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Abstract This paper shows how, in a quasi-metric space, an inexact proximal algo-
rithm with a generalized perturbation term appears to be a nice tool for Behavioral
Sciences (Psychology, Economics, Management, Game theory,…). More precisely,
the new perturbation term represents an index of resistance to change, defined as
a “curved enough” function of the quasi-distance between two successive iterates.
Using this behavioral point of view, the present paper shows how such a generalized
inexact proximal algorithm canmodelize the formation of habits and routines in a strik-
ing way. This idea comes from a recent “variational rationality approach” of human
behavior which links a lot of different theories of stability (habits, routines, equilib-
rium, traps,…) and changes (creations, innovations, learning and destructions,…) in
Behavioral Sciences and a lot of concepts and algorithms in variational analysis.
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1 Introduction

The main message of this paper is that, using the behavioral context of a recent “vari-
ational rationality” approach of worthwhile stay and change dynamics proposed by
Soubeyran [1,2], a generalized proximal algorithm can modelize fairly well an habit-
uation process as described in Psychology for an agent, or a routinization process,
in Management Sciences, for an organization. This opens the door to a new vision
of proximal algorithms. They are not only very nice mathematical tools in optimiza-
tion theory, with striking computational aspects, but also nice tools to modelize the
dynamics of human behaviors.

Theories of stability and change consider successions of stays and changes. Stays
refer to habits, routines, equilibria, traps, rules and conventions, etc. Changes repre-
sent creations, destructions, learning processes, innovations, attitudes as well as the
formation and revision of beliefs, self-regulation problems, including goal setting,
goal striving and goal revision, the formation and break of habits and routines. In the
interdisciplinary context which characterizes all these theories in Behavioral Sciences,
the “variational rationality approach” (see [1,2]) shows how to modelize the course
of human activities as a succession of worthwhile temporary stays and changes which
balance, at each step, the motivation to change (the utility of advantages to change)
and the resistance to change (the disutility of inconveniences to change). This very
simple idea has allowed to see proximal algorithms as an important tool to modelize
the human course of actions, where the perturbation term of a proximal algorithm
can be seen as a crude formulation of the complex concept of resistance to change,
while the utility generated by a change in the objective function can represent a crude
formulation of the motivation to change concept. The variational rationality approach
considers three original concepts: (i) “worthwhile changes,” when, at each step, the
motivation to change is higher enough with respect to resistance to change, (ii) “non-
marginal worthwhile changes” and, (iii) “variational traps,” “easy enough to reach,”
that the agent can reach by using a succession of worthwhile changes, and “difficult
enough to leave,” such that, being there, it is not worthwhile to move from there.

These three concepts represent the pillar of the variational rationality approach;
see [1,2], which has provided an extra motivation to further develop the study of
proximal algorithms in a nonconvex and possibly nonsmooth setting. Among other
recent applications of this simple idea see, for instance, Attouch and Soubeyran [3]
for local search proximal algorithms, Flores-Bazán et al. [4] for worthwhile to change
games, Attouch et al. [5] for alternating inertial games with costs to move and Cruz
Neto et al. [6] for the “how to playNash” problems. In all these papers, the perturbation
term of the usual proximal point algorithm is a linear or quadratic function of the
distance or quasi- distance between two successive iterates. It modelizes the case of
“strong enough resistance” to change. Our paper examines the opposite case of “ weak
enough” resistance to change where the perturbation term modelizes the difficulty
(relative resistance) to be able to change as a “ curved enough” function of the quasi-
distance between two successive iterates. A quasi-distance modelizes costs to be able
to change as an index of dissimilarity between actions where the cost to be able
to change from an action to another one is not the same as the cost to be able to
change in the other way. In a first paper, Bento and Soubeyran [7] showed when, in a
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quasi-metric space, a generalized inexact proximal algorithm (equipped with such a
generalized perturbation term) defined, at each step, by a sufficient descent condition
and a stopping rule, converges to a critical point, and that the speed shown that the
speed of convergence and the convergence in finite time depend on the curvature
of the perturbation term and on the Kurdyka–Lojasiewicz property associated to the
objective function. A striking and new application is given. It concerns the impact of
the famous “loss aversion effect” (Nobel Prize Kahneman and Tversky [8], Tversky
and Kahneman [9]) on the speed of convergence of the generalized inexact proximal
algorithm.

In the present paper, inspired by the VR “ variational rationality” approach, we
consider a new inexact proximal algorithm whose sufficient descent condition is,
at each step, a little more demanding, using the same stopping rule. Applying the
convergence result of the first paper [7], this simple modification is a way to force
convergence even more. It gives an intuitive sufficient condition for the critical point
to be a variational trap (weak or strong). In this case, changes are required to be
“worthwhile enough,” the stopping rule is the same, and the end of the convergence
worthwhile stay and change process is both a critical point and a variational trap.
Doing so, this paper extends the convergence result to a critical point of Attouch and
Bolte [10], Attouch et al. [11] and Moreno et al. [12], using a fairly general “ convex
enough” perturbation term. It is important to note that, as an application, it is possible
to consider the formation of habits and routines as an inexact proximal algorithm in the
context ofweak resistance to change.However, because of its strongly interdisciplinary
aspect (Mathematics, Psychology, Economics, Management), to be carefully justified,
this application needs several steps. Due to space constraints here, these considerations
are given in Bento and Soubeyran [13]. Then, at the behavioral level, themainmessage
of this paper is to advocate that our generalized proximal algorithm is well suited to
modelize the formation of habitual/ routinized human behaviors. The list of the main
(VR) concepts is presented through an example in Sect. 2. To get a better perspective,
in [13], the VR approach of stability and change dynamics is compared, from our point
of view, with that of the HD habitual domain theory (see Yu [14] ) and its application
to DMCS (decision making with changeable spaces; see Larbani and Yu [15]).

At a higher dimensional level,VRandHDcanbe complementary to each other.Both
consider stability and change dynamics, but in different formulations. Deterministic
worthwhile temporary stays and changes transitions are the bases for the VR approach,
and dynamic charge structures and attention allocation are that for HD theory. Both put
focus on optimization and satisfying processes.VR is variable and possibly intransitive
preference (utility) based, while HD is based on charge structures resulting from goal
setting and state evaluation. VR’s main topic is the self-regulation problem (goal
setting, goal striving, goal revision and goal disengagement) at the individual level or
for interactive agents. In addition to this, the HD also contains some main topics of
“how agents expand and enrich their habitual domain” as to solve challenging decision
problems.

Our paper is organized as follows. Section 2 gives an example which helps to list the
main variational tools necessary to define the central concepts of “worthwhile change”
and “variational trap” for behavioral applications. Section 3 shows how inexact prox-
imal algorithms can represent adaptive satisfying processes. Section 4 examines a
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generalized inexact proximal algorithm which converges to a critical point which
is also a variational trap (weak or strong), when the objective function satisfies a
Kurdyka–Lojasiewicz inequality. In [13], the authors compare, on their point of view,
the VR and HD approaches relative to habituation/routinization processes.

2 Variational Rationality: How Successions of Worthwhile Stays and Changes
End in Variational Traps

2.1 Worthwhile Stay and Change Dynamics

A recent variational rationality approach, see [1,2], gives a common background to a
lot of theories of stability/stay and change in Behavioral Sciences (Psychology, Eco-
nomics, Management Sciences, Decision theory, Philosophy, Game theory, Political
Sciences, Artificial Intelligence. . .), using as a central building bloc the three concepts
of “ worthwhile change,” “ marginal worthwhile change” and “variational trap.” All
these behavioral dynamics can be seen as a succession of worthwhile temporary stays
and changes xk+1 ∈ Wek ,ξk+1

(
xk

)
, k ∈ N, ending in variational traps x∗ ∈ X , where

X is the universal space of actions (doing), having or being, depending on the appli-
cations. X includes all past elements and all the new elements that can be discovered
as time evolves.

Themain idea is quite evident. If a behavioral theory wants to explain “ why, where,
how and when” agents perform actions and change, this theory must define, at each
period, along a path of changes

{
x0, x1, . . . , xk, xk+1, . . .

}
why the agent has, first,

an incentive to take some steps away from his current position and, then, an incentive
to stop changing one stepmore within this period. In the current period k+1, a change
is such that xk+1 �= xk, while a stay is xk+1 = xk . Let ek ∈ E be the experience
of the agent at the end of the last period k. A change xk � xk+1 ∈ Wek ,ξk+1

(
xk

)

is worthwhile, when its ex ante motivation to change Mek

(
xk, xk+1

)
is sufficiently

higher (more than ξk+1 > 0) than his ex ante resistance to change, Rek

(
xk, xk+1

)
.

Then, xk+1 ∈ Wek ,ξk+1

(
xk

) ⇐⇒ Mek

(
xk, xk+1

) ≥ ξk+1Rek

(
xk, xk+1

)
. Motivation

and resistance to change are two complex variational concepts which admit a lot of
variants (see [1,2]).Motivation to changeMek

(
xk, xk+1

) = Uek

[
Aek

(
xk, xk+1

)]
is the

utility Uek [·] of the advantages to change, Aek

(
xk, xk+1

)
, while resistance to change

Rek

(
xk, xk+1

) = Dek

[
Iek

(
xk, xk+1

)]
is the disutility Dek [·] of the inconveniences to

change Iek
(
xk, xk+1

)
.

Worthwhile changes are generalized satisfying changes Within a period, a worthwhile
change xk � xk+1 ∈ Wek ,ξk+1

(
xk

)
is desirable and feasible enough, i.e, acceptable,

improving with not too high costs to be able to improve. Then, a worthwhile change
is a generalized satisfying change where, at each period, the agent chooses the ratio
ξk+1 > 0, which represents how worthwhile a change must be to accept to move
rather than to stay. The famous Simon [16] satisfying principle is a specific case (see
[1,2]). Second, within the same period, the agent must also have to know when he
must stop changing. This is the case when one step more is not worthwhile. More
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formally, this change is not “marginally worthwhile,” when the ex ante marginal moti-
vation to change is sufficiently lower than the ex ante marginal resistance to change.
In this case, the agent does not regret ex ante not to go one step further. The moti-
vation to change again next period comes from residual unsatisfied needs or variable
preferences.

A variational trap x∗ is such that, starting from an initial point x0 ∈ X, it exists
a path of worthwhile changes xk+1 ∈ Wek ,ξk+1

(
xk

)
which ends in x∗, i.e., such that,

being there, it is not worthwhile to move again, i.e., We∗,ξ∗(x
∗) = {x∗}.

2.2 Variational Concepts: An Example

To save space and to fix ideas, let us define these variational rationality concepts
through a simple example. This being done, we can easily show how an inexact
proximal algorithm represents a nice benchmark process of worthwhile temporary
stays and changes in term of, at each period, a sufficient descent condition and a
stopping rule. For more comments, and a more complete formulation of each of these
variational concepts, with references to a lot of different disciplines in Behavioral
Sciences which will help to justify their unifying power; see [1,2].

A simple model of knowledge management: This example modelizes a very simple
case of knowledge management within an organization, to determine a satisfying
or, as an extreme case, the optimal size and shape of an innovative firm driven
by a leader. In Management Sciences, the literature on this topic is enormous
and represents one of its main area of research. Consider an entrepreneur (leader)
who, at each period, can hire and fire different kinds and numbers of skilled and
specialized workers {1, 2, . . . , j, . . . , l} = J (say knowledge workers; see Long
et al. [17]) to produce a chosen quantity of a final good of a chosen quality. The
endogenous quality q(x) of this final good changes with the chosen profile of
skilled workers x = (

x1, x2, . . . , x j , . . . , xl
) ≥ 0, where x j ≥ 0 is a number of

workers in the coordinate j . To save space and for simplification, at each period,
each employed skilled worker of type j (located in the coordinate j) utilizes one
unit of a specific non durable mean to produce, using his specific know-how,
a unit of a specific component j . Then, the entrepreneur combines the quantities
x = (

x1, x2, . . . , x j , . . . , xl
)
of these different components, to produce q(x) units

of a final good of endogenous quality s(x). This general production functionmixes
both quantitative and qualitative variables. Our formulation generalizes the O-
Ring production function which appeared in the O-Ring theory of the firm; see
Kremer [18]. The revenue of the entrepreneur is ϕ [q(x), s(x)]. His operational
costs ρ(x) are the sum of his costs to buy the non durable means used by each
worker, and the wages paid to each employee worker. Then, in a given period, the
profit of the entrepreneur who employs the profile x ∈ X = R

l of skilled workers
is g(x) = ϕ [q(x), s(x)] − ρ(x) ∈ R.
Advantages to change: Let x = xk and y = xk+1, be respectively, the last period,
and current period profiles of skilled workers chosen by the entrepreneur. Then, if
this is the case, his advantages to change his profile of skilled workers from one
period to the next is A(x, y) = g(y) − g(x) ≥ 0;
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Inconveniences to change: They represent the difference I (x, y) = C(x, y) −
C(x, x) ≥ 0 between costs C(x, y) to be able to change from profile x to profile y
and costs C(x, x) to be able to stay with the same profile x used in the last period;
Costs to be able to change (to stay): To be able to hire one skilled worker of type
j , ready to work, costs h j

+ > 0. These costs include search and training costs.

To fire one worker of type j , costs h j
− > 0. These costs represent separation and

compensation costs. To keep a worker, ready to work, one period more, costs
h j= ≥ 0. These conservation costs include knowledge regeneration and motivation
costs. Then, in the current period, (i) costs to conserve the same profile of workers
as in the last period areC(x, x) = Σn

j=1h
j=x j while , (ii) costs to utilize the profile

of skilled workers y are:

C(x, y) = Σ j∈J+(x,y)

[
h j=x j + h j

+(y j − x j )
]

+Σ j∈J−(x,y)

[
h j=y j + h j

+(x j − y j )
]
,

where J+(x, y) = {
j ∈ J, y j ≥ x j

}
and J−(x, y) = {

j ∈ J, y j < x j
}
. For sim-

plification, suppose that conservation costs are zero, i.e., h j= = 0. Then,

C(x, x) = 0 and I (x, y)=Σ j∈J+(x,y)h
j
+(y j − x j ) + Σ j∈J−(x,y)h

j
+(x j − y j ).

So, I (x, y) is a quasi-distance q(x, y) := I (x, y) ≥ 0 such that

(i) q(x, y) = 0 iff y = x, (ii) q(x, z) ≤ q(x, y) + q(y, z), x, y, z ∈ X.

The more general case where h j= > 0 works as well.
Motivation and resistance to change functions: They are, moving from the past
profile of knowledge workers x to the current profile y:

M(x, y) = U [A(x, y)] = [g(y) − g(x)]μ and

R(x, y) = D [I (x, y)] = q(x, y)ν, μ, ν > 0,

where the utility and disutility functions are U [A] = Aμ and D [I ] = I ν .
Relative resistance to change function: It is Γ [q(x, y)] = U−1 [D [I (x, y)]] =
q(x, y)ν/μ, ν/μ > 0.
Worthwhile changes: In this setting, a change from profile x to y is worthwhile
if M(x, y) ≥ ξ R(x, y), i.e., [g(y) − g(x)]μ ≥ ξq(x, y)ν , where ξ > 0 is the
current and chosen “ worthwhile enough” satisfying ratio. Then, a worthwhile
change is such that y ∈ Wξ (x) iff

g(y) − g(x) ≥ λΓ [q(x, y)] , λ = (ξ)1/μ > 0.

Succession of worthwhile temporary stays and changes: In this example they are:

g
(
xk+1

)
− g

(
xk

)
≥ λk+1Γ

[
q

(
xk, xk+1

)]
, k ∈ N.
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Variational traps: In the example, given the initial profile of skilled workers
x0 ∈ X, and a final worthwhile enough to change ratio λ∗ > 0, x∗∈X is a
variational trap if it exists a path of worthwhile temporary stays and changes{
x0, x1, . . . , xk, xk+1, . . .

}
such that,

(i) g
(
xk+1

)
− g

(
xk

)
≥ λk+1Γ

[
q

(
xk, xk+1

)]
,

(ii) g(y) − g(x∗) < λ∗Γ
[
q

(
xk, y

)]
, y �= x∗, y ∈ X, k ∈ N;

An habituation/routinization process: It is such that, step by step, gradually, the
agent carries out a more and more similar action. This is equivalent to say that the
quasi-distance C

(
xk, xk+1

)
converges to zero as k goes to infinite.

When a worthwhile to change process converges to a variational trap, this variational
formulation offers a model of a trap as the end point of a path of worthwhile changes.

3 Inexact Proximal Algorithms as Worthwhile Stay and Change Processes

3.1 Inexact Proximal Formulation of Worthwhile Changes

Proximal intransitive preferences. Let us define, in the current period k + 1, the
“to be increased” entrepreneur proximal payoff to change from x = xk to y = xk+1

as Qλ(x, y) = g(y)−λΓ [q(x, y)] with λ > 0. Then, the proximal payoff to stay
at x = xk = y = xk+1 is Qλ(x, x) = g(x) − λΓ [q(x, x)] = g(x). It follows
that it is worthwhile to change from profile x to y iff Qλ(x, y) ≥ Qλ(x, x),
i.e., y ∈ Wλ(x). This defines a variable and possibly non transitive preference
z ≥x,λ y ⇐⇒ Qλ(x, z) ≥ Qλ(x, y).
To fit with the formulation of inexact proximal algorithms, where mathematicians
consider “to be decreased” cost functions, let us consider the residual profit that
the entrepreneur expects to exhaust in the future, f (x) = g − g(x) ≥ 0, where
g = sup {g(y), y ∈ X} < +∞ is the highest finite profit that the entrepreneur can
hope to get. Then, the “to be decreased” proximal payoff of the entrepreneur is

Pλ(x, y) = f (y) + λΓ [q(x, y)] . (1)

In this case, to move from profile x to profile y is a worthwhile change y ∈ Wλ(x)
iff Pλ(x, y) ≤ Pλ(x, x).
Sufficient descent methods. The entrepreneur performs, each period k + 1, a suf-
ficient descent, if he can choose a new profile xk+1 such that f

(
xk

) − f
(
xk+1

) ≥
λk+1Γ

[
q
(
xk, xk+1

)]
. This means that the entrepreneur follows a path of worth-

while changes xk+1 ∈ Wλk+1

(
xk

)
, k ∈ N. Since q(xk, xk) = 0, this comes from

definition of Wλk+1

(
xk

)
combined with (1) for x = xk, y = xk+1 and λ = λk+1.

In this case, each new worthwhile change is not necessarily optimal, contrary to
each step of an exact proximal algorithm.
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Exact proximal algorithms. The entrepreneur follows an exact proximal algorithm
if, at each current period k+1, he can choose a new profile xk+1 which minimizes
his “to be decreased” proximal payoff Pλk+1

(
xk, y

) = f (y) + λk+1Γ
[
q
(
xk, y

)]

on the whole space X ,

xk+1 ∈ argminy∈X
{
f (y) + λk+1Γ

[
q
(
xk, y

)]}
, k ∈ N, (2)

which allows us to obtain xk+1 ∈ Wλk+1

(
xk

)
, k ∈ N. In Mathematics the formu-

lation is
xk+1 ∈ argminy∈X

{
f (y) + λkΓ

[
q
(
xk, y

)]}
, k ∈ N. (3)

It takes λk instead of λk+1. In this case, the entrepreneur follows a path of optimal
worthwhile changes, xk+1 ∈ Wλk

(
xk

)
, k ∈ N. In this paper, we will adopt the

mathematical formulation.
Epsilon inexact proximal algorithms. Several variants about this subject can
be found in the literature. Let us consider the version given in Attouch and
Soubeyran [3] following a long tradition, starting with Rockafellar [19]. In our
context, the entrepreneur follows an inexact proximal algorithm if, at each period
k + 1, he can choose a new profile xk+1 such that

f
(
xk+1) + λkΓ

[
q
(
xk, xk+1)] ≤ f (y) + λkΓ

[
q
(
xk, y

)] + εk, y ∈ X,

given a sequence of nonnegative error terms {εk}, i.e, Pλk

(
xk, xk+1

) ≤
Pλk

(
xk, y

) + εk , y ∈ X . The term λk can be replaced by λk+1.
Epsilon inexact proximal algorithms represent a succession of adaptive satisfying
processes. Let Qλk

(
xk

) = sup
{
Qλk

(
xk, y

) : y ∈ X
}

< +∞ and Pλk

(
xk

) =
inf

{
Pλk

(
xk, y

) : y ∈ X
}

> −∞ be, for each current period k + 1, the optimal
past values of the “to be increased” and ‘to be decreased” proximal payoffs of this
entrepreneur. Let Qλk

(
xk

) − sk+1 and Pλk

(
xk

) + sk+1 be, in this current period
k + 1, the current satisfying levels of the “to be increased” and “to be decreased”
proximal payoffs of the entrepreneur. In this current period, sk+1 > 0 represents,
for the VR approach, a given satisfying rate; see [1,2]. For an inexact proximal
algorithm, sk+1 = εk > 0 is a given error term. Then, in the context of the VR
theory, an inexact proximal algorithm has a new interpretation. It means that, for
each period k + 1, the new profile xk+1 must be satisfying. That is to say, “to be
increased” and “to be decreased” proximal payoffs of the entrepreneur must be
higher or lower than the current satisfying level, i.e., Qλk

(
xk, xk+1

) ≥ Qλk

(
xk

)−
εk for a “to be increased” proximal payoff and Pλk

(
xk, xk+1

) ≤ Pλk

(
xk

) + εk
for a “to be decreased” proximal payoff. For each period k + 1, let us consider
the variable satisfying set Sλk ,εk

(
xk

) = {
y ∈ X : Pλk

(
xk, y

) ≤ Pλk

(
xk

) + εk
}
.

Then, an epsilon inexact proximal algorithm is defined by a succession of repeated
decision making problems with changeable spaces and goals (satisfying levels):
find y ∈ Sλk ,εk

(
xk

)
, k ∈ N. They are decision making problems with changeable

spaces. See Larbani and Yu [15] for different aspects of what can be changed and
how (their DMCS approach).

123



180 J Optim Theory Appl (2015) 166:172–187

3.2 Marginally Worthwhile Changes

Consider the current period k+1. Let xk � y = xk+1 be aworthwhile change from xk

to xk+1 ∈ Wλk

(
xk

)
and let xk+1

� z ∈ M
(
xk+1

) ⊂ X be a marginal change, where
M

(
xk+1

)
is a small neighborhood of xk+1 in the quasi-metric space X. Then, at each

period k + 1, the agent who has done the worthwhile change y = xk+1 ∈ Wλk

(
xk

)

will stop to prolong this change if, taking one more step in this period k + 1, from
xk+1 to z ∈ M

(
xk+1

)
, this marginal change is not worthwhile, i.e., z /∈ Wλk

(
xk+1

)
.

This is a generalized stopping rule, a “ not worthwhile marginal change” condition,
that will be used later in the context of proximal algorithms; see condition (12).

3.3 The Separation Between Weak and Strong Resistance to Change

Two cases. The consideration of relative resistance to change functions Γ [·] helps
to classify proximal algorithms in two separate groups. The first case is that of
strong resistance to change, where Γ [q] = q for all q ≥ 0. This case has been
examined in [1–3]. The second case is that of weak resistance to change, where
Γ [q] = q2 and q = q(x, y) is a distance and not a quasi-distance. This is the
traditional case. The literature on this topic is enormous; see, for example, Moreau
[20] andMartinet [21], as well as in the study of variational inequalities associated
to maximal monotone operators; see Rockafellar [19]. The variational approach,
which considers relative resistance to change as a core concept, balancesmotivation
and resistance to change, provides us with an extra motivation to further develop
the study of proximal algorithms in a nonconvex and possibly nonsmooth setting,
where the perturbation term of the usual proximal point algorithm becomes a
“ curved enough” function of the quasi-distance between two successive iterates.
Soubeyran [1,2] and, later, Bento and Soubeyran [7], in a first paper which paved
theway for the present one, have shown the strong link between a relative resistance
to change index with the famous “loss aversion” index; see [8,9]. The generalized
proximal algorithm, examined both in [7] and in the present paper, is new and
more adapted for applications in Behavioral Sciences.Moreover, it retrieves recent
approaches of the proximal method for nonconvex functions; see [10,12].
Assumption on the relative resistance to change. In the remainder of this paper we
assume that Γ is a twice differentiable function such that:

Γ [0] = Γ ′[0] = 0, and Γ ′[q] > 0, Γ ′′[q] > 0, q > 0, (4)

and there exist constants r, q̄, ρ̄Γ (r) > 0, satisfying the following condition:

Γ ′[q/r ] ≤ ρ̄Γ (r)Γ [q]/q, 0 < q ≤ q̄. (5)

Let us consider the following Γ -generalized rate of curvature:

ρΓ (q, r) := Γ ′[q/r ]
(Γ [q]/q)

, 0 < q ≤ q̄. (6)
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In the particular case r = 1, (6) represents, in Economics, the elasticity of the
disutility curve Γ ; see, for instance, [1,2]. From (6), condition (5) is equivalent to
the condition:

ρ̄Γ (r) = sup{ρΓ (q, r) : 0 < q < q̄} < +∞, r ∈]0, 1[ fixed.

Let us consider, for each α > 1 fixed, the function Γ [q] := qα . It is easy to see
that, in this case, ρ̄D(r) ∈ [αr1−α,+∞[. In particular, we can take

ρ̄Γ (q, r) = αr1−α = ρ̄Γ (r) < +∞. (7)

More accurately, for each α > 1, Γ [q] = qα represents a disutility of inconve-
niences to change. It is strictly increasing and satisfies (4) and (5).

4 An Inexact Proximal Point Algorithm: Convergence to a Weak or Strong
Variational Trap

4.1 End Points as Critical Points or Variational Traps

In a first paper, Bento and Soubeyran [7] showed when, in a quasi-metric space,
a generalized inexact proximal algorithm, equipped with a generalized perturbation
term Γ [q(x, y)], and defined at each step by: (i) A sufficient descent condition and,
(ii) a stopping rule and convergence to a critical point. Then, they have shown that
the speed of convergence and the convergence in finite time depend on the curvature
of the perturbation term and on the Kurdyka–Lojasiewicz property associated to the
objective function. A striking and new application has been given. It concerns the
impact of the famous “loss aversion effect,” see [8,9], on the speed of convergence of
the generalized inexact proximal algorithm.However, in the context of the “ variational
rationality approach,”which considers, as central dynamical concepts,worthwhile stay
and change processes, these important results in AppliedMathematics are not enough,
from the viewpoint of our applications to Behavioral Sciences, unless we can show that
this critical point is a stationary and variational trap (strong or weak) where the agent
will prefer to stay than to move, because his motivation to change is strictly or weakly
lower than his resistance to change. This section presents, under the conditions of [7,
Theorem3.1], aworthwhile stay and change processwhich converges to a critical point
of f which is a weak trap (compare, below, with the definition of a strong stationary
and variational trap). Then, let us start with the general definition of a weak stationary
and variational trap instead of a strong one ([1,2]).

Definition 4.1 Let x ∈ X be a given action and ξ > 0 be a satisfying rate of change
chosen by the agent. Let Wξ (x) := {y ∈ X, M(x, y) ≥ ξ R(x, y)} be his worthwhile
to change set, starting from x ∈ X . Then, starting from x∗ ∈ X with a given satisfying
worthwhile to change rate ξ∗ > 0, a strong stationary trap x∗ ∈ X is such that moti-
vation to change is strictly lower than resistance to change, M(x∗, y) < ξ∗R(x∗, y)
for all y �= x∗ ∈ X. A weak stationary trap is such that M(x∗, y) ≤ ξ∗R(x∗, y), for
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all y ∈ X. This defines the stationary side of a trap. The variational aspect comes from
being the end of a worthwhile to change process, starting from an initial given point.

Remark 4.1 (a) Notice that a strong stationary trap is such that Wξ∗(x
∗) = {x∗} and

a weak stationary trap is such that Wξ∗(x
∗) = {y ∈ X, M(x∗, y) = ξ∗R(x∗, y)}.

Being at a strong (weak) stationary trap, the agent strictly (weakly) prefers to stay
than tomove. Then,when a process ofworthwhile stays and changes converges to a
strong variational trap, this variational formulation defines, starting from an initial
point, a variational trap as the end point of a path of worthwhile changes, worth-
while to approach, but not worthwhile to leave. This happens because, starting
from there, there is no way to do any other worthwhile change, except repetitions;

(b) Assuming that {λk} converges to λ∞, our sufficient condition proposes an
algorithm which, following a succession of worthwhile changes xk+1 ∈
Wλk

(
xk

)
, k ∈ N, converges to a weak stationary trap x∗ such that Wλ∞(x∗) =

{y ∈ X : M(x∗, y) = λ∞R(x∗, y)}. Since the agent is free to choose all his sat-
isfying worthwhile to change rates λk in an adaptive way, this will show that
the agent, choosing at the limit point x∗ a satisfying worthwhile to change rate
λ∗ > λ∞, ends in a strong stationary trap x∗, becauseM(x∗, y) = λ∞R(x∗, y) <

λ∗R(x∗, y), for all y ∈ X ;
(c) As observed in Sect. 2, in the specific context of this paper, we have

M(x, y) = U [A(x, y)] = f (x) − f (y), R(x, y) = D [C(x, y)] ,

Γ [q(x, y)] = λU−1 [D[q(x, y)]] , ξ = 1.

Then, in our present paper, a strong (resp;weak) stationary trap is such that
f (x∗)− f (y) < λΓ

[
q(x∗, y)

]
, for all y �= x∗ (resp. f (x∗)− f (y) ≤ λΓ

[
q(x∗, y)

]
,

for all y ∈ X ).

4.2 Some Definitions from Subdifferential Calculus

In this section, some elements concerning the subdifferential calculus are recalled;
see, for instance, Rockafellar and Wets [22]. Assume that f : R

n → R ∪ {+∞} is a
proper lower semicontinuous function. The domain of f , which we denote by dom f ,
is the subset of R

n on which f is finite-valued. Since f is proper, then dom f �= ∅.
Definition 4.2 (i) The Fréchet subdifferential of f at x ∈ R

n , denoted by ∂̂ f (x), is
the set:

∂̂ f (x) :=
⎧
⎨

⎩
{x∗ ∈ R

n : lim inf
y→x;y �=x

1

‖x − y‖ ( f (y) − f (x) − 〈x∗, y − x〉) ≥ 0}, if x ∈ dom f,

∅, if x /∈ dom f.

(ii) The limiting Fréchet subdifferential (or simply subdifferential) of f at x ∈ R
n ,

denoted by ∂ f (x), is the set:

∂ f (x) :=
{ {x∗ ∈ R

n |∃xn → x, f (xn) → f (x), x∗
n ∈ ∂̂ f (xn); x∗

n → x∗}, if x ∈ dom f.

∅, if x /∈ dom f.
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Throughout the paper, we consider the subdifferential ∂ f since it satisfies a closed-
ness property important in our convergence analysis, as well as in any limiting
processes used in an algorithmic context.

A necessary condition for a given point x ∈ R
n to be a minimizer of f is

0 ∈ ∂ f (x). (8)

It is known that, unless f is convex, (8) is not a sufficient condition. The domain of
∂ f , which we denote by dom ∂ f , is the subset of R

n on which ∂ f is a nonempty set.
In the remainder, a point that satisfies (8) is called a limiting-critical or simply critical
point.

4.3 The Algorithm

In [3] the authors examined the “local epsilon inexact proximal” algorithm,

f
(
xk+1

)
+ λkd

(
xk, xk+1

)
≤ f (y) + λkd

(
xk, y

)
+ εk, y ∈ E

(
xk, rk

)
⊂ X,

where: (i) d is a distance, (ii) E(xk, rk+1) ⊂ X is a variable choice set (a moving
ball) for each current period k + 1. Following [3] we consider the so-called global
epsilon inexact proximal algorithm as follows: starting from the current position xk ,
let us define the next iterate xk+1 as follows:

f
(
xk+1

)
+ λkΓ

[
q
(
xk, xk+1)

]
≤ f (y) + λkΓ

[
q
(
xk, y

)] + εk, y ∈ X, (9)

where {λk} , {εk} are given sequences of nonnegative real numbers, and q is a quasi-
distance. In the particular case where the generalized perturbation term Γ [q(x, y)] =
q(x, y)2 and q(x, y) = d(x, y) is a distance, instead of a quasi-distance, our
“global epsilon inexact proximal” algorithm coincides with the case considered by
Zaslavski [23].

Assumption 4.1 There existβ1, β2 ∈ R++ such that:β1‖x−y‖≤q(x, y)≤β2‖−y‖,
x, y ∈ R

n .

This is the case in our knowledge management example. For another explicit example
where inconveniences to change are a quasi-distance satisfying Assumption 4.1, see
[12].

Next, we recall the inexact version of the proximal point method introduced in [7].

Algorithm 4.1 Take x0 ∈ dom f, 0 < λ̄ ≤ λ̃ < +∞, σ ∈ [0, 1[ and b > 0. For each
k = 0, 1, . . ., choose λk ∈ [λ̄, λ̃] and find

(
xk+1, wk+1, vk+1

) ∈ R
n × R

n × R
n such

that:
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f
(
xk

)
− f

(
xk+1

)
≥ λk(1 − σ)Γ

[
q
(
xk, xk+1)], (10)

wk+1 ∈ ∂ f
(
xk+1

)
, vk+1 ∈ ∂q

(
xk, ·

) (
xk+1

)
, (11)

‖wk+1‖ ≤ bΓ ′ [q
(
xk, xk+1

)]
‖vk+1‖, (12)

The first condition is a sufficient descent condition. It is a (proximal-like) worth-
while to change condition xk+1 ∈ Wξk+1(xk), where the proximal perturbation term
defines the relative resistance to change function. This condition tells us that it
is worthwhile to change from xk to xk+1, rather than to stay at xk . In this case,
advantages to change from xk to xk+1, A

(
xk, xk+1

) = f
(
xk

) − f
(
xk+1

)
are, at

each period, higher than some adaptive proportion ξk+1 = λk(1 − σ) of the rel-
ative disutility of inconveniences to change rather than to stay Γ

[
q
(
xk, xk+1

)] =
U−1

[
D

[
I
(
xk, xk+1

)]]
, where, (i) inconveniences to change rather than to stay are

I
(
xk, xk+1

) = C
(
xk, xk+1

)−C
(
xk, xk

) = q
(
xk, xk+1

)
, (ii) costs to be able to change

from xk to xk+1 are C
(
xk, xk+1

) = q(xk, xk+1), while, (iii) costs to be able to stay
C

(
xk, xk

) = q
(
xk, xk

) = 0 are zero as quasi-distances. The second condition defines
subgradients of the objective and costs to be able to change functions. The third con-
dition is a stopping rule which tells us, at each period, when the agent prefers not to
make a new marginal change, because it is not worthwhile to do it, in this period; see
Sect. 3.2 on marginally worthwhile changes.

Remark 4.2 As pointed out by the authors in [7], Algorithm 4.1 retrieves the inexact
algorithmproposed in [11,Algorithm2] in the particular caseΓ [q] = q2/2, q(x, y) =
‖x− y‖ and 1−σ = θ . Moreover, Algorithm 4.1 is a habituation/routinization process
and any sequence generated from it is a path of worthwhile changes with parameter
λk(1 − σ) such that, at each step, it is marginally worthwhile to stop. The variational
stopping rule condition raises the following question: when,marginally, a change stops
to be worthwhile? This strongly depends on the shapes of the utility and disutility
functions.

Comparing Algorithm 4.1 with the iterative process (9), we observe the following:

(i) on one side, the iterative process (9) is muchmore specific than our Algorithm 4.1.
Indeed the weak “worthwhile to change” condition (10) is replaced by the much
stronger condition (9).

(ii) on the other side, the iterative process (9) does not impose the “ not worthwhile
marginal change condition” (12) as the Algorithm 4.1 does.

Next we propose a new inexact proximal algorithm, combining a particular instance
of (9) with the stopping rule (12).

Algorithm 4.2 Take x0 ∈ dom f, 0 < λ̄ ≤ λ̃ < +∞, σ ∈ [0, 1[ and b > 0. For each
k = 0, 1, . . ., choose λk ∈ [λ̄, λ̃] and find (xk+1, wk+1, vk+1) ∈ R

n × R
n × R

n such
that:

f (y) − f
(
xk+1

)
≥ λk

[
(1 − σ)Γ

[
q
(
xk, xk+1)

]
− Γ

[
q
(
xk, y

)]]
, y ∈ X,

(13)
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wk+1 ∈ ∂ f
(
xk+1

)
, vk+1 ∈ ∂q

(
xk, ·

) (
xk+1

)
, (14)

‖wk+1‖ ≤ bΓ ′ [q
(
xk, xk+1

)]
‖vk+1‖. (15)

Remark 4.3 This new inexact proximal algorithm imposes a stronger worthwhile to
change condition than Algorithm 4.1, because it must be verified, at each period, for
each y ∈ X . Setting y = xk gives the last worthwhile to change condition. The other
two conditions remain unchanged. Note that the exact proximal algorithm (3) is a
specific case of our new algorithm (it holds by taking σ = 0). The new inexact worth-
while to change condition is Pλk

(
xk, xk+1

) ≤ Pλk

(
xk, y

)+λkσΓ
[
q
(
xk, xk+1

)]
, for

all y ∈ X .

As in [7,10–12], our main convergence result is restricted to functions that satisfy
the so-called Kurdyka–Lojasiewicz inequality; see, for instance, [24–26]. Next formal
definition of Kurdyka–Lojasiewicz inequality can be found in [26], where it is also
possible to find several examples and a good discussion over important classes of
functions which satisfy the mentioned inequality.

Definition 4.3 A proper lower semicontinuous function f : R
n → R ∪ {+∞} is said

to have the Kurdyka–Lojasiewicz property at x̄ ∈ dom ∂ f if there exist η ∈]0,+∞],
a neighborhoodU of x̄ and a continuous concave function ϕ : [0, η[→ R+ such that:

ϕ(0) = 0, ϕ ∈ C1(]0, η[), ϕ′(s) > 0, s ∈]0, η[; (16)

ϕ′( f (x) − f (x̄))dist(0, ∂ f (x)) ≥ 1, x ∈ U ∩ [ f (x̄) < f < f (x̄) + η], (17)

– dist(0, ∂ f (x)) := inf{‖v‖ : v ∈ ∂ f (x)},
– [η1 < f < η2] := {x ∈ M : η1 < f (x) < η2}, η1 < η2.

In what follows, we assume that f a is bounded from below, continuous on dom f
and KL function, i.e., a function which satisfies the Kurdyka–Lojasiewicz inequality
at each point of dom∂ f .

Theorem 4.1 Assume that {xk} is a bounded sequence generated from Algorithm 4.2,
x̃ is an accumulation point of {xk} and Assumption 4.1 holds. Let U ⊂ R

n be a
neighborhood of x̃, η ∈]0,+∞] and ϕ : [0, η[→ R+ a continuous concave function
such that (16) and (17) hold. If δ ∈ (0, q̄) [see condition (5)] and r ∈]0, 1[ are fixed
constants, B(x̃, δ/β1) ⊂ U, a := λ̄(1 − σ) and M := Lb

a , then the whole sequence
{xk} converges to a critical point x∗ of f which is a strong global trap, relative to the
worthwhile to change set Wλ∗(x

∗), for any choice of the final satisfying rate λ∗ > λ∞.

Proof Thefirst part of the theorem follows immediately from [7, Theorem3.1] because
any sequence, generated from Algorithm 4.2, satisfies the conditions (10) and (12) of
Algorithm 4.1. Let x∗ be the limit point of the sequence {xk}. Given that the sequence
{λk} ⊂ [λ̄, λ̃] (it is bounded), 0 < λ̄ ≤ λ̃ < +∞, taking a subsequence, if necessary,
we can assume that λk converges to a certain λ∞ ∈]0,+∞[. For the second part, note
that { f (xk)} is a non increasing sequence and x∗ ∈ dom f . Now, given that q(·, y) is
continuous for each y ∈ X , see [12], Γ is continuous and f is continuous on dom f ,

123



186 J Optim Theory Appl (2015) 166:172–187

taking the limit in (13) as k goes to infinity and assuming that λk converges to a certain
λ∞ ∈]0,+∞[, we get:

f (x∗) ≤ f (y) + λ∗Γ [q(x∗, y)], y ∈ X.

Therefore, the desired result follows from Remark 4.1. ��

5 Conclusions

In this paper, following [7], andusing the recent variational approachpresented in [1,2],
we have proposed a generalized “epsilon inexact proximal” algorithm that converges
to a critical point which is also a variational trap. In Mathematics, our paper helps to
show how the literature on proximal algorithms can be divided into two parts: the case
of strong and weak relative resistance to change. In this paper we have considered the
most difficult situation, the weak case. For Behavioral Sciences, our paper offers a
dynamic model for habituation/routinization processes, and gives a striking and new
result on the impact of the famous “loss aversion” index (see [8,9]) on the speed of
convergence of such processes. Given editorial constraints (lack of space in the present
paper), this important result appears in the first paper [7]. In [13] the authors compare
our VR variational rationality approach of inexact proximal algorithms to the HD
habitual domain theory and the DMCS approach; see [14,15]. Future research will
consider the multiobjective case.
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