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Abstract A game control problem for a phase field equation is considered. This
problem is investigated from the viewpoint of both the first player (the partner) and of
the second player (the opponent). For both players, their own procedures for forming
feedback controls are specified.
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Mathematics Subject Classification 49J35 · 91A24

1 Introduction

A system modeling the solidification process and governed by so-called phase field
equations is considered. The state variables are the order parameter (also called the
phase function) and the temperature. In contrast to the classical Stefan problem, which
models the solidification process with a sharp solid–liquid interface, the phase field
equations are applicable to fuzzy domains. For the aforementioned system, we discuss
a game control problem, which consists in the following. Some quality criterion,
depending on the trajectory of the system, is given. At discrete time instants, the phase
function is inaccurately measured. There are two antagonistic players. The problem
undertaken by the first player (the partner) is to construct (using measurements of the
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phase functions) a law of forming a feedback control that minimizes some quality
criterion. The goal of the second player (the opponent) is opposite.

One of the approaches to solving the problems of guaranteed control (they are also
called positional differential games) for dynamical systems, described by ordinary
differential equations, was developed in [1]. The fundamental theory of guaranteed
control for some systems with distributed parameters within the framework of the
formalization from [1] was presented in [2,3]. In all the works cited above, the cases
when the full phase state of a system is inaccurately measured at frequent enough time
instants were considered. In the present work, from the position of the approach [1–
3], the problems of guaranteed control undertaken by the partner and opponent are
investigated under measuring a “part” of system’s phase state.

2 Problem Statement and Solution Method

Consider the system (introduced in [4])

∂

∂t
ψ + l

∂

∂t
ϕ = kΔLψ + Bu − Cv in Ω × ]t0, ϑ], ϑ = const < +∞, (1)

τ
∂

∂t
ϕ = ξ2ΔLϕ + g(ϕ) + ψ (2)

with the boundary condition ∂
∂nψ = ∂

∂nϕ = 0 on ∂Ω ×]t0, ϑ] and the initial condition
ψ(t0) = ψ0, ϕ(t0) = ϕ0 in Ω . Here, ψ is the temperature, ϕ is the phase function,
Ω ⊂ R

n is a bounded domain with the sufficiently smooth boundary ∂Ω,ΔL is the
Laplace operator, ∂/∂n is the outward normal derivative, (U, | · |U ) and (V, | · |V ) are
Banach spaces, B ∈ L (U ; H) and C ∈ L (V ; H) are linear continuous operators,
H = L2(Ω), and the function g(z) is the derivative of a so-called potential G(z).
Following [4], we assume that g(z) = az + bz2 − cz3.

System (1), (2) (we call it the system S) has been investigated by many authors.
A rather detailed analysis of the previous results is presented in [5–7]. Among more
recent works, we note [8]. Therefore, we do not dwell on this aspect. In what follows,
for the sake of simplicity, we assume that k = ξ = τ = c = 1. Furthermore, we
assume that the following conditions are fulfilled: (A1) The domain Ω ⊂ R

n, n =
2, 3, has the boundary of C2-class and (A2) the coefficients a and b are elements of
L∞([t0, ϑ]×Ω), and vrai sup c(t, η) > 0 for (t, η) ∈ [t0, ϑ]×Ω; (A3) {ψ0, ϕo} ∈ R,
where R := {ψ, ϕ ∈ W 2∞(Ω): ∂

∂nψ = ∂
∂nϕ = 0 on ∂Ω}.

Introduce the notation: Q = Ω × ]t0, ϑ[;

W 2,1
p (Q) =

{
u | u,

∂u

∂ηi
,

∂2u

∂ηi∂η j
,
∂u

∂t
∈ L p(Q)

}
for p ∈ [1,∞[

is the standard Sobolev space with the norm

‖u‖W 2,1
p (Q)

=
(∫

Ω

|u|p +
n∑

i=1

∣∣∣∣ ∂u

∂ηi

∣∣∣∣
p

+
n∑

i, j=1

∣∣∣∣ ∂2u

∂ηi∂η j

∣∣∣∣
p

+
∣∣∣∣∂u∂t

∣∣∣∣
p

dηdt

)1/p

;
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(·, ·)H and | · |H are the scalar product and the norm in H . A solution of the
system S x(·; t0, x0, u(·), v(·)) = {ψ(·; t0, ψ0, u(·), v(·)), ϕ(·; t0, ϕ0, u(·), v(·))} is a
unique function x(·) = x(·; t0, x0, u(·), v(·)) ∈ V (1)

T = V1 × V1, V1 = W 2,1
2 (Q),

satisfying relations (1) and (2). As is known (see [7, p. 25, Assertion 5]), under
our conditions, there exists a unique solution of S for any u(·) ∈ L∞(T ;U ) and
v(·) ∈ L∞(T ; V ).

Let the cost functional

I (x(·; t0, x0, uT (·), vT (·))) =
ϑ∫

t0

∫
Ω

f (t, η, x(t, η),∇x(t, η)) dη dt

be given. Here, the symbol ∇x stands for the gradient of the function x ; the function
f (t, η, x, y) satisfies the Carathéodory condition, i.e., f (t, η, x, y) is measurable (in
the Lebesgue sense) in (t, η) ∈ T × Ω for all x ∈ R, y ∈ R

n , and Lipschitz in
x ∈ R, y ∈ R

n for almost all t, η ∈ T × Ω . In addition, | f (t, η, 0, . . . , 0)| ≤ c0(t, η)

for almost all t, η ∈ T × Ω , and c0(t, η) ∈ L∞(T × Ω). At discrete time instants
τi ∈ Δ = {τi }mi=0, τ0 = t0, τi+1 = τi + δ, τm = ϑ , the phase function ϕ is measured.
The results of these measurements are functions ξhi ∈ H satisfying the inequalities

|ϕ(τi ) − ξ hi |H ≤ h. (3)

Here, h ∈ ]0, 1[ stands for the level of informational noise. There are two antagonistic
players controlling the system S by means of various input actions. One of the players
is called a partner, the other one is called an opponent. Let P ⊂ U and E ⊂ V be
given convex, bounded, and closed sets. The problem undertaken by the partner is as
follows. It is necessary to construct a law (a strategy) for forming the control u (with
values from P) by the feedback principle (on the base of measuring the state ϕ(τi ))
in such a way that this control minimizes the quality criterion under any possible
actions of opponent, whose goals are opposite. Thus, the partner solves the minimax
control problem. The problem undertaken by the opponent is “inverse”: it consists in
the choice of a law (a strategy) for forming the control v (with values from E) also by
the feedback principle [on the base of measuring the state ϕ(τi )] in such a way that
this control maximizes the quality criterion under any possible actions of the partner,
whose goals, as mentioned above, are opposite. Consequently, the opponent solves
the maximin control problem. This is the description of the problem considered in the
paper. The minimax game control problem for systems with distributed parameters
has been investigated by many authors (see, for example, [9–12]). In the present work,
to solve this problem, we use the approach from [1–3,13–16].

We denote the function u(t), t ∈ [a, b], by ua,b(·). The sets of all controls of the
partner and the opponent are denoted by the symbols PT (·) and ET (·): PT (·) :=
{u(·) ∈ L2(T ;U ): u(t) ∈ P a.e. t ∈ T }, ET (·) := {v(·) ∈ L2(T ; V ): v(t) ∈
E a.e. t ∈ T }. Any function (perhaps, multifunction) U : T × H → P,H :=
H ×H ×H ×H , is said to be a positional strategy of the partner. A positional strategy
of the opponent is defined by analogy: V : T ×H → E . Positional strategies adjust
controls at discrete time moments, given by some partition of the interval T . Any
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function V1 : T × H × H → H is said to be a reconstruction strategy. The strategy
V1 is destined to reconstruct the unknown component ψ(·).

Let us present the exact statement of the problems under consideration. Let the
partition of T be any finite familyΔ = {τi }mi=0, where τ0 = t0, τm = ϑ, τi+1 = τi +δ;
δ = δ(Δ) is the diameter of Δ. Auxiliary systems M1 and M2 (models) are intro-
duced. The system M1 has an input u∗(·) and an output w(·); the system M2 has
an input ph(·) and an output w1(·), respectively. In the process, ph(·) is formed in
such a way that ph(·) approximates the unknown coordinate ψ(·) of the system S. A
solution x(·) of the system S, starting from an initial state (t∗, x∗) and corresponding
to piecewise constant controls uh(·) and ph(·) (formed by the feedback principle)
and to a control vt∗,ϑ (·) ∈ Et∗,ϑ (·), is called an (h,Δ,w,U ,V1)-motion xhΔ,w(·) =
xhΔ,w(·; t∗, x∗,U ,V1, vt∗,ϑ (·)), generated by the positional strategies U and V1 on

the partition Δ. The process of forming the motions xhΔ,w(·), w(·), and w1(·) is real-
ized simultaneously. These three trajectories are all formed by the feedback principle,
i.e., it is assumed that xhΔ,w(t) = x(t; τi , xhΔ,w(τi ), uhτi ,τi+1

(·), vτi ,τi+1(·)), w(t) =
w(t; τi , w(τi ), u∗

τi ,τi+1
(·)), w1(t) = w1(t; τi , w1(τi ), phτi ,τi+1

(·)), t ∈ [τi , τi+1[,
where

uh(t) = uhi ∈ U (τi , ξ
h
i , phi , w(τi )), ph(t) = phi ∈ V1(τi , ξ

h
i , w1(τi ))

for t ∈ [τi , τi+1[, i ∈ [i(t∗) : m − 1], |ξ hi − ϕ(τi )|H ≤ h,

uh(t) = uh∗ ∈ P, ph(t) = ph∗ ∈ H for t ∈ [t∗, τi(t∗)[, i(t∗) = min{i : τi > t∗}.

The set of all (h,Δ,w,U ,V1)-motions is denoted by Xh(t∗, x∗,U ,V1,Δ,w).

Problem 1 (Problem of the partner) It is necessary to find models M1 and M2, a
control u∗(·) for the model M1, as well as a positional strategy of the partner U :
T × H → P and a positional reconstruction strategy V1 : T × H → H , and a
number c1 with the following properties: whatever the value ε > 0 may be, one can
specify (explicitly) numbers h∗ > 0 and δ∗ > 0 such that the inequality I (xhΔ,w(·)) ≤
c1 + ε,∀xhΔ,w(·) ∈ Xh(t0, x0,U ,V1,Δ,w) is fulfilled uniformly with respect to all

measurements ξ hi with properties (3) if h ≤ h∗ and δ = δ(Δ) ≤ δ∗.

By analogy with the motion xhΔ,w(·) = xhΔ,w(·; t∗, x∗,U ,V1, vt∗,ϑ (·)), we define
the motion xhΔ,z(·) := xhΔ,z(·; t∗, x∗,V ,V1,V2, ut∗,ϑ (·)) corresponding to piecewise

constant controls vh(·), v∗(·), and ph(·) (formed by the feedback principle) and to
a control ut∗,ϑ (·) ∈ Pt∗,ϑ (·). This motion is called an (h,Δ,V ,V1,V2)-motion,
generated by the positional strategies V ,V1, and V2 on the partition Δ. The set of
all (h,Δ,V ,V1,V2)-motions is denoted by Xh(t∗, x∗,V ,V1,V2,Δ). Note that the
trajectory xhΔ,z(·; t∗, x∗,V ,V1,V2, ut∗,ϑ (·)) is formed simultaneously with the other
two trajectories, z(·) and w1(·). Here, z(·) is the trajectory of some auxiliary system
M3 (a model), whereas w1(·) is the trajectory of the system M2. These three tra-
jectories are all formed by the feedback principle, i.e., it is assumed that xhΔ,z(t) =
xhΔ,z(t; τi , xhΔ,z(τi ), uτi ,τi+1(·), vhτi ,τi+1

(·)), z(t) = z(t; τi , z(τi ), v∗
τi ,τi+1

(·)), w1(t) =
w1(t; τi , w1(τi ), phτi ,τi+1

(·)), t ∈ [τi , τi+1[, where
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vh(t) = vhi ∈ V (τi , ξ
h
i , phi , z(τi )), v∗(t) = v∗

i ∈ V2(τi , ξ
h
i , phi , z(τi )),

ph(t) = phi ∈ V1(τi , ξ
h
i , w1(τi )) for t ∈ [τi , τi+1[, i ∈ [i(t∗) : m − 1],

|ξhi − ϕ(τi )|H ≤ h, i(t∗) = min{i : τi > t∗},
ph(t) = ph∗ ∈ H, v∗(t) = v∗ ∈ E, vh(t) = vh∗ ∈ E for t ∈ [t∗, τi(t∗)[.

Problem 2 (Problem of the opponent) It is necessary to find models M3 and M2, as
well as a positional strategy of the opponent V : T × H → E , a positional strategy
V2 : T × H → E , a positional reconstruction strategy V1 : T × H → H with the
following properties: whatever the value ε > 0 may be, one can specify (explicitly)
numbers h∗ > 0 and δ∗ > 0 such that the inequality I (xhΔ,z(·)) ≥ c1 − ε,∀xhΔ,z(·) ∈
Xh(t0, x0,V ,V1,V2,Δ), is fulfilled uniformly with respect to all measurements ξ hi
with properties (3) if h ≤ h∗ and δ = δ(Δ) ≤ δ∗. Here, the number c1 is the same as
in Problem 1.

Remark 2.1 The fact that the value c1 in Problem 2 is the same as in Problem 1 means
that c1 is the value of the game, in which the partner aims to minimize a maximally
possible value of the quality criterion. At the same time, the goal of the opponent is
opposite: He aims to maximize a minimally possible value of the criterion. In this
case, a strategy of the partner U solving Problem 1 is called an ε-optimal minimax
strategy, whereas a strategy of the opponentV solving Problem2 is called an ε-optimal
maximin strategy. Moreover, the pair (U ,V ) constitutes an ε-saddle point.

3 Algorithm for Solving Problem 1

Let the following condition be fulfilled.

Condition 3.1 There exists a convex and closed set D ⊂ H such that BP = CE+D.

Here, we use the notation BP := {Bu : u ∈ P},CE := {Cv : v ∈ E},CE + D :=
{u : u = u1 + u2, u1 ∈ CE, u2 ∈ D}. Let u∗(·) be an optimal control solving

Problem 3 It is necessary to minimize I (w(·; t0, x0, u(·))) over the set DT (·) =
{u(·) ∈ L2(T ; H) : u(t) ∈ D for a. a. t ∈ T }. Here, the symbol w(·) =
{w(1)(·), w(2)(·)} = w(·; t0, x0, u(·)), u(·) ∈ DT (·), denotes the solution of the system

∂

∂t
w(1) + l

∂

∂t
w(2) = ΔLw(1) + u in Ω × ]t0, ϑ],

∂

∂t
w(2) = ΔLw(2) + g(w(2)) + w(1)

(4)

with the boundary condition ∂
∂nw(1) = ∂

∂nw(2) = 0 on ∂Ω × ]t0, ϑ] and the initial
condition w(1)(t0) = ψ0, w

(2)(t0) = ϕ0 in Ω .

Note that Problem 3 was investigated in a number of papers (see, for example,
[6,7,17],where someoptimality conditionswere stated). Letw(·) = w(·; t0, x0, u∗(·))
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be an optimal trajectory in Problem 3 and Copt = inf{I (w(·; t0, x0, u(·))): u(·) ∈
DT (·)} be the optimal value of the quality criterion. As the model M1, we take system
(4) with the control u(·) = u∗(·); as the model M2, we take the equation

∂w1(t, η)

∂t
= ΔLw1(t, η) + ph(t, η) + g(w1(t, η)) in Ω × ]t0, ϑ] (5)

with the boundary condition ∂w1
∂n = 0 on ∂Ω×]t0, ϑ] and the initial conditionw1(t0) =

ϕ0 in Ω . The strategies U and V1 are defined in such a way that:

U (t, ξ, p, w) = argmax{L(u, y) : u ∈ P}, (6)

V1(t, ξ, w1) = argmin{l(t, α, u, s) : u ∈ Ud}, (7)

where w = {w(1), w(2)}, L(u, y) = (y, Bu)H , y = w(1) − p + l(w(2) −
ξ), l(t, α, u, s) = exp(−2bt)(s, u)H + α|u|2H , s = w1 − ξ,Ud := {u ∈ H : |u|H ≤
d}.

Let us describe the algorithm for solving Problem 1. Before the algorithm starts,
we fix a value h ∈ ]0, 1[, a partition

Δh = {τh,i }mh
i=0, τh,i = τh,i−1 + δ, δ = δ(h), τh,0 = t0, τh,mh = ϑ,

with the diameter δ(h) = τh,i+1 − τh,i , and a function α = α(h): ]0, 1[ → R
+,

α(h) → h, (h + δ(h))α−1(h) → 0 as h → 0. (8)

The work of the algorithm is decomposed into m − 1,m = mh , identical steps. We
assume that uh(t) = uh0 ∈ U (t0, ξ h0 , ph0 , w(t0)), ph(t) = ph0 ∈ V1(t0, ξ h0 , ϕ0), |ξ h0 −
ϕ0|H ≤ h on the interval [t0, τ1[. Under the action of these piecewise constant con-
trols, as well as of an unknown disturbance vt0,τ1(·), the (h,Δ,w,U ,V1)-motion
{xhΔ,w(·)}t0,τ1 = {xhΔ,w(·; t0, x0, uht0,τ1(·), vt0,τ1(·))}t0,τ1 of the system S, the trajectory

{w1(·)}t0,τ1 = {w1(·; t0, w1(t0), pht0,τ1(·))}t0,τ1 of the model M2, and the trajectory
{w(·)}t0,τ1 = {w(·; t0, x0, u∗

t0,τ1(·))}t0,τ1 of the model M1 are realized. At the moment
t = τ1, we determine uh1 and ph1 from the condition

uh1 ∈ U (τ1, ξ
h
1 , ph1 , w(τ1)), |ξ h1 − ϕh

Δ,w(τ1)|H ≤ h, ph1 ∈ V1(τ1, ξ
h
1 , w1(τ1));

i.e., we assume that uh(t) = uh1 and ph(t) = ph1 for t ∈ [τ1, τ2[. Then, we cal-
culate the (h,Δ,w,U ,V1)-motion {xhΔ,w(·)}τ1,τ2 = {xhΔ,w(·; τ1, xhΔ,w(τ1), uhτ1,τ2(·),
vτ1,τ2(·))}τ1,τ2 , the trajectory {w1(·)}τ1,τ2 = {w1(·; τ1, w1(τ1), phτ1,τ2(·))}τ1,τ2 of the
modelM2, and the trajectory {w(·)}τ1,τ2 = {w(·; τ1, w(τ1), u∗

τ1,τ2
(·)}τ1,τ2 of themodel

M1. Let the (h,Δ,w,U ,V1)-motion xhΔ,w(·), the trajectory w1(·) of the model M2,
and the trajectory w(·) of the model M1 be defined on the interval [t0, τi ]. At the
moment t = τi , we assume that

uhi ∈ U (τi , ξ
h
i , phi , w(τi )), |ξ hi − ϕh

Δ,w(τi )|H ≤ h, phi ∈ V1(τi , ξ
h
i , w1(τi )); (9)
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i.e., we set uh(t) = uhi and ph(t) = phi for t ∈ [τi , τi+1[. As the result of the action of
these controls and of an unknown disturbance vτi ,τi+1(·), the (h,Δ,w,U ,V1)-motion
{xhΔ,w(·)}τi ,τi+1 = {xhΔ,w(·; τi , xhΔ,w(τi ), uhτi ,τi+1

(·), vτi ,τi+1(·))}τi ,τi+1 , the trajectory

{w1(·)}τi ,τi+1 = {w1(·; τi , w1(τi ), phτi ,τi+1
(·))}τi ,τi+1 of the model M2, and the trajec-

tory {w(·)}τi ,τi+1 = {w(·; τi , w(τi ), u∗
τi ,τi+1

(·))}τi ,τi+1 of the model M1 are realized on
the interval [τi , τi+1]. The procedure of forming the (h,Δ,w,U ,V1)-motion and the
trajectories of models M2 and M1 stops at the moment ϑ .

Theorem 3.1 Let c1 = Copt and let the models M1 and M2 be specified by relations
(4) and (5). Then, the strategies U and V1 of form (6), (7) solve Problem 1.

Proof To prove the theorem, we estimate the variation in the functional

Λ(t, xhΔ,w(·), w(·)) = Λ0(t, xhΔ,w(·), w(·))

+ 0.5

t∫
0

{ ∫
Ω

|∇πh(ρ, η)|2 dη + l2
∫
Ω

|∇μh(ρ, η)|2 dη
}
dρ,

where Λ0(t, xhΔ,w(·), w(·)) = 0.5|gh(t)|2H + 0.5l2|μh(t)|2H , πh(t) = w(1)(t) −
ψh

Δ,w(t), μh(t) = w(2)(t) − ϕh
Δ,w(t), gh(t) = πh(t) + lμh(t). It is easily seen that

the functions πh(·) and μh(·) are solutions of the system

∂πh(t, η)

∂t
+ l

∂μh(t, η)

∂t
= ΔLπh(t, η) + u∗(t, η) − (Buh)(t, η) + (Cv)(t, η)

in Ω × ]t0, ϑ], ∂μh(t, η)

∂t
= ΔLμh(t, η) + Rh(t, η)μh(t, η) + πh(t, η)

(10)
with the initial condition πh(t0) = μh(t0) = 0 in Ω and with the boundary condition
∂πh

∂n
= ∂μh

∂n
= 0 on ∂Ω × ]t0, ϑ]. Here, Rh(t, η) = a(t, η) + b(t, η)(w(1)(t, η) +

ϕh
Δ,w(t, η))−((w(1)(t, η))2+w(1)(t, η)ϕh

Δ,w(t, η)+(ϕh
Δ,w)2(t, η)).Multiplying sca-

larly the first equation of (10) by gh(t), and the second one by μh(t), we obtain

(gh(t), ght (t))H +
∫
Ω

{|∇πh(t, η)|2 + l∇πh(t, η)∇μh(t, η)} dη

= (gh(t), u∗(t) − Buh(t)+Cv(t))H , (11)

(μh(t), μh
t (t))H +

∫
Ω

|∇μh(t, η)|2 dη≤(πh(t), μh(t))H +b|μh(t)|2H for a.a. t ∈ T .

Here,we use the inequality vrai max
(t,η)∈T×Ω

{a(t, η)+b(t, η)(v1+v2)−(v21+v1v2+v22)} ≤ b,

which is valid for any v1, v2 ∈ R. It is evident that the inequality

∫
Ω

l(∇πh(t, η),∇μh(t, η)) dη ≥ −0.5
∫
Ω

{|∇πh(t, η)|2 + l2|∇μh(t, η)|2} dη, (12)
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for a.a. t ∈ T , is fulfilled. Let us multiply the first inequality of (11) by l2 and add to
the second one. Taking into account (12), we have for a.a. t ∈ T

(gh(t), ght (t))H + l2(μh(t), μh
t (t))H + 0.5

∫
Ω

{|∇πh(t, η)|2 + l2|∇μh(t, η)|2} dη

≤ (gh(t), u∗(t) − Buh(t) + Cv(t))H + l2(πh(t), μh(t))H + bl2|μh(t)|2H . (13)

Note that πh(t) = gh(t) − lμh(t). In this case, for a.a. t ∈ T

(πh(t), μh(t))H + b|μh(t)|2H = (gh(t) − lμh(t), μh(t))H + b|μh(t)|2H
= (gh(t), μh(t))H + (b − l)|μh(t)|2H
≤ 0.5(|gh(t)|2H + (0.5 + |b − l|)|μh(t)|2H . (14)

Combining (13) and (14), we obtain for a.a. t ∈ T

d

dt
Λ0(t, xhΔ,w(·), w(·)) + 0.5

∫
Ω

{|∇πh(t, η)|2 + l2|∇μh(t, η)|2} dη

≤ 2l2λ2Λ0(t, xhΔ,w(·), w(·)) + (gh(t), u∗(t) − Buh(t) + Cv(t))H . (15)

Estimate the last term in the right-hand side of inequality (15). For t ∈ [τi , τi+1[,

|gh(t) − yhi |H = |πh(t) + lμh(t) − yhi |H ≤ λ1,i (t) + λ2,i (t), (16)

where yhi = w(1)(τi )−phi −l(w(2)(τi )−ξ hi ), λ1,i (t) = |w(1)(t)−ψh
Δ,w(t)−w(1)(τi )+

phi |H , λ2,i (t) = l|w(2)(t) − ϕh
Δ,w(t) − w(2)(τi ) + ξ hi |H . By virtue of (3), we have

λ1,i (t) ≤ |phi − ψh
Δ,w(t)|H +

t∫
τi

|ẇ(1)(τ )|H dτ ,

λ2,i (t) ≤ lh + l

t∫
τi

{|ϕ̇h
Δ,w(τ)|H + |ẇ(2)(τ )|H } dτ, t ∈ δi = [τi , τi+1[.

(17)

From (16) and (17), for t ∈ δi , it follows that

|gh(t)−yhi |H ≤ lh+
t∫

τi

{l|ϕ̇h
Δ,w(τ)|H+|ẇ(1)(τ )|H+|ẇ(2)(τ )|H } dτ+|phi −ψh

Δ,w(t)|H .

(18)
It follows from [16] that |ph(·) − ψ(·)|2L2(T ;H)

≤ Kμ(h), K = const > 0, μ(h) =
(h + δ(h) + α(h))1/2 + (h + δ(h)))α−1(h)), i.e., the strategy V1 of form (7) is a
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reconstruction strategy. By virtue of (3), taking into account the latter inequality, from
estimate (18), we derive

m−1∑
i=0

τi+1∫
τi

M(t; τi ) dt≤k1(h+δ)+k2

ϑ∫
t0

|ph(τ )−ψh
Δ,w(τ)|H dτ ≤ k3μ

1/2(h), (19)

where M(t; τi ) = |gh(t)− yhi |H {|Buhi |H +|Cv(t)|H +|u∗(t)|H } for a.a. t ∈ δi . Then,
it follows from (15) that for a.a. t ∈ δi ,

(gh(t), ght (t))H + l2(μh(t), μh
t (t))H + 0.5

∫
Ω

{|∇πh(t, η)|2 + l2|∇μh(t, η)|2} dη

≤ 2l2λ2Λ0(t, xhΔ,w(·), w(·)) + (yhi , u∗(t) − Buhi + Cv(t))H + M(t; τi ). (20)

Here (see (9)), uhi ∈ U (τi , ξ
h
i , phi , w

(1)(τi ), w
(2)(τi )); ξ hi is an inaccurate measure-

ment of the phase state ϕh
Δ,w(τi ); vτi ,τi+1(·) is an unknown realization of the control

of the opponent; the strategy U is determined from formula (6). By virtue of Condi-
tion 3.1, there exists a control u(1)

τi ,τi+1(·) ∈ Pτi ,τi+1(·) such that

Bu(1)(t) = Cv(t) + u∗(t) for a. a. t ∈ [τi , τi+1]. (21)

From (21), we have that for a. a. t ∈ [τi , τi+1]

(yhi ,Cv(t) + u∗(t) − Buhi )H = (B(u(1)(t) − uhi ), y
h
i )H ≤ 0. (22)

We deduce from (20) and (22) that

dΛ(t, xhΔ,w(·), w(·))
dt

= (gh(t), ght (t))H + l2(μh(t), μh
t (t))H + 0.5

∫
Ω

{|∇πh(t, η)|2

+ l2|∇μh(t, η)|2}dη ≤ l2λ2Λ0(t, xhΔ,w(·), w(·))
+ M(t; τi ) for a.a. t ∈ δi . (23)

Using (23) and (19), by virtue of the Gronwall Lemma, we obtain

Λ0(t, xhΔ,w(·), w(·)) ≤ k4

m−1∑
i=0

τi+1∫
τi

M(t; τi ) dt ≤ k5μ
1/2(h), ∀t ∈ T .

Hence and from (23), we derive Λ(t, xhΔ,w(·), w(·)) ≤ k6μ1/2(h),∀t ∈ T . The state-
ment of the theorem follows from the last inequality. The theorem is proved. �


123



J Optim Theory Appl (2016) 170:294–307 303

4 Algorithm for Solving Problem 2

We design an algorithm for solving Problem 2. Assume that, as everywhere above,
Condition 3.1 is fulfilled. As the model M3, we take the system

∂

∂t
z(1) + l

∂

∂t
z(2) = ΔL z

(1) + v∗ in Ω × ]t0, ϑ],
∂

∂t
z(2) = ΔL z

(2) + g(z(2)) + z(1)
(24)

with the boundary condition ∂
∂n z

(1) = ∂
∂n z

(2) = 0 on ∂Ω × ]t0, ϑ] and the initial
condition z(1)(t0) = ψ0, z(2)(t0) = ϕ0 in Ω . Its solution is denoted by the symbol
z(·) = {z(1)(·), z(2)(·)} = z(·; t0, z0, v∗(·)), where z0 = {ψ0, ϕ0}. The model M2 is
described by relations (5). The strategies V ,V1, and V2 are defined as follows:

V (t, ξ, p, z) := argmax{L1(v, χ): v ∈ E}, (25)

V1(t, ξ, w1) := argmin{l(t, α, u, s): u ∈ Ud}, (26)

V2(t, ξ, p, z) := Bũ − C ṽ, (27)

where ũ ∈ argmin{L(u, χ) : u ∈ P}, L1(v, χ) = (χ,Cv)H , χ = z(1) − p+ l(z(2) −
ξ), z = {z(1), z(2)}, L(u, χ) = (χ, Bu)H , ṽ = ṽ(ũ) is an arbitrary element from the
set E such that Bũ − C ṽ ∈ D.

Let us pass to the description of the algorithm for solving Problem 2. Before the
algorithm starts, we fix a value h ∈ ]0, 1[, a function α = α(h): ]0, 1[ → R

+ with
properties (8), and a partition Δh = {τh,i }mh

i=0 with the diameter δ(h). The work of the
algorithm is decomposed into m − 1,m = mh , identical steps. We assume that

vh(t) = vh0 ∈ V (t0, ξ h0 , ph0 , z(t0)), |ξ h0 − ϕ0|H ≤ h,

ph(t) = ph0 ∈ V1(t0, ξ h0 , w1(t0)), v∗(t) = v∗
0 ∈ V2(t0, ξ h0 , ph0 , z(t0))

(28)

on the interval [t0, τ1[. Under the action of these piecewise constant controls, as well
as of an unknown control ut0,τ1(·), the (h,Δ,V ,V1,V2)-motion {xhΔ,z(·)}t0,τ1 =
{xhΔ,z(·; t0, x0, ut0,τ1(·), vht0,τ1(·))}t0,τ1 of the system S, the trajectory {w1(·)}t0,τ1 =
{w1(·; t0, w1(t0), pht0,τ2(·))}t0,τ1 of the model M2, and the trajectory {z(·)}t0,τ1 =
{z(·; t0, z0, v∗

t0,τ1(·))}t0,τ1 of the model M3 are realized. At the moment t = τ1, we
determine vh1 , ph1 , and v∗

1 from the condition

vh1 ∈ V (τ1, ξ
h
1 , ph1 , z(τ1)), ph1 ∈ V1(τ1, ξ

h
1 , w1(τ1)), v∗

1 ∈ V2(τ1, ξ
h
1 , ph1 , z(τ1)),

(29)
|ξ h1 − ϕh

Δ,z(τ1)|H ≤ h, where v∗
1 = Bũh1 − C ṽh1 , ũh1 = argmin{L(u, χh

1 ): u ∈
P}, χh

1 = z(1)(τ1) − ph1 + l(z(2)(τ1) − ξ h1 ), ṽh1 = ṽh1 (ũh1) is an arbitrary element
from the set E such that Bũh1 − C ṽh1 ∈ D. We assume that

vh(t) = vh1 , ph(t) = ph1 , v∗(t) = v∗
1 for t ∈ [τ1, τ2[.
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Then, we calculate the realization of the (h,Δ,V ,V1,V2)-motion {xhΔ,z(·)}τ1,τ2
={xhΔ,z(·; τ1, xhΔ,z(τ1), uτ1,τ2(·), vhτ1,τ2(·))}τ1,τ2 , the trajectory {w1(·)}τ1,τ2 ={w1(·; τ1,

w1(τ1), phτ1,τ2(·)))}τ1,τ2 of the model M2, and the trajectory zτ1,τ2(·) = {z(·; τ1, z(τ1),
v∗
τ1,τ2

(·)}τ1,τ2 of the model M3. Let the (h,Δ,V ,V1,V2)-motion xhΔ,z(·), the trajec-
tory w1(·) of the model M2, and the trajectory z(·) of the model M3 be defined on the
interval [t0, τi ]. At the moment t = τi , we assume that

vhi ∈ V (τi , ξ
h
i , phi , z(τi )), phi ∈ V1(τi , ξ

h
i , w1(τi )), v∗

i ∈ V2(τi , ξ
h
i , phi , z(τi )),

(30)
|ξ hi −ϕh

Δ,z(τi )|H ≤ h, wherev∗
i = Bũhi −C ṽhi , ũhi = argmin{L(u, χh

i ):u ∈ P}, χh
i =

z(1)(τi ) − phi + l(z(2)(τi ) − ξ hi ), ṽhi = ṽhi (ũhi ) is an arbitrary element from the set E
such that Bũhi − C ṽhi ∈ D. We assume that

vh(t) = vhi , ph(t) = phi , v∗(t) = v∗
i for t ∈ [τi , τi+1[.

The trajectory {w1(·)}τi ,τi+1 = {w1(·; τi , w1(τi ), phτi ,τi+1
(·))}τi ,τi+1 of the model M2,

the trajectory {z(·)}τi ,τi+1 = {z(·; τi , z(τi ), v∗
τi ,τi+1

(·))}τi ,τi+1 of the model M3, and the
(h,Δ,V ,V1,V2)-motion

{xhΔ,z(·)}τi ,τi+1 = {xhΔ,z(·; τi , x
h
Δ,z(τi ), uτi ,τi+1(·), vhτi ,τi+1

(·))}τi ,τi+1

are realized on the interval [τi , τi+1] as the result of the action of these controls and an
unknown control uτi ,τi+1(·). The above procedure of forming the (h,Δ,V ,V1,V2)-
motion and the trajectories of the models M2 and M3 stops at the moment ϑ .

Theorem 4.1 Let c1 = Copt and let the models M3 and M2 be specified by relations
(24) and (5). Then, the strategies V ,V1, and V2 of form (25)–(27) solve Problem 2.

Proof Note that I (w(·)) ≥ c1,∀w(·) ∈ WT (·). Here and below, the symbol WT (·) =
WT (·; t0, x0) stands for the bundle of solutions of system (4), i.e., WT (·; t0, x0) =
{w(·; t0, x0, u(·)), u(·) ∈ DT (·)}, whereas the symbol WT (t) denotes the section of
this bundle at the moment t . Therefore, by virtue of the Lipschitz property of the
function f , for any ε > 0, it is sufficient to find h1 > 0 and δ1 > 0 such that the
inequality

λ(ϑ, xhΔ,z(·),WT (·)) = inf{Λ(ϑ, xhΔ,z(·), z(·)) : z(·) ∈ WT (·)} ≤ ε

is fulfilled for h ∈ ]0, h1[ and δ ∈ ]0, δ1[. Here,

Λ(t, xhΔ,z(·), z(·)) = Λ0(t, xhΔ,z(·), z(·)) + 0.5

t∫
0

{ ∫
Ω

|∇π̃h(ρ, η)|2 dη

+ l2
∫
Ω

|∇μ̃h(ρ, η)|2 dη
}
dρ, Λ0(t, xhΔ,z(·), z(·))=0.5|g̃h(t)|2H +0.5l2|μ̃h(t)|2H ,

π̃h(t)= z(1)(t)−ψh
Δ,z(t), μ̃h(t) = z(2)(t) − ϕh

Δ,z(t), g̃h(t) = π̃h(t) + lμ̃h(t).

It is easily seen that the inequality
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λ(τi+1, x
h
Δ,z(·),WT (·)) ≤ Λ(τi+1, x

h
Δ,z(·), z(·))

is valid, since z(τi+1; τi , z(τi ), v∗
τi ,τi+1

(·)) ∈ WT (τi+1) by the choice of the control
v∗(t), t ∈ [τi , τi+1[. Thus, to prove the theorem, it is sufficient to estimate the variation
in the value Λ(t, xhΔ,z(·), z(·)). Note that the functions π̃h(·) and μ̃h(·) are solutions
of the system

∂π̃h(t, η)

∂t
+ l

∂μ̃h(t, η)

∂t
= ΔL π̃h(t, η) + v∗(t, η) − (Bu)(t, η) + (Cvh)(t, η)

in Ω × ]t0, ϑ], ∂μ̃h(t, η)

∂t
= ΔL μ̃h(t, η) + R̃h(t, η)μ̃h(t, η) + π̃h(t, η)

(31)
with the initial condition π̃h(t0) = μ̃h(t0) = 0 in Ω and the boundary condition
∂π̃h

∂n = ∂μ̃h

∂n = 0 on ∂Ω × ]t0, ϑ]. Here, R̃h(t, η) = a(t, η) + b(t, η)(z(1)(t, η) +
ϕh

Δ,z(t, η))−((z(1)(t, η))2+z(1)(t, η)ϕh
Δ,z(t, η)+(ϕh

Δ,z)
2(t, η)).Multiplying scalarly

the first equation of (31) by g̃h(t), and the second one by μ̃h(t), we have

(g̃h(t), g̃ht (t))H +
∫
Ω

{|∇π̃h(t, η)|2 + l∇π̃h(t, η)∇μ̃h(t, η)} dη

= (g̃h(t), v∗(t) − Bu(t) + Cvh(t))H , (32)

(μ̃h(t), μ̃h
t (t))H +

∫
Ω

|∇μ̃h(t, η)|2 dη≤(π̃h(t), μ̃h(t))H +b|μ̃h(t)|2H for a.a. t ∈ T .

Now, multiply the second inequality of (32) by l2 and add to the first one. We obtain
for a.a. t ∈ T

(g̃h(t), g̃ht (t))H + l2(μ̃h(t), μ̃h
t (t))H + 0.5

∫
Ω

{|∇π̃h(t, η)|2 + l2|∇μ̃h(t, η)|2} dη

≤ (g̃h(t), v∗(t) − Bu(t) + Cvh(t))H + l2(π̃h(t), μ̃h(t))H + bl2|μ̃h(t)|2H . (33)

Then, we have (see (19))

m−1∑
i=0

τi+1∫
τi

M∗(t; τi ) dt ≤ c1μ
1/2(h), (34)

where

M∗(t; τi ) = |g̃h(t) − χh
i |H {|Bu(t)|H + |Cvhi |H + |v∗(t)|H } for a.a. t ∈ δi .

By analogy with (20), from (33), we deduce that for a.a. t ∈ δi ,

(g̃h(t), g̃ht (t))H + l2(μ̃h(t), μ̃h
t (t))H + 0.5

∫
Ω

{|∇π̃h(t, η)|2 + l2|∇μ̃h(t, η)|2} dη

≤ 2l2λ2Λ0(t, xhΔ,z(·), z(·)) + (χh
i , v∗(t) − Bu(t) + Cvhi )H + M∗(t; τi ). (35)
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For t ∈ [τi , τi+1[, by virtue of (28)–(30), we get

(χh
i , v∗(t) − Bu(t) + Cvhi )H = (χh

i , B(ũhi − u(t)))H + (χh
i ,C(ṽhi − vhi ))H .

Taking into account the rules for forming the controls ũhi and vhi , we conclude that

(χh
i , v∗(t) − Bu(t) + Cvhi )H ≤ 0 for t ∈ [τi , τi+1[. (36)

We deduce from (35) and (36) that

dΛ(t, xhΔ,z(·), z(·))
dt

= (g̃h(t), g̃ht (t))H + l2(μ̃h(t), μ̃h
t (t))H + 0.5

∫
Ω

{|∇π̃h(t, η)|2

+ l2|∇μ̃h(t, η)|2} dη ≤ l2λ2Λ0(t, xhΔ,z(·), z(·)) + M∗(t; τi ) for a.a. t ∈ δi .

(37)

Thus,

dΛ0(t, xhΔ,z(·), z(·))
dt

≤ 2l2λ2Λ0(t, xhΔ,z(·), z(·)) + M∗(t; τi ) for a.a. t ∈ δi .

Using (34), by virtue of the Gronwall Lemma, we derive

Λ0(t, xhΔ,z(·), z(·)) ≤ c2

m−1∑
i=0

τi+1∫
τi

M∗(t; τi ) dt ≤ c3μ
1/2(h), ∀t ∈ T .

Hence and from (37), we get Λ(t, xhΔ,z(·), z(·)) ≤ c4μ1/2(h),∀t ∈ T . The theorem is
proved. �


Remark 2.1 and Theorems 3.1 and 4.1 imply the main result of the paper.

Theorem 4.2 The strategyU , definedby (6), is an ε-optimalminimax strategy, and the
strategy V , defined by (25), is an ε-optimal maximin strategy. Thus, the pair (U ,V )

constitutes an ε-saddle point in the game, and c1 = Copt = inf{I (w(·; t0, x0, u(·))) :
u(·) ∈ DT (·)} (see Problem 3) is the value of the game.

5 Conclusions

In this paper, we studied the game control problem for the nonlinear distributed sys-
tem described by the phase field equations. The work was aimed at building stable
algorithms solving the problem. The suggested algorithms are based on constructions
from the dynamical reconstruction theory and on the method of extremal shift, which
is known in the theory of positional differential games.
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