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Abstract In this paper, we mainly study one convex mixed-integer nonlinear pro-
gramming problemwith partial differentiability and establish one outer approximation
algorithm for solving this problem. With the help of subgradients, we use the outer
approximation method to reformulate this convex problem as one equivalent mixed-
integer linear program and construct an algorithm for finding optimal solutions. The
result on finite steps convergence of the algorithm is also presented.
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1 Introduction

Many optimization problems involve both discrete and continuous variables and can
be modelled as mixed-integer nonlinear programming problems (MINLPs) that arise
from practical applications. Problems defined by convex functions are known as con-
vex MINLPs, but they are still non-convex problems due to the presence of discrete
variables. Over the past decades, convexMINLPs have become an active research area
and several methods have been developed. Readers are invited to consult references
[1–6] for more details.
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Convex MINLP with continuously differentiable functions has been extensively
studied, while convex but not continuously differentiable functions appear in opti-
mization problems. Therefore, it is natural to study convex MINLP by relaxing the
differentiability assumption. Motivated by this, we consider convex MINLP with par-
tial differentiability, one version of relaxed differentiability, and use outer approxima-
tion method to establish an appropriate algorithm for solving it.

Duran and Grossmann [1] introduced outer approximation (OA) method to deal
with a class of MINLPs, whose functions are dependent linearly on discrete variables.
An extension of this OA method was given by Fletcher and Leyffer [2]. They gen-
eralized OA method to deal with one wider class of MINLPs defined by convex and
continuously differentiable functions. This OA method was mainly studied in [7,8]
to equivalently reformulate convex MINLP as one MILP master program. Along the
line given in [1,2,7,8], we study the OA method for solving convex MINLP with par-
tial differentiability and use subgradients and KKT conditions to establish one outer
approximation algorithm for finding optimal solutions.

2 Preliminaries

Let 〈·, ·〉 denote the duality pairing between two elements of Rn . Let � be a closed
and convex set of Rn and x ∈ �. We denote by T (�, x) the contingent cone of � at
x ; that is, v ∈ T (�, x) if and only if there exist a sequence {vk} in R

n converging to
v and a sequence tk in ]0,+∞[ decreasing to 0 such that x + tkvk ∈ � for all k ∈ N.
Let N (�, x) denote the normal cone of � at x , that is

N (�, x) := {γ ∈ R
n : 〈γ, z − x〉 ≤ 0 for all z ∈ �}.

It is known that normal cone and contingent cone are the polar of each other.
Letψ : Rn ×R

p → R be a continuous and convex function and (x̄, ȳ) ∈ R
n ×R

p.
Recall that a vector (C, D) ∈ R

n×p is said to be a subgradient of ψ at (x̄, ȳ) iff

ψ(x, y) ≥ ψ(x̄, ȳ) + (C, D)T
(
x − x̄
y − ȳ

)
for all (x, y) ∈ R

n × R
p.

where (C, D)T is the transpose of matrix (C, D). The set of all such subgradients,
denoted by ∂ψ(x̄, ȳ), is said to be the subdifferential of ψ at (x̄, ȳ). When ȳ is fixed,
the subdifferential of ψ(·, ȳ) at x̄ is defined by

∂ψ(·, ȳ)(x̄) := {
C ∈ R

n : ψ(x, ȳ) ≥ ψ(x̄, ȳ) + 〈C, x − x̄〉 for all x ∈ R
n}.

It is easy to verify that, for any (C, D) ∈ ∂ψ(x̄, ȳ), one has C ∈ ∂ψ(·, ȳ)(x̄) and
D ∈ ∂ψ(x̄, ·)(ȳ).
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3 Main Results

In this section, wemainly study convexMINLPwith partial differentiability and refor-
mulate this MINLP as one equivalent MILP master program. Then by solving a finite
sequence of relaxed MILP master programs, we establish one outer approximation
algorithm for this MINLP.

Let us make some assumptions:

(A1) X is a nonempty, compact and convex set in R
n and Y is a discrete set of Rp,

and functions f, gi : Rn ×R
p → R (i = 1, . . . ,m) are convex and continuous.

(A2) Moreover f (·, y) and g(·, y) are differentiable functions on R
n for any fixed

y ∈ Y .

The class of convex MINLPs considered in the whole paper is defined as follows:

min
x, y

f (x, y), s.t. g(x, y) ≤ 0, x ∈ X, y ∈ Y. (1)

Let us set:

V := {
y ∈ Y : g(x, y) ≤ 0 for some x ∈ X

}

is the set of all discrete assignments that give rise to feasible subproblems. For any
fixed y ∈ Y , we consider the following subproblem P(y):

P(y) min
x

f (x, y) s.t. g(x, y) ≤ 0, x ∈ X.

For the equivalent reformulation of problem (P), we assume that problem (P) satisfies
the following Slater constraint qualification (A3):

(A3) for any y ∈ Y producing feasible subproblem P(y), the following Slater con-
straint qualification holds:

g(x̂, y) < 0 for some x̂ ∈ X.

For the convex MINLP, whose functions are continuously differentiable, Fletcher
and Leyffer [2] and Bonami et al. [7] used gradients and first-order Taylor expansion
to linearly approximate functions f, g and established one equivalent MILP master
program with the help of KKT conditions. Under the partial differentiability assump-
tion, we substitute gradients with subgradients and equivalently reformulate problem
(P) of (1) along the line given in [2,7].

Let y j ∈ V be fixed and let x j be an optimal solution to P(y j ). Take any subgra-
dients (A j , Bj ) ∈ ∂ f (x j , y j ), (Ci

j , D
i
j ) ∈ ∂gi (x j , y j ) for all i = 1, · · · ,m and set

C j := (C1
j , . . . ,C

m
j ), Dj := (D1

j , . . . , D
m
j ). We first study the following problem:

LP(x j , y j )

⎧⎪⎨
⎪⎩
min
x

f (x j , y j ) + 〈(A j , Bj ), (x − x j , 0)T 〉
s.t. g(x j , y j ) + 〈(C j , Dj ), (x − x j , 0)T 〉 ≤ 0,

x ∈ X.

(2)
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The following theorem establishes the equivalence between LP(x j , y j ) and P(y j ).
This equivalence plays a key role in the reformulation of problem (P).

Theorem 3.1 Let L P(x j , y j ) be defined as (2). Then x j is one optimal solution of
L P(x j , y j ), and f (x j , y j ) is the optimal value of L P(x j , y j ).

Proof In order to prove Theorem 3.1, it suffices to show that

(A j , Bj )
T

(
x − x j

0

)
≥ 0, ∀x ∈ X with g(x j , y j )+(C j , Dj )

T
(
x − x j

0

)
≤ 0. (3)

Let x ∈ X be such that

g(x j , y j ) + (C j , Dj )
T

(
x − x j

0

)
≤ 0. (4)

Using assumption (A2), one has that A j = �x f (x j , y j ) and Ci
j = �x gi (x j , y j ) for

all i = 1, . . . ,m. This and (4) imply that

(A j , Bj )
T

(
x − x j

0

)
= 〈�x f (x j , y j ), x − x j 〉

and
gi (x j , y j ) + 〈�x gi (x j , y j ), x − x j 〉 ≤ 0, ∀i = 1, . . . ,m. (5)

Noting that x j solves P(y j ) and the Slater constraint qualification for g(·, y j ) holds, it
follows from KKT conditions that there exist (λ1, . . . , λm) ∈ R

m+ and γ ∈ N (X, x j )
such that λi gi (x j , y j ) = 0 (∀i = 1, . . . ,m) and

�x f (x j , y j ) +
∑

i∈I (x j )
λi�x gi (x j , y j ) + γ = 0 (6)

where I (x j ) := {
i ∈ {1, . . . ,m} : gi (x j , y j ) = 0

}
. Using (4) and (5), one has

〈�x gi (x j , y j ), x − x j 〉 ≤ 0, ∀i ∈ I (x j ). (7)

Since x − x j ∈ T (X, x j ) by the convexity of X , it follows from (6), (7) and γ ∈
N (X, x j ) that

�x f (x j , y j )
T (x − x j ) = −

∑
i∈I (x j )

λi�x gi (x j , y j )
T (x − x j ) − γ T (x − x j ) ≥ 0.

Hence (3) holds. The proof is complete. 
�
Let us set

T := {
j : P(y j ) is feasible and x j is an optimal solution to P(y j )

}
.
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For any j ∈ T , take any subgradients (A j , Bj ) ∈ ∂ f (x j , y j ), (Ci
j , D

i
j ) ∈ ∂gi (x j , y j )

for all i = 1, . . . ,m and setC j := (C1
j , . . . ,C

m
j ), Dj := (D1

j , . . . , D
m
j ). We consider

the following MILP master program (MV ):

(MV )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
x,y,η

η

s.t. f (x j , y j ) + (A j , Bj )
T

(
x − x j
y − y j

)
≤ η ∀ j ∈ T,

g(x j , y j ) + (C j , Dj )
T

(
x − x j
y − y j

)
≤ 0 ∀ j ∈ T,

x ∈ X, y ∈ V discrete variable.

(8)

Theorem 3.2 Master program (MV ) in (8) and problem (1) are equivalent in the
sense that they have the same optimal value and that the optimal solution (x̄, ȳ) to
problem (1) corresponds to the optimal solution (x̄, ȳ, η̄) to (MV ) with η̄ = f (x̄, ȳ).

For reformulating the problem (1) completely, it only suffices to represent suitably
the constraint y ∈ V . As pointed out by Fletcher and Leyffer [2] and Bonami et al. [7],
it is necessary to include information from infeasible subproblems and then exclude
discrete assignments producing infeasible subproblems.

Let yl ∈ Y be such that P(yl) is infeasible and let Jl be one subset of {1, . . . ,m}
such that there is some x̄ ∈ X satisfying

gi (x̄, yl) < 0, ∀i ∈ Jl . (9)

Denote J⊥
l := {1, . . . ,m}\Jl . To detect the infeasibility, we study the following

nonlinear program

F(yl)

⎧⎪⎪⎨
⎪⎪⎩

min
x

∑
i∈J⊥

l

[gi (x, yl)]+
s.t. gi (x, yl) ≤ 0 ∀i ∈ Jl ,

x ∈ X,

(10)

where [g(x, yl)]+ := max{g(x, yl), 0}.
Theorem 3.3 Let yl ∈ Y be such that P(yl) is infeasible and xl solve nonlinear
program F(yl). Then for any subgradients (Ci

l , D
i
l ) ∈ ∂gi (xl , yl)(∀i = 1, . . . ,m), yl

is infeasible to the following constraint

gi (xl , yl) + (Ci
l , D

i
l )

T
(
x − xl
y − yl

)
≤ 0, ∀i ∈ J⊥

l ∪ Jl ,

x ∈ X, y ∈ Y.

Proof Since X is compact and g is continuous, one has
∑

i∈J⊥
l

[gi (xl , yl)]+ > 0.

Noting that (Ci
l , D

i
l ) ∈ ∂gi (xl , yl)(∀i = 1, . . . ,m), it follows that

Ci
l = �x gi (xl , yl), ∀i ∈ {1, . . . ,m}. (11)
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Suppose to the contrary that there exists x̂ ∈ X such that

gi (xl , yl) + 〈�x gi (xl , yl), x̂ − xl〉 ≤ 0, ∀i ∈ J⊥
l ∪ Jl . (12)

Since xl solves F(yl) and (9) holds, by KKT conditions, there exist λi ≥ 0 such that
λi gi (xl , yl) = 0 (∀i ∈ Jl) and

0 ∈
∑
i∈J⊥

l

∂[gi (·, yl)] + (xl) +
∑
i∈Jl

λi�x gi (xl , yl) + N (X, xl). (13)

Denote J 1 := {i ∈ J⊥
l : gi (xl , yl) = 0} and J 2 := {i ∈ J⊥

l : gi (xl , yl) > 0}. By
virtue of [9, Theorem2.4.18] and (13), there exist ti ∈ [0, 1](i ∈ J 1) andγ ∈ N (X, xl)
such that

∑
i∈J 1

ti�x gi (xl , yl) +
∑
i∈J 2

�x gi (xl , yl) +
∑
i∈Jl

λi�x gi (xl , yl) + γ = 0. (14)

Let ti ≡ 1 for all i ∈ J 2. Using (12) and (14), one has

0 ≥
∑

i∈J 1∪J 2

ti gi (xl , yl) +
( ∑
i∈J 1∪J 2

ti�x gi (xl , yl) +
∑
i∈Jl

λi�x gi (xl , yl) + γ
)T

(x̂ − xl)

≥
∑
i∈J 2

gi (xl , yl) =
∑
i∈J⊥

l

[gi (xl , yl)]+,

which contradicts
∑

i∈J⊥
l

[gi (xl , yl)]+ > 0. The proof is complete. 
�

Let us set

S := {
l : P(yl) is infeasible and xl solves F(yl)

}
.

Using Theorem 3.3, we obtain the following theorem which enables us to eliminate
discrete assignments producing infeasible subproblems.

Theorem 3.4 Let l ∈ S and take any subgradients (Ci
l , D

i
l ) ∈ ∂gi (xl , yl) for all

i = 1, . . . ,m. Then the following constraints

g(xl , yl) + (Cl , Dl)
T

(
x − xl
y − yl

)
≤ 0, ∀l ∈ S (15)

exclude all discrete assignments yl ∈ Y satisfying P(yl) is infeasible.

From Theorem 3.4, we add linearization from F(yl) where P(yl) is infeasible to
correctly represent the constraints y ∈ V in (8) and give rise to the MILP master
program (MP) that is equivalent to problem (1).
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For any j ∈ T , take any subgradients (A j , Bj ) ∈ ∂ f (x j , y j ), (Ci
j , D

i
j ) ∈

∂gi (x j , y j ) for all i = 1, . . . ,m and set C j := (C1
j , . . . ,C

m
j ), Dj := (D1

j , . . . , D
m
j ),

while for any l ∈ S, take any subgradients (Ci
l , D

i
l ) ∈ ∂gi (xl , yl) for all i = 1, . . . ,m

and set Cl := (C1
l , . . . ,C

m
l ), Dl := (D1

l , . . . , D
m
l ). We consider the following MILP

master problem:

(MP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,y,η

η

s.t. f (x j , y j ) + (A j , Bj )
T

(
x − x j
y − y j

)
≤ η ∀ j ∈ T,

g(x j , y j ) + (C j , Dj )
T

(
x − x j
y − y j

)
≤ 0 ∀ j ∈ T,

g(xl , yl) + (Cl , Dl)
T

(
x − xl
y − yl

)
≤ 0 ∀l ∈ S,

x ∈ X, y ∈ Y discrete variable.

(16)

Theorem 3.5 Master program (MP) in (16) is equivalent to problem (1) in the sense
that they have the same optimal value and that the optimal solution (x̄, ȳ) to problem
(1) corresponds to the optimal solution (x̄, ȳ, η̄) to (MP) with η̄ = f (x̄, ȳ).

Remark 3.1 As one extension of [2, Theorem1] and [7, Theorem1], Theorem 3.5
shows that the OA method can be used to equivalently reformulate problem (1) and
any optimal solution of problem (1) is that of (MP) in (16). However, the converse
may not hold necessarily. Consider the following MINLP:

min
x,y

f (x, y) := x2,

s.t. g(x, y) := x21 + x22 + |y| − 2 ≤ 0
x = (x1, x2) ∈ [−1, 1] × [−2, 2],
y ∈ {−1, 0, 1, 3}.

(17)

This convexMINLP satisfies assumptions (A1)–(A3) and has the optimal value−√
2.

Note that

∂g
((

0,−√
2
)

, 0
)

=
{(

0,−2
√
2
)}

× [−1, 1].

By taking any t ∈ [−1, 1] and using the reformulation as (16), problem (17) can be
equivalently rewritten as

min
x,y,η

η

s.t x2 ≤ η,

−2
√
2x2 − 4 + t y ≤ 0,

−2x2 + y − 3 ≤ 0,
−2x2 − y − 3 ≤ 0,
1 + y − 3 ≤ 0,
x = (x1, x2) ∈ [−1, 1] × [−2, 2],
y ∈ {−1, 0, 1, 3}.

(18)
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Clearly for any x1 �= 0, (x, y, η) =
((

x1,−
√
2
)

, 0,−√
2
)
is an optimal solution to

problem (18), but (x, y) =
((

x1,−
√
2
)

, 0
)
is infeasible to problem (17).

Now, by solving relaxations of master program (MP) in (16), we formally state the
outer approximation algorithm for problem (1) as follow:

Algorithm 1 (Outer approximation algorithm for problem (1))

Step 1. Given an initial discrete variable y1 ∈ Y , set UBD0 := +∞, T0 = S0 := ∅
and let k := 1.

Step 2. Solve subproblem P(yk) and let the solution be xk ; or solve nonlinear program
F(yk) if P(yk) is infeasible and let the solution be xk . If P(yk) is feasible,
set Tk := Tk−1 ∪ {k}, Sk := Sk−1 and UBDk := min{ f (xk, yk),UBDk−1};
otherwise set Tk := Tk−1, Sk := Sk−1 ∪ {k} and UBDk := UBDk−1.

Step 3. If k ∈ Tk , take any subgradients (Ak, Bk) ∈ ∂ f (xk, yk), (Ci
k, D

i
k) ∈ ∂gi

(x j , y j )(∀i = 1, . . . ,m) and setCk :=(C1
k , . . . ,C

m
k ), Dk := (D1

k , . . . , D
m
k );

otherwise (k ∈ Sk), take any subgradients (Ci
k, D

i
k) ∈ ∂gi (x j , y j )(∀i =

1, . . . ,m) and set Ck := (C1
k , . . . ,C

m
k ), Dk := (D1

k , . . . , D
m
k ). Solve the

following relaxed MILP master program MPk :

MPk

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,y,η

η

s.t. η < UBDk

f (x j , y j ) + (A j , Bj )
T

(
x − x j
y − y j

)
≤ η ∀ j ∈ Tk,

g(x j , y j ) + (C j , Dj )
T

(
x − x j
y − y j

)
≤ 0 ∀ j ∈ Tk,

g(xl , yl) + (Cl , Dl)
T

(
x − xl
y − yl

)
≤ 0 ∀l ∈ Sk,

x ∈ X, y ∈ Y discrete variable.

(19)

Denote (x̂, ŷ, η̂) the optimal solution to MPk . Let yk+1 := ŷ, obtaining a new discrete
assignment, and set k := k + 1. Return to Step 2 until MPk+1 is infeasible.

Remark 3.2 Constraint η < UBDk in MPk (19) is used to prevent any y j ( j ∈ Tk)
from being the optimal solution to the relaxed master program MPk . Further, as
pointed out in [2], constraint η < UBDk would be substituted with η ≤ UBDk − ε

in practice for some tolerance parameter ε > 0.

The following theorem shows that Algorithm 1 stated above is able to detect feasi-
bility or infeasibility of problem (1) and the procedure terminates after a finite number
of steps under the assumption of finite discrete assignments. The proof, similar to that
of [2, Theorem1], can be obtained by using Theorems 3.1 and 3.3.

Theorem 3.6 Suppose assumptions (A1)–(A3) hold and the cardinality of discrete
set Y is finite. Then either problem (1) is infeasible or Algorithm 1 terminates at k0-th
step for some k0 ∈ N and there exists j0 ∈ Tk0−1 ∪ {k0} such that f (x j0 , y j0) equals
the optimal value of problem (1).
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4 Conclusions

The work in this paper is devoted to the study of the convex MINLP by relaxing the
differentiability assumption and the construction of outer approximation algorithm
for solving such MINLP. With the assumption of partial differentiability, the OA
method and subgradients obtained from KKT conditions are used to linearize convex
functions and reformulate this MINLP as an equivalent MILP master program. An
example showing that some optimal solution of the reformulated master program is
infeasible to theMINLP problem is given. By solving a finite sequence of subproblems
and relaxed master programs, the outer approximation algorithm has been established
to find optimal solutions of this MINLP. The convergence after a finite number of
steps is also proved. This work is an extension of the OA method for solving convex
MINLP under relaxed differentiability assumptions.
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