Theorem 3.2 Let Q ⊂ Rn be a cube with edges parallel to the coordinate axes and
consider u ∈ W 1,(p1,...,pn)(Q), pi ≥ 1 for all i = 1, . . . , n. If p < n, assume also
that max{pi } < p∗.
Then, u ∈ L p∗

(Q). Moreover, there exists c, depending on n, pi and, if p ≥ n, also
on p∗ and the measure of the support of u, such that

‖u‖L p∗ (Q) ≤ c

{
‖u‖L1(Q) +

n∑
i=1

‖uxi ‖L pi (Q)

}
. (7)

We also need the following result; see Proposition 1 in [7].

Proposition 3.1 Let u ∈ W 1,1
loc (Ω) and let g satisfy the assumptions described in

Sect. 2. Suppose that g(|uxi |) ∈ L pi
loc(Ω), with 1 ≤ pi < p∗ for every i = 1, . . . , n.

Then, g(|u|) ∈ L p∗
loc(Ω).

Remark 3.1 Let n ≥ 2. In general, the inclusionW 1,(p1,...,pn)(Ω) ⊂ L p∗
(Ω) does not

hold, even if Ω is a rectangular domain. Let assume p < n, that is
∑n

i=1
1
pi

> 1, and,
without loss of generality, assume p1 ≤ p2 ≤ · · · ≤ pn . Define, for k = 1, . . . , n,
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qk :=
⎧⎨
⎩

k∑k
i=1

1
pi

− 1
, if

∑k
i=1

1
pi

> 1,

+∞, else.

If pn = p∗, we have qn−1 = qn = p∗. Thus, by Lemma 1 and Theorem 6 in [24],
W 1,(p1,...,pn)(Ω) is continuously embedded into every Lq(Ω) with q < p∗. In [24],
it is also proved that, if qn−1 > qn , then W 1,(p1,...,pn)(Ω) is continuously embedded
into L p∗

(Ω).

4 Caccioppoli Inequality

First of all, we recall some properties of the �2-functions; see [7] for the proof.

Lemma 4.1 Consider g : R+ → R+ of class C1, convex, non-decreasing and satis-
fying (3). Then,

g(λt) ≤ λμ(g(t) + g(t0)) and g′(t)t ≤ μ(g(t) + g(t0)),

for all t ≥ 0 and all λ > 1.
Moreover, for every (t1, . . . , tk) ∈ Rk+, we have:

k−1
k∑

i=1

g(ti ) ≤ g

(
k∑

i=1

ti

)
≤ kμ

{
g(t0) +

k∑
i=1

g(ti )

}
.

Now, we state a lemma related to the convexity assumptions on f .

Lemma 4.2 If the second alternative in (H1) holds, then, for all ξ1, ξ2 ∈ Rn, we have

f (x, ts1 + (1 − t)s2, tξ1 + (1 − t)ξ2) ≤ t2 f (x, s1, ξ1) + (1 − t) f (x, s2, ξ2)

+ t (1 − t) f (x, s2, ξ1),

whenever 0 ≤ t ≤ 1 and M ≤ s1 ≤ s2 or s2 ≤ s1 ≤ −M. Here, M is as in (4).

Proof Using the convexity of f in the second and in the third variable, we have

f (x, ts1+ (1 − t)s2, tξ1 + (1 − t)ξ2) ≤ t2 f (x, s1, ξ1)

+ t (1 − t){ f (x, s1, ξ2) + f (x, s2, ξ1)} + (1 − t)2 f (x, s2, ξ2).

Since f (x, s1, ξ2) ≤ f (x, s2, ξ2), then the thesis follows. ��
The following is a well-known classical result; see, e.g., [26].

Lemma 4.3 Let φ(t) be a nonnegative and bounded function, defined in [τ0, τ1].
Suppose that, for all s, t , such that τ0 ≤ s < t ≤ τ1, φ satisfies

φ(s) ≤ θφ(t) + A

(t − s)α
+ B,
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where A, B, α are nonnegative constants and 0 < θ < 1.
Then, for all ρ and R, such that τ0 ≤ ρ ≤ R ≤ τ1, we have

φ(ρ) ≤ C

{
A

(R − ρ)α
+ B

}
.

If u ∈ W 1,1(Ω) and BR(x0) ⊆ Ω , we define the super-level sets:

Ak,R := {x ∈ BR(x0) : u(x) > k}, k ∈ R.

The following Caccioppoli inequality holds.

Theorem 4.1 Assume (H1), (H2) and let u ∈ W 1,1
loc (Ω) be a quasi-minimizer of F ,

such that g(|u|) ∈ Lq
loc(Ω). Then, there exists a constant c > 0, such that, for any

BR(x0) � Ω , 0 < ρ < R ≤ ρ + 1, and for any k and d, such that t0
2 ≤ k ≤ d,

∫
Ak,ρ

f (x, u, Du) dx ≤ c

(R − ρ)μq

∫
Ak,R

{
gq(u − k) + gq(d)

}
dx . (8)

Proof Let BR(x0) � Ω . Let ρ, s, t be such that ρ ≤ s < t ≤ R ≤ ρ + 1. Let
η ∈ C∞

0 (Bt ) be a cutoff function, satisfying the following assumptions:

0 ≤ η ≤ 1, η ≡ 1 in Bs(x0), |Dη| ≤ 2

t − s
. (9)

Fixed k ∈ R+, define

w := max(u − k, 0) and ϕ := −ημqw.

Consider a number d, such that d ≥ k. By the quasi-minimality of u, we get

∫
Ak,s

f (x, u, Du) dx ≤ Q
∫
Ak,t

f (x, u + ϕ, Du + Dϕ) dx

= Q
∫
Ak,t

f
(
x,

(
1 − ημq) u + ημqk,

(
1 − ημq) Du + μqημq−1(k − u)Dη

)
dx .

Case 1 Let us assume that the first alternative in (H1) holds.
If f is convex in (s, ξ), by (H2) we have that, for a.e. x ∈ {η �= 0},

f

(
x,

(
1 − ημq) u + ημqk,

(
1 − ημq) Du+ημq

(
μq

k − u

η
Dη

))

≤ (
1 − ημq) f (x, u, Du) + ημq f

(
x, k, μq

k − u

η
Dη

)

≤ (1 − ημq) f (x, u, Du) + c2η
μq

{
1 + gq

(
μq|u − k

η
Dη|

)
+ gq(d)

}
.
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Lemma 4.1 and (9) imply

g(|μq u − k

η
Dη|) ≤ (2μq)μ

(t − s)μημ
{g(|u − k|) + g(t0)} . (10)

Taking into account that supp(1 − ημq) ⊂ A(k, t) \ A(k, s) and t ≤ R, we obtain

∫
Ak,s

f (x, u, Du) dx ≤ Q
∫
Ak,t

(1 − ημq) f (x, u, Du) dx

+ Q
c

(t − s)μq

∫
Ak,t

{
gq (u − k) + gq(t0) + gq(d) + 1

}
dx

≤ Q
∫
Ak,t\Ak,s

f (x, u, Du) dx + c3
(t − s)μq

∫
Ak,R

(
gq (u − k) + gq(d)

)
dx, (11)

with c3 = c3(n, μ, q, Q, c2).

Case 2 Let us assume that the second alternative in (H1) holds.
By Lemma 4.2, with t := ημq(x), s1 := k, s2 := u(x), ξ1 := μq k−u

η
Dη, ξ2 :=

Du(x), and, using k ≥ M , we get that, for a.e. x ∈ {u ≥ k} ∩ {η �= 0},

f

(
x, (1 − ημq)u + ημqk, (1 − ημq)Du + ημqμq

k − u

η
Dη

)

≤ (1 − ημq)2 f (x, u, Du) + η2μq f (x, k, μq
k − u

η
Dη)

+ ημq f (x, u, μq
k − u

η
Dη).

Now, using (H2), k ≤ d, and (10),

f (x, k, μq
k − u

η
Dη) ≤ c2

{
1 + gq(d) + gq(μq

|u − k|
η

|Dη|)
}

≤ c

(t − s)μqημq
{gq(|u − k|) + gq(d)}.

Analogously, taking into account that, in Ak,R ,

gq(|u|) = gq(|u − k| + k) ≤ 1

2
gq(2|u − k|) + 1

2
gq(2k)

≤ 2μq−1 {
gq(|u − k|) + gq(d)

}
,

we obtain

f (x, u, μq
k − u

η
Dη) ≤ c

(t − s)μqημq
{gq(|u − k|) + gq(d)}.

So, we get
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f

(
x, (1 − ημq)u + ημqk, (1 − ημq)Du + ημqμq

k − u

η
Dη

)

≤ (1 − ημq)2 f (x, u, Du) + c

(t − s)μq
{
gq(|u − k|) + gq(d)

}
.

Therefore, estimate (11) follows.
Conclusion
By (11), adding to both sides Q times the left-hand side, we get:

∫
Ak,s

f (x, u, Du) dx ≤ Q

Q + 1

∫
Ak,t

f (x, u, Du) dx

+ c3
(t − s)μq

∫
Ak,R

{
gq(u − k) + gq(d)

}
dx .

Thus, by Lemma 4.3, with τ0 := ρ, τ1 := R, and

φ(t) :=
∫
Ak,t

f (x, u, Du) dx, A :=
∫
Ak,R

{
gq(u − k) + gq(d)

}
dx,

we get (8). ��

5 Proof of Theorems 2.1, 2.2 and 2.4

We will use the following classical result; see, e.g., [26].

Lemma 5.1 Let α > 0 and (Jh) a sequence of real positive numbers, such that

Jh+1 ≤ A λh J 1+α
h ,

with A > 0 and λ > 1.
If J0 ≤ A− 1

α λ− 1
α2 , then Jh ≤ λ− h

α J0 and limh→∞ Jh = 0.

We now need to introduce some notation.
Fixed BR0(x0) � Ω , with R ≤ R0, define the decreasing sequences

ρh := R

2
+ R

2h+1 = R

2

(
1 + 1

2h

)
, ρ̄h := ρh + ρh+1

2
= R

2

(
1 + 3

4 · 2h
)

.

Fixed a positive constant d ≥ t0, to be chosen later, define the increasing sequence of
positive real numbers

kh := d

(
1 − 1

2h+1

)
, h ∈ N.
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Moreover, whenever g(|u|) ∈ Lq
loc(Ω), define the sequence (Jh),

Jh :=
∫
Akh ,ρh

gq(u − kh) dx .

We begin proving an inequality that will be the common root to prove Theorems
2.1 and 2.2.

Lemma 5.2 Assume (H1) and (H2). Let u ∈ W 1,1
loc (Ω) be a quasi-minimizer of F .

Assume that q < p∗ or, if q = p∗, that g(|u|) ∈ L p∗
loc(Ω).

If 2h Jh ≥ 1 for all h, then there exists a constant C > 0, such that, for all h ∈ N∪{0},

Jh+1 ≤ C

(g(d))
q− q2

p∗

(
1

R

)μ
q2

p

λh J 1+α
h ,

where λ = 4μ
q2

p and α = q
p − q

p∗ .

Proof Since u is quasi-minimizer of F and (H2) holds, then g(|uxi |) ∈ L pi
loc(Ω).

If q < p∗, then max{pi } < p∗ and, by Proposition 3.1, g(|u|) ∈ L p∗
loc(Ω).

If q = p∗, we have, by assumption, that g(|u|) ∈ L p∗
loc(Ω). In particular, g(|u|) ∈

L pi
loc(Ω), i = 1, . . . , n, and Jh is finite. Moreover, Jh+1 ≤ Jh , since the following

chain of inequalities holds:

Jh+1 ≤
∫
Akh+1,ρh

gq(u − kh+1) dx ≤
∫
Akh+1,ρh

gq(u − kh) dx ≤ Jh . (12)

Let, now, define a sequence (ζh)of cutoff functions, satisfying the followingproperties:

ζh ∈ C∞
c (Bρ̄h (x0)), ζh ≡ 1 in Bρh+1 , |Dζh | ≤ 2h+4

R .
By the Hölder inequality, denoting (u − kh+1)+ := max{u − kh+1, 0}, we get

Jh+1 ≤ |Akh+1,ρ̄h |1−
q
p∗

(∫
Akh+1,ρ̄h

(g(u − kh+1)ζh)
p∗
dx

) q
p∗

= |Akh+1,ρ̄h |1−
q
p∗

(∫
Bρ̄h

(ζhg((u − kh+1)+))p
∗
dx

) q
p∗

.

To apply the Sobolev embedding Theorem 3.1 to the function g((u − kh+1)+)ζh , we
need to prove that g((u − kh+1)+)ζh ∈ W 1,(p1,...,pn)

0 (Bρ̄h (x0)). Precisely, it remains
only to prove that (ζhg((u − kh+1)+))xi ∈ L pi (Bρ̄h (x0)). By Lemma 4.1 and using
(g((u(x) − kh+1)+)))xi = g′(u(x) − kh+1)uxi (x)χAkh+1,ρ̄h

(x), for a.e. x ∈ Bρ̄h (x0)
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(here χAkh+1,ρ̄h
is, as usual, the characteristic function of the set Akh+1,ρ̄h ) we get that,

for a.e. x ∈ Bρ̄h (x0),

|(ζhg((u − kh+1)+))xi |

≤ c(μ)
2h

R
{g(u − kh+1) + g(t0)} χAkh+1,ρ̄h

+ μg(|uxi |)χAkh+1,ρ̄h
. (13)

Indeed,

|(ζhg((u − kh+1)+))xi |
≤ g((u − kh+1)+)|(ζh)xi | + ζhg

′(u − kh+1)|uxi |χAkh+1,ρ̄h

≤ g((u − kh+1)+)|Dζh |
+ ζh

{
g′(u − kh+1)(u − kh+1) + g′(|uxi |)|uxi |

}
χAkh+1,ρ̄h

≤ g(u − kh+1)|Dζh |χAkh+1,ρ̄h

+ ζhμ
{
g(u − kh+1) + g(|uxi |) + 2g(t0)

}
χAkh+1,ρ̄h

and the claim follows. Since both g(|u|) and g(|uxi |) are in L pi
loc(Ω), we have proved

that (ζhg((u − kh+1)+))xi ∈ L pi (Bρ̄h (x0)).
Thus, by the Sobolev embedding Theorem 3.1,

Jh+1 ≤ c |Akh+1,ρ̄h |1−
q
p∗

⎧⎨
⎩

n∑
i=1

(∫
Bρ̄h

|(ζhg((u − kh+1)+)xi |pi dx
) 1

pi

⎫⎬
⎭

q

. (14)

By (13), since (a + b)
1
pi ≤ a

1
pi + b

1
pi , g(d) ≥ g(t0) ≥ 1, and ρ̄h ≤ ρh , we get

(∫
Bρ̄h

|(ζhg((u − kh+1)+)xi |pi dx
) 1

pi

≤ μ

(∫
Akh+1,ρ̄h

[g(|uxi |)]pi dx
) 1

pi

+ c2h

R

(∫
Akh+1,ρh

{
gq(u − kh+1) + gq(d)

}
dx

) 1
pi

.

By (2) and the Caccioppoli inequality (8), we obtain

c1

∫
Akh+1,ρ̄h

g pi (|uxi |) dx ≤
∫
Akh+1,ρ̄h

f (x, u, Du) dx

≤ c

(
2h

R

)μq ∫
Akh+1,ρh

{gq(u − kh+1) + gq(d)} dx,

with c possibly depending on diamΩ . Collecting the above inequalities, we have
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(∫
Akh+1,ρ̄h

|(ζhg(u − kh+1))xi |pi dx
) 1

pi

≤ c

(
2h

R

)μ
q
pi

(∫
Akh+1,ρh

{
gq(u − kh+1) + gq(d)

}
dx

) 1
pi

.

By the above inequality, (14) and (12), it follows that

Jh+1 ≤ c|Akh+1,ρ̄h |1−
q
p∗

⎧⎨
⎩

n∑
i=1

(
2h

R

)μ
q
pi (

Jh + gq(d)|Akh+1,ρh |
) 1
pi

⎫⎬
⎭

q

. (15)

Note that

Jh ≥
∫
Akh+1,ρh

gq(u − kh) dx ≥ gq(kh+1 − kh)|Akh+1,ρh |

= gq(
d

2h+2 )|Akh+1,ρh | ≥ gq(d)

2(h+2)μq
|Akh+1,ρh |,

therefore

|Akh+1,ρ̄h | ≤ |Akh+1,ρh | ≤ 2(h+2)μq

gq(d)
Jh . (16)

Since 2h Jh ≥ 1 for all h, by (12), (15), (16), denoting p := min{pi }, we obtain

Jh+1 ≤ c

(
2hμq

gq(d)
Jh

)1− q
p∗

⎧⎨
⎩

n∑
i=1

(
2h

R

)μ
q
pi (

2hμq Jh
) 1

pi

⎫⎬
⎭

q

≤ c

(
2hμq

gq(d)
Jh

)1− q
p∗ (

2h

R

)μ
q2

p (
2hμq Jh

) q
p

≤ C

Rμ
q2
p (gq(d))

p∗−q
p∗

(
4μ

q2

p

)h

J
1+ q

p − q
p∗

h

and the conclusion follows. ��
We are now ready to prove the first of our main results.

Proof of Theorem 2.1 Let us assume that 2h Jh ≥ 1 for all h, and let d be a positive
constant, d ≥ t0, to be chosen later.
By Lemma 5.2, we have that, for all h,

Jh+1 ≤ C

(g(d))
q− q2

p∗

(
1

R

)μ
q2

p

λh J 1+α
h ,
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with λ := 4μ
q2

p and α := q
p − q

p∗ > 0.

Using Lemma 5.1, with A := C

Rμ
q2
p (gq(d))

p∗−q
p∗

, we have that, if

J0 ≤ K [g(d)]p p∗−q
p∗−p , with K :=

{
C

Rμ
q2
p

}− 1
α

λ
− 1

α2 , (17)

then limh→+∞ Jh = 0.
Since

J0 :=
∫
A d

2 ,R

gq
(
u − d

2

)
dx ≤

∫
BR

gq(|u|) dx,

it is easy to check that (17) is satisfied, if we choose d such that

g(d) = g(t0) +
{
1

K

∫
BR

gq(|u|) dx
} p∗−p

p(p∗−q)

. (18)

Hence, since lim
h→+∞ Jh =

∫
A
d, R2

gq(u − d) dx , we get |Ad, R2
| = 0. So, we conclude

that B R
2

⊆ {u ≤ d}.
On the other hand, since −u is a quasi-minimizer of the functional

I(v) :=
∫

f (x, u, Du) dx,

where f (x, u, ξ) := f (x,−u,−ξ), which satisfies the same assumptions of f , we
obtain that B R

2
⊆ {u ≥ −d}.

Therefore, by (18) and the monotonicity of g,

g(|u|) ≤ g(t0) +
⎧⎨
⎩

(
C

Rμ
q2
p

) 1
α

λ
1

α2

∫
BR

gq(|u|) dx
⎫⎬
⎭

p∗−p
p(p∗−q)

a.e. in B R
2
,

that is

‖g(|u|)‖L∞(B R
2

(x0)) ≤ g(t0) + c

R
μ

q p∗
p(p∗−q)

(∫
BR

gq(|u|) dx
) p∗−p

p(p∗−q)

.

The estimate (6) follows.
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Now, let us assume that it fails that 2h Jh ≥ 1 for all h. Then, for a suitable subse-
quence, Jhm → 0, hence gq(u − d) = 0 a.e. in Ad, R2

, for any d ≥ t0. Choosing d as
in (18), we get the same estimate than in the previous case. ��

We now turn to the proof of our boundedness result, under the assumption q = p∗.

Proof of Theorem 2.2 As in the proof of Theorem 2.1, we observe that, without any
loss of generality, we may suppose that 2h Jh ≥ 1 for all h.

If max{pi } = p∗, we know, by assumption, that g(|u|) ∈ L p∗
loc(Ω). The same

conclusion holds if max{pi } < p∗. Indeed, (H2) implies g(|uxi |) ∈ L pi
loc(Ω); so, by

Proposition 3.1, g(|u|) ∈ L p∗
loc(Ω).

By Lemma 5.2,

Jh+1 ≤ C

(
1

R

)μ
(p∗)2

p

λh J 1+α
h ,

with λ := 4μ
(p∗)2

p and α := p∗
p − 1 > 0. Therefore, by Lemma 5.1 we have that

limh→+∞ Jh = 0, if

J0 ≤
⎛
⎝C

(
1

R

)μ
(p∗)2

p

⎞
⎠

− 1
α (

4μ
(p∗)2

p

)− 1
α2

. (19)

By definition, J0 = ∫
A d

2 ,R
g p∗ (

u − d
2

)
dx . We choose d > 0 large, such that (19)

holds; this is possible, because gp∗
(|u|) ∈ L1(BR) and

J0 =
∫
A d

2 ,R

g p∗
(
u − d

2

)
dx ≤

∫
A d

2 ,R

g p∗
(|u|) dx →d→+∞ 0.

With this choice of d, we get Jh −→ 0; i.e.,

∫
A
d, R2

gp∗
(u − d) dx = 0.

Therefore, u ≤ d a.e. in B R
2
(x0).

To get a bound from below, we proceed as in the proof of Theorem 2.1. ��
We conclude the section with the proof of Theorem 2.4.

Proof of Theorem 2.4 If q < p∗, then we get the thesis by Theorem 2.1. Assume
q = p∗. By F(u0) < +∞ and (H3), we get u0 ∈ W 1,(p1,...,pn)(Ω). Theorem 3.1

implies u − u0 ∈ L p∗
(Ω). Thus, u ∈ L p∗

loc(Ω). The conclusion follows by Theorem
2.2. ��
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6 Proof of Theorem 2.5

In this section, we assume the growth condition (H3), with min{pi } = 1. For the
reader’s convenience, we now recall the main notations. The functional is

F(u) :=
∫

Ω

f (x, u, Du) dx .

We assume that there exist c1, c2 > 0 and 1 = min{pi } ≤ pi ≤ q, i = 1, . . . , n, such
that

c1

n∑
i=1

|ξi |pi ≤ f (x, s, ξ) ≤ c2
{
1 + |ξ |q + |s|q} , (20)

for a.e. x , every s ∈ R and every ξ ∈ Rn .
Fixed u0 ∈ W 1,1(Ω) such that F(u0) < +∞, we consider the relaxed functional

in BV (Ω) of F

F(u) := inf

{
lim inf
k→+∞ F(uk) : uk → u in L1(Ω), uk ∈ u0 + W 1,(p1,...,pn)

0 (Ω)

}
.

Proof of Theorem 2.5 ByRellich’s Theorem in BV , everyminimizing sequence forF
in u0 +W 1,(p1,...,pn)

0 (Ω) has a L1-convergent subsequence. The lower semicontinuity
of F gives the existence of a minimizer ū in BV , such that

F(ū) = min
u∈BV F(u) = inf

u∈u0+W
1,(p1,...,pn )

0 (Ω)

F(u). (21)

We prove now that ū is locally bounded. By the minimality of ū and (21), there
exists a sequence (uk) in u0 + W 1,(p1,...,pn)

0 (Ω), such that, for all k,

F(uk) ≤ inf
u0+W

1,(p1,...,pn )

0 (Ω)

F + 1

k
, and uk →k→+∞ ū in L1(Ω). (22)

By the Ekeland’s variational principle, see [27], for every k there exists a function
vk ∈ u0 + W 1,(p1,...,pn)

0 (Ω), such that

F(vk) ≤ F(u) + 1√
k

n∑
i=1

(∫
Ω

|(vk − u)xi |pi dx
) 1

pi ∀u ∈ u0 + W 1,(p1,...,pn)
0 (Ω),

(23)

and

n∑
i=1

(∫
Ω

|(vk − uk)xi |pi dx
) 1

pi ≤ 1√
k

∀k. (24)
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Since uk −vk ∈ W 1,(p1,...,pn)
0 (Ω), then (24) implies that uk −vk converges to 0 in L1.

Thus, by the second item in (22), we get vk → ū in L1.
Note that there exists c̃ > 0, depending on |Ω|, such that

a1/pi ≤ a + c̃|Ω| ∀ i = 1, . . . , n, and ∀ a > 0.

Thus, using (23) and (H2), we get that, for all u ∈ u0 + W 1,(p1,...,pn)
0 (Ω),

F(vk) ≤ F(u) + 1√
k

{
n∑

i=1

(∫
Ω

|(vk)xi |pi dx
)1/pi

+
n∑

i=1

(∫
Ω

|uxi |pi dx
)1/pi

}

≤
(
1 + 1

c1
√
k

)
F(u) + 1

c1
√
k
F(vk) + 2c̃|Ω|√

k
,

that implies

(
1 − 1

c1
√
k

)
F(vk) ≤

(
1 + 1

c1
√
k

)
F(u) + 2c̃|Ω|√

k
.

Therefore, the above inequality implies that vk is a quasi-minimizer of the functional

I(u) :=
∫

Ω

( f (x, u, Du) + 1) dx,

with Q independent of k. Since (x, s, ξ) �→ f (x, s, ξ) + 1 satisfies properties analo-
gous to (H1) and (20), we can apply Theorem 2.1. Thus, vk ∈ L∞

loc(Ω) and it satisfies
an estimate analogous to (6) that we now write using cubes instead than balls. Pre-
cisely, fixed x0 ∈ Ω , consider QR(x0) � Ω , cube centered at x0, with edges, of length
2R, parallel to the coordinate axes. Then, there exists a constant c, independent of k,
such that

‖vk‖L∞(Q R
2

(x0)) ≤ c

{
1 + 1

R
μ

q p∗
p∗−q

(∫
QR(x0)

|vk |q dx
) 1+θ

q
}

, (25)

where θ := p∗(q−1)
p∗−q .

Since F(u0) < +∞, then we have that u0 ∈ W 1,(p1,...,pn)(Ω). By Theorem 3.2,
u0 ∈ L p∗

(QR) and it satisfies an estimate as in (7) on the cube QR . Moreover, since
vk ∈ u0 + W 1,(p1,...,pn)

0 (Ω), we can apply Theorem 3.1 to the function vk − u0 ∈
W 1,(p1,...,pn)

0 (Ω). Thus,
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{∫
QR(x0)

|vk |q dx
} 1

q

≤ |Ω|1− q
p∗

{(∫
Ω

|vk − u0|p∗
dx

) 1
p∗ +

(∫
QR(x0)

|u0|p∗
dx

) 1
p∗

}

≤ c(Ω)

n∑
i=1

(∫
Ω

|(vk − u0)xi |pi dx
) 1

pi + c(Ω)‖u0‖W 1,(p1,...,pn )(Ω).

Using (20), it is easy to prove that there exists c > 0, independent of k, such that

n∑
i=1

(∫
Ω

|(vk − u0)xi |pi dx
) 1

pi ≤ c {F(vk) + 1} + c
n∑

i=1

{∫
Ω

|(u0)xi |pi dx
} 1

pi

≤ c {F(vk) + 1} + c‖u0‖W 1,(p1,...,pn )(Ω). (26)

Thus, collecting (25)–(26), we get

‖vk‖L∞(Q R
2

(x0)) ≤ c

{
1 + 1

R
μ

q p∗
p∗−q

(
F(vk) + 1 + ‖u0‖W 1,(p1,...,pn )(Ω)

)1+θ
}

, (27)

for some positive c depending also on Ω , but independent of k and u0.
By (23), applied with uk in place of u, by (24) and the first property in (22), we have

F(vk) ≤ F(uk) + 1

k
≤ inf

u0+W
1,(p1,...,pn )

0 (Ω)

F + 2

k
.

Therefore, (27) implies

‖vk‖L∞(Q R
2

(x0))

≤ c

⎧⎨
⎩1 + 1

R
μ

q p∗
p∗−q

(
inf

u0+W
1,(p1,...,pn )

0 (Ω)

F + 2

k
+ 1 + ‖u0‖W 1,(p1,...,pn )(Ω)

)1+θ
⎫⎬
⎭ .

So, up to subsequences, vk converges to a function v in the ∗-weak topology of L∞.
Since vk also converges to ū in L1, then v = ū. By the lower semicontinuity of the
L∞-norm and (21), we conclude. ��

7 Perspectives

We studied above the local boundedness of minimizers of general integrals of the
calculus of variations of the type

F(u;Ω) :=
∫

Ω

f (x, u, Du(x)) dx, (28)
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where Ω is an open and bounded subset of Rn , n ≥ 2, and f : Ω × R × Rn → R

is a Carathéodory function, satisfying some convexity and growth conditions. As
a particular case, we considered f (x, s, ξ) convex in (s, ξ) and satisfying growth
conditions such as

c1

n∑
i=1

|ξi |pi ≤ f (x, s, ξ) ≤ c2
{
1 + |s|q + |ξ |q} , (29)

for some 1 ≤ pi ≤ q and c1, c2 > 0. The boundedness ofminimizers is not guaranteed
if the exponents are too spread; see Giaquinta [17], Marcellini [18], Hong [19] for
counterexamples. In this note, we proved that the reverse limit condition

q ≤ n p

n − p
, where

1

p
:= 1

n

n∑
i=1

1

pi
,

is sufficient for local boundedness of minimizers. In the paper, we also considered
another limit case, when at least one of the exponents pi in (29) is equal to 1, by
extending the functional to BV .

In the classical theory of regularity and in some recent developments, the integrand
f satisfies growth conditions depending on Du through its modulus |Du|, such as

c1|ξ |p ≤ f (x, s, ξ) ≤ c2
(
1 + |ξ |q) . (30)

If p = q, then (30) is called p-growth or standard or natural growth. If p < q, we are
in the framework of p, q-growth.

In (29), we may have max{pi } < q, as for instance for the functional

F1(u) :=
∫

Ω

(
n∑

i=1

|uxi |pi + a(x)|Du|q
)

dx,

whenever a(x) ≥ 0 is measurable and a(x) = 0 on a set of positive measure; see, in
this context, the recent and interesting papers by Colombo and Mingione [11,12]; see
also Esposito et al. [13]. There, the local boundedness of minimizers is a fundamental
initial step for further regularity; the restriction on pi , q is necessary only at this
stage of local boundedness. The local boundedness of minimizers of functionals with
anisotropic growth (29) has already been studied by the authors in [7]; related results
are in [8,9], for the vector valued case, and [10], for the existence and regularity of
solutions to elliptic equations.

In the present paper, we adopted a different strategy than in [7], where the Euler
equation and theMoser iteration scheme were used. Here, we derived the local bound-
edness by the De Giorgi method of super(sub)-level sets. This allowed us to improve
the previous results in different directions, as already mentioned in the Introduction.
Moreover, it suggests to study, as a further step, the Hölder continuity of the solu-
tions. Note that local minimizers of integrals, with Carathéodory integrands g(x, s, ξ)

possibly neither convex nor regular, and satisfying
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m( f (x, s, ξ) − 1) ≤ g(x, s, ξ) ≤ M( f (x, s, ξ) + 1), withm, M > 0,

are quasi-minimizers of
∫
Ω

{ f (x, u, Du) + 1} dx . Thus, our results applied to local
minimizers too.

A more general assumption on q has been considered. With the notations for the
harmonic average p of {pi } and for the Sobolev exponent p∗:

1

p
:= 1

n

n∑
i=1

1

pi
, and p∗ :=

{
n p
n−p , if p < n,

anyμ > p, if p ≥ n,

we proved that if q ≤ p∗, then the quasi-minimizers of F are locally bounded.
We emphasize that we were able to include the limit case q = p∗ and that the

procedure of the Moser iteration argument was unable to include. Precisely, given a
quasi-minimizer u, if q = p∗ and if one of the following two assumptions holds:

max{pi } < p∗ or u ∈ L p∗
loc(Ω),

then u is locally bounded. We point out that, in the known literature, for the case

q = p∗, the condition that u a-priori belongs to L p∗
loc(Ω) is sometimes omitted. On the

contrary, this condition is needed for the embedding results of the anisotropic Sobolev
spaces. In fact, the natural space, to consider minimizers of F , is

W 1,(p1,...,pn)(Ω) :=
{
u ∈ W 1,1(Ω) : uxi ∈ L pi (Ω), i = 1, . . . , n

}
.

For a rectangular domain Ω , with edges parallel to the coordinate axes, if max{pi } <

p∗, then W 1,(p1,...,pn)(Ω) ⊂ L p∗
(Ω); see Troisi [21] and Acerbi and Fusco [22].

Otherwise, if max{pi } = p∗, then the embedding is not guaranteed; see Kruzhkov and
Kolodii [23] and Haskovec and Schmeiser [24] for counterexamples; see also Remark
3.1 for further details and insight. However, the embedding theory for anisotropic
Sobolev spaces is now entirely completed.

Theorems 2.1 and 2.2 actually cover functionals more general than (28), (29). More
precisely, the growth condition considered (see assumption (H2) in Sect. 2) takes into
account a function g satisfying the �2 property (see (3)). Related boundedness results
are in Dall’Aglio et al. [14], Mascolo and Papi [15] and Moscariello and Nania [16].

We also studied a class of variational integrals with linear growth from below; i.e.,
(29) with min{pi } = 1. Due to the lack of coerciveness, we considered the relaxed
functional of F in BV (Ω); that is, for fixed u0 ∈ W 1,1(Ω) with

∫
Ω

f (x, u0, Du0) <

+∞, the relaxed functional, defined in BV (Ω), is

F(u) := inf

{
lim inf
k→+∞ F(uk) : uk → u in L1(Ω), uk ∈ u0 + W 1,(p1,...,pn)

0 (Ω)

}
.

We proved that there exists a locally bounded minimizer ū ∈ BV of F and an
estimate of the L∞-norm is given; see Theorem 2.5.
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The use of the De Giorgi method for local boundedness suggests to go on: Under
which conditions either theminimizers or the quasi-minimizers areHölder continuous?
This problem is at the same time appealing and difficult to be treated. Few recent
tentative approaches for functionals and operators with special structures are available
in the literature; see Liskevich and Skrypnik [28], Düzgün et al. [29,30], Colombo
and Mingione [11,12].

8 Conclusions

By means of De Giorgi’s method, which is still considered in the mathematical liter-
ature with plenty of interest and full of new applications to the regularity context, we
are able to arrive to a limit threshold condition for the growth exponents.

The contents of the paper is described next briefly. In Sect. 2, we gave the precise
hypotheses and the statements of the regularity results: Theorems 2.1 and 2.2 (cases
q < p∗ and q = p∗, respectively) and Theorem 2.3 (pi = p for all i). We also
stated regularity results for minimizers of functionals in suitable Dirichlet classes,
dealing both with the coercive case (min{pi } > 1), Theorem 2.4, and with the non-
coercive case (min{pi } = 1), Theorem 2.5. In this last result, a generalized definition
of minimizers is used, e.g., minimizers in BV for the associated relaxed functional.

We state here one of the main results in this paper: minimizers of a class of integrals
of the calculus of variations, satisfying p, q-growth conditions with

q ≤ p∗ := np

n − p

(note the possibility of the equality sign), are locally bounded.
Sections 5 and 6 contain the proofs of Theorems 2.1, 2.2 and 2.5. They rely on

some embedding results for anisotropic Sobolev spaces and on a suitable Caccioppoli
inequality, which can be found in Sects. 3 and 4.
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