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Abstract Successive missions must be planned to clean the near-Earth space from
the heaviest debris. The problemmixes combinatorial optimization to select and order
the debris, and continuous optimization to define the orbital maneuvers. In order to
reduce the costs all missions have to be achieved by identical expendable vehicles with
a minimum fuel requirement. The solution method proposed consists in three stages.
Firstly the orbital transfer problem is solved for all pairs of debris and for discretized
dates, considering a generic transfer strategy suited either to a high-thrust or to a
low-thrust vehicle. The results are stored in cost matrices defining a response surface.
Secondly a simulated annealing algorithm is applied to find the optimal mission plan-
ning. The cost is assessed by interpolation on the response surface. The convergence
is quite fast, yielding an optimal mission planning. Thirdly the successive missions
are re-optimized in terms of transfer maneuvers without changing the debris order.
These continuous problems yield a refined performance requirement for designing
the removal vehicle. The solution method is illustrated on a representative application
case.
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Abbreviations

LEO Low earth orbit
SSO Sun-synchronous orbit
RAAN Right ascension of ascending node
SDC Space debris collecting
TSP Travelling salesman problem
RSM Response surface modeling
SA Simulated annealing
NLP Nonlinear programming

1 Introduction

1.1 Space Debris

The near-Earth space is crowded by debris of all sizes. These debris originate from the
fragmentation or corrosion of the old spacecrafts (spent satellites and launcher upper
stages) released on orbit at the end of their operational life since the 1960. An efficient
way to limit their proliferation is to remove the spent observation satellites evolving
on near-circular polar orbits in the altitude range 700–900km altitude. Several studies
recommend a removal rate of five heavy debris per year in order to stabilize the debris
population [1–4].

Dedicated vehicles must be designed for such removal missions. This paper
addresses the problem of planning the successivemissions so that they can be achieved
at minimal cost by identical expendable vehicles.

1.2 Problem Statement

The cleaning program consists in launching a series of dedicated vehicles, each one
being in charge of removing several heavy debris (typically five debris per vehicle).
With the current state of the art, a reusable concept cannot be envisioned. A series of
expendable vehicles is necessary in order to progressively clean the near-Earth space
from the most dangerous debris.

In order to limit the development cost the vehicles used for the successive missions
should be identical. The profile of a single space debris collecting (SDC) mission is
defined by the selected debris and the successive transfer maneuvers to travel from a
debris to another.

Themission duration (typically 1year) includes the transfers between the successive
debris and the operations applied to each of them. Themission cost is driven at the first
order by the SDC vehicle initial mass. This gross mass comprises the fuel required
by the powered maneuvers (orbital transfers, deorbitation if performed by the vehicle
itself) and the masses of the sub-systems used for the debris processing (rendezvous,
capture, and deorbitation if performed by an autonomous kit supplied to the debris).

The design of the SDC vehicle is based on themost expensivemission: This ensures
that the same design is compliant of all the successive missions planned. The SDC
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problem formulates as a complex variant of the travelling salesman problem (TSP)
mixing discrete and continuous variables and with a time-dependent cost.

1.3 Method Overview

Finding the exact solution of a combinatorial problem requires an enumeration algo-
rithm, either explicit or implicit. Such enumeration algorithms are applicable only to
limited size problems. For large instances only approximate solutions can be hoped
in a fixed computation time, using either heuristics approaches or stochastic algo-
rithms [5–7]. Various approaches have been proposed for the debris removal problem
depending on the number of debris and missions, on the orbital transfer scenario and
on the mission duration.

• In [8] an exact solution is sought by implicit enumeration (branch and bound). The
transfer scenario considers a drift orbit in order to comply with a bounded mission
duration. The method allows finding the optimal compromise between fuel and
duration, but it is restricted to a single mission and it can be applied only to a small
number of debris.

• In [9] an exact solution is sought by explicit enumeration (brute force approach)
without duration constraint. This allows simplifying the orbital transfer scenario
which consists in waiting for the RAAN alignment before starting the rendezvous
maneuvers. This strategy simplifies the transfer cost assessment, so that the method
can be applied to several missions and a larger number of debris, but the mission
duration is not bounded.

• In [10] an approximate solution is sought by a heuristic approach (Series Method)
previously applied to near-Earth asteroids tour problems in the solar system. A co-
elliptic transfer scenario is considered to minimize the transfer cost, but the mission
duration is not bounded. The authors indicate that a future scenario improvement
will consist in using the natural drift due to the first zonal term in order to control the
overall duration. The method can be applied to several missions and large number
of debris.

• In [11] an exact solution is sought by explicit enumeration for a set of five prese-
lected debris. Themission scenario considers successive deorbit and transfer phases
using low-thrust propulsion and locally optimal steering laws along each thrust arc.
The first zonal term is not taken into account, and the plane changes are achieved
through a constant out-of-plane thrust component. For each possible sequence of
debris a bi-objective optimization yields the Pareto front in terms of duration and
consumption. Large computation loads are required due to the exhaustive explo-
ration of sequences.

• In [12] an approximate solution is sought by a branch and prune algorithm. The
transfer scenario is based on an impulsive solution of the Lambert problem taking
into account the first zonal term. A brute force approach is applied to assess all the
transfers between debris pairs, sweeping on the dates and numbers of revolutions.
The tree of the possible scenario is thenprunedby applying thresholds on themission
cost and themission duration with a penalization on the debris features (mass, area).
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The method yields an impulsive mission scenario that is finally refined considering
a low-thrust vehicle.

• In [13] an approximate solution is sought by an ant colony optimization algorithm.
Each ant represents a single mission visiting several debris. An auction and bidding
method allows debris exchanges and coordination between the ants. The transfer
scenario assumes impulsive maneuvers at the debris orbit intersections without first
zonal term effect. The method is well suited to several missions and large number
of debris, but it is restricted to short mission durations and small RAAN changes.

1.4 Solution Method Proposed

Only approximate solution can be envisioned due to the complexity of the global
mission planning problem. Among the existing algorithms, simulated annealing (SA)
has proved quite successful on large TSP instances. We have therefore selected a
simulated annealing approach to tackle the SDC problem. Compared to the TSP, the
SDC problem presents additional issues due to the edge valuations and their time
dependency. Indeed a SA algorithm tries millions of solutions before achieving a
satisfactory convergence. Each trial solution is definedby a debris order and the visiting
dates. Assessing the exact cost of a trial solution requires solving a series of hard
optimal control problems to find the minimum fuel trajectories between the successive
debris. In order to apply a SA to the SDC problem with reasonable computation times,
it is not possible to solve “on-line” these optimal control problems for each trial
solution. An instantaneous cost function must be devised. In order to get a sufficient
confidence in the SA results, this cost function must be both robust (i.e., yield a cost
value whatever the input data) and reliable (i.e., yield a cost value representative of a
real optimized transfer).

The approach proposed consists in using a response surface modeling (RSM) based
on cost matrices. More precisely, the optimization process is split into three successive
stages.

• The first stage consists in building cost matrices. These cost matrices store the costs
of all the possible elementary transfers between debris for a mesh of discretized
dates. They result from a series of nonlinear optimizations (NLP) based on a sim-
plified generic transfer strategy adapted to themission specificities and to the vehicle
propulsion system (high thrust or low thrust).

• The second stage consists in finding the optimal mission planning with a SA algo-
rithm. The algorithm is derived from the one applied to a classical TSP with addi-
tional variables (rendezvous dates) and a RSM-based cost function. The cost of a
trial solution is assessed by interpolation in the cost matrices spanning the possible
transfers and dates. The solution defines the optimal mission planning.

• The third stage consists in a refined trajectory optimization. Indeed the RSM yields
an approximate cost value by interpolation in the cost matrices. The refined opti-
mization consists in fixing the debris order for the successive missions as given
by the simulated annealing, and optimizing the rendezvous dates and the maneu-
vers using a real trajectory simulation. This is a standard nonlinear programming
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Fig. 1 Illustration of the SDC
problem

Mission 1 
Cost K1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

Mission 2 
Cost K2

Mission 3 
Cost K3

Debris not selected 

K = Max(K1,K2,K3) 

Fig. 2 SDC cost function

problem with continuous variables. The solution yields the performance require-
ment for the vehicle design.

2 Problem Formulation

The goal is to design a minimal mass vehicle compliant of a series of successive
removal missions. The missions must be planned so as to minimize the fuel required
by the most expensive mission, while achieving a mean removal rate of five debris per
year. The problem formulates as a path problem (debris selection and ordering) with
embedded transfer problems (maneuvers to go from a debris to another).

2.1 Path Problem

The problem features are first illustrated on an instance corresponding to the applica-
tion case of Sect. 4. The path problem is then formulated in the general case.

2.1.1 Problem Features

The Fig. 1 illustrates an instance of the SDC problem with 21 candidate debris (repre-
sented by black points). The goal is to define three missions (represented respectively
by blue, green and red arrows) removing each one 5 debris. Only 15 debris out of
21 will be visited, leaving 6 debris on orbit. In terms of graph vocabulary, the debris
are nodes and each mission is an opened sub-path of 4 edges representing the orbital
transfers.

The cost evaluation is illustrated on the Fig. 2. The 15 selected debris are visited at
the respective increasing dates t1 < t2 < · · · < t15. The respective costs of the three
missions are K1, K2 and K3. The cost K of the cleaning program is the cost of the
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Table 1 TSP versus SDC

TSP SDC

Number of nodes visited N m × n ≤ N

Path definition Single closed path Several opened sub-paths

Node positions Fixed Moving

Edge valuations Fixed length Time-dependent

Cost function Path length Maximum sub-path cost

Time constraint None Upper bound

most expensive mission. The total duration of the cleaning program (t15 − t1) must be
lower than 3 years in order to achieve the targeted removal rate (5 debris per year).

The SDC problem is a variant of the TSP with the following differences:

• The debris orbits have different precession rates, so that their relative configuration
evolves with the time. The cost of going from the debris j to the debris k depends
on the starting date t j and the arrival date tk , making thus the SDC problem time
dependent.

• Instead of a single closed path visiting all the nodes, the debris are gathered in
several sub-paths (missions). Not all debris are visited, and the cost is measured
from the most expensive sub-path.

• There is a global time constraint due to the targeted removal rate of five debris per
year.

The differences between the SDC problem and the TSP are summarized in the Table 1.

2.1.2 Path Problem Formulation

We denote N the total number of debris, n the number of debris to visit per mis-
sion and m the number of missions planned. The number of debris visited is m × n
out of N candidates. The m × n selected debris are visited at the successive dates
t1, t2, . . . , tm×n . The debris order and the rendezvous dates have to be optimized.

A path is composed of the N candidate debris in a given order and visited at given
dates. The path is subdivided into m successive sub-paths of n debris each. For the
debris number j (1 ≤ j ≤ N ), we denote:

• d j the position of the debris j on the path. The set (d1, d2, . . . , dN ) is a permutation
of (1, 2, . . . , N ).

• t j the rendezvous date with the debris j . The dates are strictly increasing along the
path: t1 < t2 < · · · < tN .

• C j the cost of the transfer from the debris d j at the date t j to the next debris d j+1
at the date t j+1.

• The cost C j is a function of (t j , t j+1, d j , d j+1). It represents the fuel mass required
by the orbital transfer.

The mission number i(1 ≤ i ≤ N ) is the sub-path dealing with the n successive debris
of the path starting from the debris at the position (i − 1) × n + 1 to the debris at the

123



J Optim Theory Appl (2015) 167:195–218 201

position (i − 1) × n + n. We denote Ki the cost of the mission number i and K the
cost of the most expensive mission which is to be minimized.

min
d j ,t j

K with

{
K = max

1≤i≤m
(Ki )

Ki = ∑n
j=1 C(i−1)n+ j

The cost function K accounts for the debris from the position 1 to the position m × n.
The remaining debris from m × n + 1 to N are left on orbit. The goal is to choose the
debris order on the path (d j ) and the rendezvous dates (t j ) in order to minimize the
cost of the most expensive mission.

A major issue lies in the valuation of the edges representing the orbital transfers
between successivedebris on thepath.ThevaluationC j of the j th edge is the propellant
required to perform the orbital transfer. The formulation of the transfer problem is
presented in the next section.

2.2 Transfer Problem

Finding the minimal fuel trajectory from a debris to another is a difficult optimal
control problem in the general case. This transfer problem is simplified by consider-
ing a generic transfer strategy adapted to the mission specificities and to the vehicle
propulsion system. The optimal control problem reduces thus to a nonlinear program-
ming problem with two variables and one constraint that can be solved in an efficient
manner.

2.2.1 Debris Orbits

Most low Earth orbit (LEO) debris move on near-circular orbits. At a given date t0 a
circular orbit is defined by its radius or semi-major axis a(t0) and two angles I (t0) and
�(t0) orientating the orbital plane in the Earth inertial reference frame (Fig. 3). The
inclination I is the angle of the orbital plane with the Earth Equator. The line of nodes
is the intersection of the orbital plane with the Equator. The RAAN � is the angle
between the X axis of the Earth reference frame and the direction of the ascending
node (node crossed with a northwards motion).

The orbital parameters are constant in the Keplerian model. The main perturbation
to this model comes from the Earth flattening. The Earth equatorial bulge adds a
perturbing force (J2 zonal term) on the motion, causing a precession of the orbital
plane. The RAAN precession rate [14] depends on the orbit radius a and inclination I.

�̇ = −3

2
J2

√
μR2

T a
− 7

2 cos I

with RT = 6378137m (Earth equatorial radius), μ = 3.986005.1014 m3/s2 (Earth
gravitational constant), J2 = 1.08266 (first zonal term)

The J2 perturbation causes no secular change on the semi-major axis, the eccen-
tricity and the inclination. The precession rate �̇ is therefore constant, and the RAAN
evolves linearly with the time: �(t) = �(t0) + �̇(t − t0)
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Fig. 3 Orbital parameters
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Table 2 Successive orbits during the transfer

Propelled transfer 1 Drift phase Propelled transfer 2
Orbit Debris 1 Drift start Drift finish Debris 2
Date t1 td1 td2 t2

Radius a1 ad ad a2

Inclination I1 Id Id I2

RAAN debris 1 Ω1(t1) Ω1(td1) Ω1(td2) Ω1(t2)
RAAN debris 2 Ω2(t1) Ω2(td1) Ω2(td2) Ω2(t2)
RAAN vehicle Ωv(t1) = Ω1(t1) Ω v(td1) Ω v(td2) Ω v(t2) = Ω2(t2)

For a sun-synchronous orbit (SSO), the precession rate matches the Sun direction
motion (0.986deg/day). This property favors the Earth observation since a given lat-
itude is always flown over at the same local solar time. Most debris stemming from
spent observation satellites are consequently on nearly sun-synchronous orbits.

2.2.2 Transfer Strategy

The simplifications of the transfer problem are based on the mission specificities:

• The orbits of the targeted debris (old observation satellites) are assumed to
be circular. The real orbits of such debris have indeed negligible eccentricities
(e < 0.01).

• The mean removal rate (five debris per year) leaves enough time to use the J2 nodal
precession in order to perform the RAAN change at null fuel consumption.

The generic transfer strategy consists in bringing the vehicle on a circular drift orbit
andwait until the RAANchange is completed. The transfer is split into a first propelled
transfer from the debris 1 orbit to the drift orbit, a waiting duration on the drift orbit,
and a second propelled transfer from the drift orbit to the debris 2 orbit. The transfer
starts at a given date t1 and ends at a given date t2. The orbital parameters of the
successive orbits are denoted in the Table 2.

The rendezvous in anomaly with the debris 2 is neglected in terms of both duration
and consumption compared to the overall transfer. This generic transfer strategy using
the J2 precession to control the RAAN at null fuel consumption is near-optimal as long
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as a sufficient duration (t2− t1) is allocated. For short durations, this strategy would no
longer be possible and the RAAN change should be realized by propelled maneuvers
at the expense of a larger fuel consumption. Two modelings of the propelled transfers
are considered depending whether the SDC vehicle uses a high-thrust (Sect. 2.2.3) or
a low-thrust propulsion system (Sect. 2.2.4).

Remark 2.1 It can be more economical to complete the transfer at a date prior to t2
when the initial orbit precession rate is sufficient to naturally compensate the RAAN
difference between the debris 1 and 2 within the allocated duration. In such a case the
drift orbit is useless. The vehicle waits on the initial orbit (debris 1), and the transfer
toward the debris 2 takes place when the RAAN difference is nullified. The final date
is then lower than t2. This case is accounted in the transfer strategy by allowing a drift
orbit identical to the debris 1 orbit and by adding an optional waiting phase on the
debris 2 orbit until reaching the fixed final date t2.

2.2.3 High Thrust Propulsion

In the case of a high-thrust engine the propelled orbital transfers are modeled as
Hohmann transfers [14,15] with impulsive maneuvers. Each transfer (from debris 1
to drift, then from drift to debris 2) is achieved by two impulses with split inclina-
tion change. The inclination of the intermediate elliptical orbit is computed using a
near-optimal approximation derived by Lisowski [15]. The approximation consists in
minimizing the sum of the squared velocity impulses (instead of the impulses norm).
An analytical solution can thus be found with a limited deviation from the true min-
imum. The transfer strategy is depicted on the Fig. 4, with the velocity impulses
associated to the Hohmann transfers.

The Hohmann transfer durations (about 1h) are negligible wrt the drift duration
(several days or weeks). The RAAN precession due to the J2 may be neglected during
these transfers:

td1 ≈ t1 ⇒ �v(td1) ≈ �v(t1)
t2 ≈ td2 ⇒ �v(t2) ≈ �v(td2)

The transfer total cost is the sum of the four velocity impulses. It does not depend on
the vehicle thrust level.

2.2.4 Low-Thrust Propulsion

In the case of a low-thrust engine the propelled orbital transfers are modeled as Edel-
baum transfers with continuous thrusting. Each transfer (from debris 1 to drift, then
from drift to debris 2) is achieved inminimum timewith continuous inclination change
[14,16,17]. The Edelbaummodel assumes a constant acceleration level. In order to get
a refined assessment of the transfer duration and cost, the solution is computed in two
stages: first with the initial acceleration level and then with the average acceleration
level estimated from the first solution. The transfer strategy is depicted on the Fig. 5
with the spiraling trajectories associated to the Edelbaum transfers.
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Fig. 5 Low-thrust transfer strategy

Opposite to the high-thrust case, the durations of the Edelbaum transfers are no
longer negligible wrt the drift duration and they induce significant RAAN changes
that are accounted as follows.

The Edelbaum solution yields the minimal time transfer between mutually inclined
circular orbits, assuming a constant acceleration level. The Edelbaum model is based
on an averaging of the dynamic equations assuming that the orbit remains circular
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throughout the transfer. During each revolution, the thrust direction keeps a constant
angle with the orbital plane, with a sign switch at the antinodes. This averaged control
law does not modify directly the RAAN. The RAAN evolution is only due to the
J2 perturbation, which acts constantly throughout the transfer phases. Knowing the
evolution of the mean orbit radius a(t) and inclination I (t) throughout the Edelbaum
transfer, the mean RAAN precession rate can be computed:

�̇(t) = −3

2
J2

√
μR2

T a(t)−
7
2 cos I (t)

The RAAN variation during the propelled transfer is then assessed by a numerical
integration along the Edelbaum trajectory from the initial date t1 to the final date t2.

�v(td1) = �v(t1) + ∫ td1
t1

�̇v(t)dt (during the first propelled transfer)

�v(t2) = �v(td2) + ∫ t2
td2

�̇v(t)dt (during the second propelled transfer)

The velocity impulse associated to the Edelbaum solution is obtained as the
product of the mean acceleration level (denoted f ) by the transfer duration
(t2− t1) : �V = f (t2− t1). The transfer total cost is measured by summing the veloc-
ity impulses of the two propelled transfers (from debris 1 to drift, then from drift to
debris 2). Opposite to the high-thrust case, the cost depends on the vehicle thrust level.

Remark 2.2 The transfer strategy based on Edelbaum transfers is not globally optimal.
Indeed, the Edelbaum solution yields the minimal time transfer without taking into
account the RAAN change. The RAAN change is assessed a posteriori along the
Edelbaum trajectory. The drift orbit parameters ad and Id must then yield the adequate
precession �̇d rate to achieve the required RAAN final value.

This may lead to a more costly drift orbit regarding the velocity impulses. Cheaper
solutions could be found by performing a part of the RAAN change during the pro-
pelled transfers. The possible cost gain may be significant depending on the relative
durations of the propelled phases wrt the drift phase. Variants of the Edelbaum solu-
tion have been derived considering alternative constraints [17] (RAAN change instead
of inclination change, altitude bound). For the SDC problem, an analytical solution
taking into account the three transfer phases (propelled—drift—propelled) has been
investigated and it will be presented in a separate paper.

It is assumed for the SDC problem that a sufficient acceleration level is available on
the vehicle, so that the propelled durations remain small wrt the drift duration. With
this assumption the Edelbaum transfer strategy can be considered as nearly optimal.

2.2.5 Transfer Problem Formulation

The fuel consumed by the transfer is linked to the velocity impulse by the rocket
equation [14,15]:

�V12 = veln
M1

M2
⇔ mc = M1 − M2 = M1

(
1 − e− �V12

ve

)

with ve: engine exhaust velocity. M1: initial vehicle mass (date t1), M2: final vehicle
mass (date t2).
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For a given initial mass M1, minimizing the fuel consumption is equivalent to
minimizing the velocity impulse. The velocity impulse is preferred as cost function
rather than the mass consumed. It is indeed an intrinsic cost measure independent
on the transfers previously realized by the vehicle, opposite to the mass consumption
which depends on the vehicle gross mass at the transfer beginning. It is therefore more
suited to the optimization of the successive transfers required by the SDCmission (see
Sect. 3.3 for the mission cost assessment).

The transfer starts at the fixed date t1 and finishes at the fixed date t2. The variables
are the drift orbit radius ad and inclination Id . The initial vehicle RAAN is �v(t1) =
�1(t1), and the final RAAN value must coincide with the RAAN of the debris 2:
�v(t2) = �2(t2).

The problem formulates as a reduced nonlinear programming (NLP) problem with
2 variables and 1 constraint:

min
ad ,id

�V12 s.t.�v(t2) = �2(t2)

3 Solution Method

The global problem consists in a series of continuous problems (transfer trajectories
between debris) embedded within a combinatorial problem (path between the selected
debris). It mixes integer variables (debris selection and order) and real variables (ren-
dezvous dates, drift orbit parameters). Even taken separately these sub-problems are
intrinsically hard. The global problem cannot be solved in a direct manner. The
approach proposed consists applying a SA algorithm to the path problem, using a
RSM to assess the transfer costs.

3.1 Simulated Annealing

Simulated annealing is a stochastic optimization algorithm inspired by the metallurgic
process of annealing [6,7]. It has been applied successfully to combinatorial problems
with a large number of local minima, and particularly to the TSP. Starting from an
initial solution it allows escaping local minima by accepting random uphill moves
with a varying probability level and exploring widely the cost function landscape.
The probability level is progressively decreased through a “temperature” parameter
T . When the temperature is progressively lowered, the solution freezes on the best
minimum found. The main settings of the algorithm are the initial temperature, the
decrease rate and the definition of the random perturbations (or moves) applied to the
current solution.

Four elementary moves are implemented for the SDC problem: insertion, swap,
permutation and date shift (Fig. 6a–d). The insertion, swap and permutation modify
the debris order on the path similar to the classical TSP [7]. The date shift changes the
date of a node while keeping the path order. The new date remains comprised between
the previous and next node date.

A single evaluation (or try) of the SA algorithm consists in:
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2 1 3 4 5

1 3 4 52 

231 4 5

321 4 5

52 1 3 4 

25 1 4 3 1 3 4 52

1 3 4 52

a b

c d

Fig. 6 a Insertion (2 is inserted after 4). b Swap (2 and 3 are exchanged). c Permutation (the leg from 2 to
5 is reversed). d Date shift (the date 2 is shifted between date 1 and date 3)

• Selecting randomly one of the three elementary path moves (insertion, swap, per-
mutation)

• Selecting randomly the nodes where the move is applied
• Performing the move to get the trial path
• Selecting randomly a node on the path
• Shifting randomly the node date between the previous and the next node date
• Assessing the cost of the trial solution
• Accepting the try with the probability level defined by the current temperature

An iteration of the SA algorithm consists in decreasing the temperature with a fixed
rate α after a given number of tries. A typical decrease rate value is α = 0.999 every
1,000 tries (this depends on the problem size).

The algorithm is initiated either with a random solution or with a greedy solution.
For example, the initial solution can be built by the best insertion method: The nodes
are inserted successively in the path at the position minimizing the cost. The initial
temperature is set in order to accept a random perturbation of the initial solution
with a 90% probability. This allows large solution changes during the first iterations.
When no progress is made, a local search is performed by trying systematically all the
elementary perturbations on the last solution. If this search is successful, the iterations
are restarted from the improved solution, else the algorithm is stopped.

Millions of trials are necessary to achieve a satisfactory convergence of the SA
algorithm. Assessing the exact cost of a trial solution requires solving a series of
transfer problems. Although the NLP transfer problem can be solved in a robust and
efficient manner by a nonlinear optimizer, the computation still requires a few seconds
discarding an on-line optimization. In order to get reasonable computation times, the
costs are assessed using a RSM based on cost matrices.

3.2 Response Surface Modeling

The cost of an elementary transfer from any debris to any other depends on the starting
date and on the transfer duration. For a given starting date τ and a given transfer
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Date τ / Duration Δτ Debris k (1 ≤ k ≤ N)

Debris j (1 ≤ j ≤ N) Cost C(τ,Δτ,j,k)

Fig. 7 Cost matrix for the date τ and the duration �τ

duration �τ , the transfer costs between all the pairs of the N candidate debris are
assessed. This requires N × (N − 1) elementary optimizations whose results are
stored into a N × N cost matrix represented on the Fig. 7.

The value C(τ,�τ, j, k) stored at the row j and column k �= j of the matrix is
thus the minimum velocity impulse to go from the debris j at the date τ to the debris
k at the date τ + �τ . The matrix diagonal is unfilled at this stage. It will be used
later to account for the cost of the debris operations. In order to account for the time
dependency of the SDC problem, a series of cost matrices are assessed for a mesh of
discretized starting dates and transfer durations covering the time span of the cleaning
program.

We denote:

T0 the date of the beginning of the cleaning program
�T the total duration of the cleaning program
nt the number of discretized starting dates
nd the number of discretized transfer durations
τi the starting date number i in the grid (1 ≤ i ≤ nt )

�τd the transfer duration number d in the grid (1 ≤ d ≤ nd)

For any starting date τi , any duration �τd and any pair of debris j and
k �= j,C(i, d, j, k) is the cost of the transfer going from the debris j at the date
τi to the debris k at the date τi +�τd . The sub-matrix C(i, d,1:N ,1:N ) of size N × N
contains the costs of all the elementary transfers starting at the date τi with a dura-
tion �τd . N × (N − 1) optimizations are required for solving the associated transfer
problems. Some transfers may be unfeasible in the prescribed duration due to bounds
on the drift orbit parameters (minimal altitude) that limit the available precession rate.
In such cases, the corresponding matrix element is set to an arbitrarily large value, so
that it will not be selected during the path optimization. The total number of N × N
sub-matrices is nt ×nd , corresponding to the mesh of nt dates and nd durations. Some
of these sub-matrices are useless when they correspond to a final date (τi + �τd)

beyond the ending date of the cleaning program (T0 + �T ). These useless matrices
are not computed and filled with large values indicating the transfer unfeasibility.

The Fig. 8 illustrates the mesh of nt × nd cost sub-matrices spanning the dates of
the cleaning program.

A total of nt × nd × N × (N − 1) optimizations is run to fill the mesh of cost
matrices. This mesh is then used within the simulated annealing algorithm to assess
the cost of a trial solution through a RSM as follows.

A trial solution is a single path visiting the N candidates debris as for the TSP.
It is defined by the successive debris numbers (d1, d2, . . . , dN ) and the successive
rendezvous dates (t1 < t2 < · · · < tN ). The pth edge on the trial path goes from the
debris dp at the date tp to the debris dp+1 at the date tp+1. The corresponding transfer
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τ1 - - -C(1,1,:,:)

Δτ1 Δτ2 Δτ3 Δτ4 Δτnd

τ2 - - -

τ3

Useless 
matrices

τnt - - -

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

C(1,2,:,:) C(1,3,:,:) C(1,4,:,:)

C(2,1,:,:) C(2,2,:,:) C(2,3,:,:) C(2,4,:,:)

C(3,1,:,:) C(3,2,:,:) C(3,3,:,:) C(3,4,:,:)

C(nt,1,:,) C(nt,2,:,) C(nt,3,:,) C(nt,4,:,)

C(1,nd,:,)

C(2,nd,:,)

C(3,nd,:,)

C(nt,nd,:,)

-
-

-

- - -

Fig. 8 Mesh of discretized cost matrices

duration is denoted �tp = tp+1 − tp. The RSM consists in a bilinear interpolation on
the mesh of cost matrices C(i, d, j, k) with the following steps:

• Locating the starting date interval (index i): τi ≤ tp < τi+1
• Locating the duration interval (index d): �τd ≤ �tp < �τd+1
• Selecting the matrices elements at the row dp (starting debris) and the column dp+1
(arrival debris)

• Performing a bilinear interpolation on the intervals [τi ; τi+1] and [�τd;�τd+1]
This yields the interpolated cost Cint(tp, �tp, dp, dp+1) of the pth edge (1 ≤ p ≤
n × m). The path is then sub-divided into m sub-paths of n nodes each, represent-
ing the successive missions. The cost Ki of the i th sub-path is the sum of its edge
costs, and the cost of the trial solution is the cost of the most expensive sub-path:
K = Max(K1, . . .Km)

3.3 Mission Cost

The actual cost function for the SDC problem is the fuel consumption per mission,
which is the driver for the vehicle design. This consumption depends on the vehi-
cle mass through the rocket equation. It is not an adequate measure for the transfer
valuations since it depends on the transfer location along the path. Rather than the
fuel consumption, the cost matrices store the velocity impulses, which are intrinsic
measures of the transfer costs.
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The interpolated cost Cint(tp, �tp, dp, dp+1) gives the required velocity impulse
�Vp for the pth transfer going from the debris dp at the date tp to the debris dp+1 at
the date tp+1 = tp + �tp.

The propellant consumed for this pth transfer is then assessed from the rocket
equation.

mc(tp) = M(tp)

(
1 − e− �Vp

ve

)

where M(tp) is the vehicle gross mass at the pth transfer beginning. ve is the engine
exhaust velocity.

In addition to the transfer maneuvers, the mission assessment must also account for
the debris operations, in terms of both durations and released masses. A fixed duration
denoted �toper is allocated to each debris operations (observation, capture and deor-
bitation). This duration is directly taken into account when building the cost matrices
by including a last waiting sequence of duration �toper in the transfer modeling, once
the targeted debris is reached. An elementary transfer going from a debris 1 at the date
t1 to a debris 2 at the date t2 is by this way completed at the date t2 − �toper. The
operation durations between the successive transfers are thus implicitly accounted in
the path valuation through the RSM.

The operation costs denoted Coper are stored on the cost matrix diagonals, so that
they can be accounted in the mission global assessment. Two deorbitation options are
envisioned: either a deorbitation of the debris by the SDC vehicle or an autonomous
deorbitation of the debris with a “kit” supplied by the SDC vehicle.

The storage depends on the deorbitation option as follows.

• The first option consists in a deorbitation of the debris by the SDC vehicle. For
each debris the velocity impulse �Voper required by the deorbitation depends
on the debris altitude and it can be assessed a priori. The deorbitation velocity
impulses of the N debris are stored on the cost matrix diagonals. For an edge
going from the debris j to the debris k, the deorbitation cost �Voper,k of the
debris k is added to the transfer interpolated cost, resulting in an additional fuel
consumption.

• The second option consists in an autonomous deorbitation of the debris using a
“kit” supplied by the SDC vehicle. The kit of mass moper is attached to the debris,
and then, the debris is released to perform the deorbitation maneuver. In that option,
the masses of the N kits designed respectively for the N debris are stored on the
cost matrix diagonals. At the end of the propelled transfer arriving on the debris
k the vehicle gross mass is decreased from the kit mass moper,k released to the
debris k.

The cost of the debris operations is thus taken into accountwithin the path optimization,
whatever the deorbitation option selected.

It is also possible to consider weightswk on the debris list to account for their prior-
ity, depending for example on their dangerousness. These weights come as multipliers
on the cost matrix columns (arrival debris). The cost of an edge going from the debris
j to the debris k is then assessed as: wk

(
Cint(tp,�tp, j, k) + Coper(k)

)
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3.4 Practical Process

The debris orbits are retrieved at a given date from a database like the TLE of the
NORAD [18]. A mesh of nt discretized starting dates and nd transfer durations is
chosen in order to span the cleaning program forecast dates [T0; T0 + �T ]. The grid
step results from a compromise between the response surface accuracy and the total
computation time. The following choices based on the mean duration per mission and
on the mean duration per transfer yield in practice an adequate compromise:

• nt ≈ n × m to associate one starting date per selected debris
with

τ1 = T0 (cleaning program starting date)
τnt = T0 + �T (cleaning program ending date)

• nd ≈ n to associate one transfer duration per sub-path debris
with

�τ1 = �T/m/2/n (minimum = half of the mean transfer duration)
�τnd = �T/m/2 (maximum= half of the mean mission duration)

In order to avoid extrapolations that could lead to erroneous cost assessments, it is
also necessary to keep some “bounding matrices” in the mesh, particularly:

• A last row with a starting date greater than the ending date of the cleaning program.
This lead to choose as last starting date: τnt = T0 + �T

• On each row (with a starting date τi ) either the maximal transfer duration (�τnd),
or the smallest transfer duration �τd exceeding the ending date of the cleaning
program (τi + �τd > T0 + �T ).

The nt × nd × N × (N − 1) elementary transfer optimizations are run to fill the cost
matrices. These optimizations are independent from each other, and they are paral-
lelized on several processors. Each optimization is a NLP problem with 2 variables
(drift orbit) and 1 constraint (final RAAN value). To spare some computation time, a
filter discards the useless cases (ending date exceeding the end of the cleaning program)
and the unfeasible transfers (requiring a drift altitude out of the allowed bounds). For
such cases an arbitrary large cost value is stored in the corresponding matrix element,
so that it will not be selected on the path.

The optimization variables (drift orbit radius and inclination) are initialized auto-
matically, depending on the debris relative RAANvalues. The convergence is typically
achieved in a few seconds.

The simulated annealing algorithm is applied, with the cost function assessed by a
RSM based on the cost matrices. The variables are the debris order and the rendezvous
dates. The debris operations are accounted in terms of duration (taken into account the
cost matrices) and cost (stored on the matrix diagonals depending on the deorbitation
option).

At the convergence a solution path is issued defining the m missions of n debris
each, with the optimized rendezvous dates. The convergence is achieved after some
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million trial solutions, with a typical computation time of a few minutes similar to a
classical TSP problem.

The cost function for the simulated annealing has been computed through a RSM
based on interpolations. The real cost is actually nonlinear, and it can be significantly
different of the RSM cost, depending on the mesh discretization. In order to refine the
mission planning, and to get a reliable cost assessment, the missions are re-optimized
using a simulation-based software. The debris order is fixed, as well as the mission
initial and final dates. For each mission, the rendezvous dates and the intermediate
drift orbits are re-optimized to minimize the total �V . The refined assessment yields
the requirement for the SDC vehicle design.

4 Application Case

The optimization method is illustrated on an application case with 21 debris. The
cleaning program consists of 3 missions visiting 5 debris each one over a total dura-
tion of 45 months. Each mission requires the launch of an expendable SDC vehicle.
This application case assumes that the SDC vehicle is equipped with a high-thrust
propulsion system, but the solution method applies identically to the low-thrust case.
For confidentiality reasons regarding current design studies, this application case con-
siders fictitious debris and takes the velocity impulse as cost function instead of the
vehicle mass. Nevertheless this application case is representative of the targeted debris
population and of the overall optimization process.

4.1 Debris List

A list of 21 debris on circular orbits is considered, with the altitude ranging from 700
to 900 km, the inclination ranging from 97 to 99deg and the initial RAANbetween 0 to
360deg. The values of altitude, inclination and initial RAAN are uniformly distributed
in their respective intervals. The Table 3 provides the orbital parameters of the 21
debris, with their nodal precession rate in the last column. The orbits are nearly sun-
synchronous with precession rates close to the Sun precession rate (360deg in 365.25
days = 0.986 deg/day).

For real cases, the orbital parameters are retrieved from official databases like the
NORAD TLEs [18].

4.2 Cleaning Program Specification

The goal is to design the lightest vehicle able to perform the 3 successive missions.
Each mission has to visit 5 debris, so that 15 debris out of the 21 candidates will
be visited. An average duration of 3 months per debris is considered, leading to a
total duration of 45 months (1,370 days) for the overall cleaning program. A 5 days
duration is also allocated to each debris operations. The altitude of the drift orbits is
bounded between 400 and 2,000 km. The mission consists in visiting successively
the debris, without deorbitation maneuvers. The cost function is the total velocity
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Table 3 List of 21 candidate debris

Debris
number

Altitude
(km)

Inclination
(deg)

Initial RAAN
(deg)

Precession
rate (deg/day)

Debris 1 700 97.0 0 0.8429

Debris 2 710 97.3 90 0.8745

Debris 3 720 97.6 180 0.9058

Debris 4 730 97.9 270 0.9367

Debris 5 740 98.2 018 0.9672

Debris 6 750 98.5 108 0.9975

Debris 7 760 98.8 198 1.0273

Debris 8 770 97.1 288 0.8260

Debris 9 780 97.4 36 0.8565

Debris 10 790 97.7 126 0.8866

Debris 11 800 98.0 216 0.9165

Debris 12 810 98.3 306 0.9460

Debris 13 820 98.6 54 0.9752

Debris 14 830 98.9 144 1.0040

Debris 15 840 97.2 234 0.8094

Debris 16 850 97.5 324 0.8389

Debris 17 860 97.8 72 0.8681

Debris 18 870 98.1 162 0.8969

Debris 19 880 98.4 252 0.9254

Debris 20 890 98.7 342 0.9536

Debris 21 900 99.0 360 0.9815

impulse �V required for the orbital transfer maneuvers (for real application cases,
the cost function is the vehicle gross mass). The vehicle is assumed to be powered by
a high-thrust engine.

4.3 Cost Matrices

The first stage of the solving method consists in building the cost matrices. Each cost
matrix contains the transfer costs from any debris to any other for a given starting
date and a given transfer duration. Filling one cost matrix requires solving 20 × 21
elementary transfer problems.

The matrices are assessed for a grid of discretized starting dates and durations,
in order to span the total duration of the 3 missions. The application case specifies
that 15 debris have to be visited within a 45 months period. We choose the following
discretization:

• 16 starting dates ranging from 0 to 45 months
• 6 transfer durations ranging from 20 to 200 days
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Table 4 Cleaning program (SA solution)

Dates (days) Debris visited Total �V (m/s)

Mission 1 0–545.3 16–20–21–5–17 820.0

Mission 2 552.7–935.7 15–3–14–11–8 838.0

Mission 3 942.1–1365.9 1–4–9–7–12 837.5

Table 5 Mission planning (SA solution)

Mission 1 Mission 2 Mission 3
Debris 
number

Date
(days)

ΔV
(m/s)

Debris 
number

Date
(days)

ΔV
(m/s)

Debris 
number

Date
(days)

ΔV
(m/s)

16 3.1 285.8 15 552.7 145.0 1 942.1 154.7
20 184.8 224.4 3 616.0 375.5 4 1014.6 362.8
21 375.0 216.0 14 771.5 140.4 9 1179.8 246.9
5 488.7 93.9 11 831.9 177.1 7 1268.0 73.2

17 545.3 820.0 8 935.7 838.0 12 1365.9 837.5

The total number of optimizations is 16× 6× 20 × 21 = 40,320. Each optimization
is achieved in about 10 s, leading to a total computation time of 112h. With a paral-
lelization on 10 processors, the task is completed in a half day. The date and duration
grids and the cost matrices are written in an output file. The file is directly usable by
the simulated annealing algorithm in order to build the RSM.

4.4 Path Optimization

The second stage of the solving method consists in finding the optimal mission plan-
ning leading to the minimal �V requirement per mission. The cost is assessed by
interpolation in the cost matrices. The convergence of the simulated annealing is
obtained in about 10min with 200 million trials.

The Table 4 presents the cleaning program found with the simulated annealing
algorithm. The corresponding mission planning is detailed in the Table 5. It can be
observed than the respective missions have close �V ranging from 820 to 838 m/s.
This balanced cost between the missions is an indication of a good behavior of the
simulated annealing algorithm.

A sample of the last iterations (Table 6) shows that several paths yield close cost
values. The minimal cost found (838 m/s) is the cost of the most expensive mission
which is in this case the second mission (Tables 4 and 5).

4.5 Refined Solution

In order to get a reliable cost assessment, the three missions are re-optimized using a
simulation-based software. The debris order is fixed, as well as the mission initial and
final dates. For each mission, the rendezvous dates and the intermediate drift orbits are
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Table 6 Simulated annealing iterations (sample)

ΔV (m/s) Debris order
900.6 6 18 14 3 15 19 16 7 4 1 17 20 21 5 10 13 2 8 12 11 9
891.2 6 18 14 3 15 19 16 7 4 1 20 17 21 5 10 13 9 8 11 2 12
889.2 2 13 17 5 21 15 3 14 11 8 1 4 9 7 12 19 16 18 6 10 20
884.0 2 13 17 5 21 15 3 14 11 8 1 4 9 7 12 19 16 18 6 10 20
881.7 2 13 17 5 21 15 3 14 11 8 1 4 9 7 12 19 16 18 6 10 20
879.3 1 21 5 9 20 15 3 14 11 8 16 19 4 7 12 18 6 13 2 17 10
871.8 1 21 5 9 20 15 3 14 11 8 16 19 4 7 12 18 6 13 2 17 10
838.0 16 20 21 5 17 15 3 14 11 8 1 4 9 7 12 19 2 13 18 6 10

Table 7 Cleaning program (simulation)

Dates (days) Debris visited Total �V (m/s)

Mission 1 0–545.3 16–20–21–5–17 811.1 (820.0)

Mission 2 552.7–935.7 15–3–14–11–8 711.9 (838.0)

Mission 3 942.1–1365.9 1–4–9–7–12 785.1 (837.5)

Table 8 Mission planning (simulation)

Mission 1 Mission 2 Mission 3
Debris 
number

Date
(days)

ΔV
(m/s)

Debris 
number

Date
(days)

ΔV
(m/s)

Debris 
number

Date
(days)

ΔV
(m/s)

16 3.1 287.1 15 552.7 141.5 1 942.1 119.2
20 183.1 210.8 3 563.3 291.8 4 976.8 411.8
21 389.3 202.2 14 781.7 132.2 9 1143.4 183.5
5 513.6 111.0 11 823.0 146.4 7 1177.3 70.6

17 545.4 811.1 8 935.8 711.9 12 1365.8 785.1

re-optimized to minimize the total mission �V . The rendezvous with the successive
debris is constrained with a maximum RAAN deviation of 1 deg.

The Table 7 presents the cleaning program found after the dates and maneuvers
re-optimization, for the high-thrust case. The total �V per mission is given in the last
column (in parenthesis the previous RSM assessment from the simulated annealing).
The corresponding mission planning is detailed in the Table 8.

Comparing to the SA results using the RSM cost assessment, all the missions are
improved owing to the drift orbit parameters refined optimization. The main changes
are marked by the orange-colored cells.

• The improvement on the mission 2 comes mainly from the second leg whose �V
is reduced of 85m/s. This is explained by the starting date advance (−50 days),
which increases the transfer duration up to 218 days. Such a solution could not be
detected with the RSM, because the mesh was defined with a maximum transfer
duration of 200 days. In such a case, it could be useful to iterate the whole process
with an updated discretization.

• The improvement on the mission 3 comes mainly from the advance of the second
rendezvous date (−40 days). The�V of the second leg is increased of about 50m/s,
but this is globally counterbalanced by the gains on the first and the third legs.
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Table 9 RAAN values at the mission beginning

Mission 1 (t1 = 3.1 days) Mission 2 (t6 = 552.7 days) Mission 3 (t11 = 942.1 days)
Debris
number

RAAN
(deg)

Debris
number

RAAN
(deg)

Debris
number

RAAN
(deg)

16 -33.4 15 -38.6 1 74.1
20 -15.1 3 -39.4 4 72.4
21 3.0 14 -21.1 9 122.8
5 21.0 11 2.5 7 74.1

17 74.7 8 24.5 12 117.2

Table 10 Re-optimized missions

Mission 1 SDC vehicle Transfer Drift orbit Debris orbit RAAN (deg)
Edge

number
Initial
debris

Final
debris

Date
(days)

Total DV
(m/s)

Duration
(days)

DV
(m/s)

Altitude
(km)

Inclination
(deg)

Altitude
(km)

Inclination
(deg)

SDC
Vehicle Debris

1 16 3.1 0 3.1 0 850.0 97.50 326.6 326.6
2 16 20 183.1 287.1 180.0 287.1 708.0 98.84 890.0 98.70 156.7 156.6
3 20 21 389.3 497.9 206.2 210.8 715.8 99.20 900.0 99.00 22.2 22.1
4 21 5 513.6 700.1 124.3 202.2 695.4 98.90 740.0 98.20 155.0 154.8
5 5 17 545.4 811.1 31.8 111.0 712.9 98.24 860.0 97.80 185.7 185.4

Mission 2 SDC vehicle Transfer Drift orbit Debris orbit RAAN (deg)
Edge

number
Initial
debris

Final
debris

Date
(days)

Total DV
(m/s)

Duration
(days)

DV
(m/s)

Altitude
(km)

Inclination
(deg)

Altitude
(km)

Inclination
(deg)

SDC
Vehicle Debris

1 15 552.7 0 3.1 0 840.0 97.20 321.7 321.4
2 15 3 563.3 141.5 10.6 141.5 830.3 96.93 720.0 97.60 330.5 330.2
3 3 14 781.7 433.3 218.4 291.8 572.5 98.55 830.0 98.90 209.2 208.8
4 14 11 823.0 565.5 41.3 132.2 812.4 98.93 800.0 98.00 250.5 250.2
5 11 8 935.8 711.9 112.9 146.4 825.9 97.10 770.0 97.10 341.4 340.9

Mission 3 SDC vehicle Transfer Drift orbit Debris orbit RAAN (deg)
Edge

number
Initial
debris

Final
debris

Date
(days)

Total DV
(m/s)

Duration
(days)

DV
(m/s)

Altitude
(km)

Inclination
(deg)

Altitude
(km)

Inclination
(deg)

SDC
Vehicle Debris

1 1 942.1 0 3.1 0 700.0 97.00 74.7 74.1
2 1 4 976.8 119.2 34.8 119.2 702.9 97.32 730.0 97.90 105.4 105.0
3 4 9 1143.4 531.0 166.6 411.8 412.4 98.29 780.0 97.40 295.9 295.3
4 9 7 1177.3 714.5 33.9 183.5 759.2 98.07 760.0 98.80 328.0 327.5
5 7 12 1365.8 785.1 188.6 70.6 763.7 98.69 810.0 98.30 158.8 158.1

A refined mesh discretization may help capturing these nonlinearities of the cost
function within the RSM.

Another interesting observation can be done by considering for each mission the
RAAN of the selected debris at the mission starting date (Table 9). It can be noted
that the debris assigned to each mission are somewhat gathered by their initial RAAN
values, in increasing order. This is not an absolute rule, since the optimal order also
depends on the other orbital parameters (radius and inclination). When large RAAN
differences exist at the mission starting date (for example for the third and fifth debris
of the mission 3), they are nullified by long transfer durations (up to 6 months).

The re-optimized mission planning is detailed in the Table 10. The last column
checks the RAAN constraint at the successive rendezvous with the debris. Some
observations can be done on the green- and orange-colored cells.

• The short drift durations (green cells) correspond to a drift orbit close to the starting
orbit. The natural precession on the initial orbit is nearly sufficient to reach the tar-
geted RAANvalue, so that there is no need for changing significantly the precession
rate (cf Remark 2.1). This reduces the �V required for the transfer.
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• The large drift durations (orange cells) correspond to low-altitude drift orbits. These
transfers require a large RAAN change achieved by both an accelerated precession
rate (low altitude) and a long duration (about 6 months). The costs of these legs
represent about half the mission cost.

5 Conclusions

In order to clean the near-Earth space from the most dangerous debris, a cleaning pro-
gram is envisioned. It consists of several successive missions, performed by identical
vehicles, in order to achieve a mean removal rate of five debris per year. A solution
method is proposed for the planning of these successive Space Debris Collecting mis-
sions. The goal is to minimize the fuel required by the most expensive mission, with
the perspective of designing a generic vehicle compliant of the cleaning program. The
problem mixes combinatorial optimization to select and order the debris among a list
of candidates, and continuous optimization to fix the rendezvous dates and to define
the minimum fuel orbital maneuvers. The solution method proposed consists in three
stages.

Firstly the orbital transfer problem is simplified by considering a generic trans-
fer strategy suited either to a high-thrust or a low-thrust vehicle. A response surface
modeling is built by solving the reduced problem for all pairs of debris and for dis-
cretized dates, and storing the results in cost matrices. This first stage is parallelized
on several processors. The results of this series of optimizations are stored in cost
matrices.

Secondly a simulated annealing algorithm is applied to find the optimal mission
planning. The cost function is assessed by interpolation on the response surface based
on the cost matrices. This allows the convergence of the simulated algorithm in a
limited computation time, yielding an optimal mission planning.

Thirdly the successive missions are re-optimized in terms of transfer maneuvers
and dates without changing the debris order. This continuous control problem is sim-
ulation based, taking into account the problem nonlinearities that were not captured
by the response surface modeling. It yields a refined solution with the performance
requirement for designing the future Space Debris Collecting vehicle.

The method is applicable for a large list of debris and for various assumptions
regarding the cleaning program (number of missions, number of debris per mission,
total duration, deorbitation scenario, high- or low-thrust vehicle). It is exemplified on
an application case considering a high-thrust propulsion system, with 3 missions to
plan, each mission visiting 5 near sun-synchronous debris to be selected in a list of 21
candidates.

Weights can be attributed to the debris in order to account for their dangerousness
and to assign if desired a priority in the selection process. The generic transfer strategy
can be considered as near optimal as long as a significant duration is allocated to
the drift phases. For a low-thrust vehicle, the available acceleration level must be
sufficient, in order that the propelled transfers do not exceed a few days. The overall
optimization process is automatized, and a mission planning can be established in a
few hours considering various specifications.

123



218 J Optim Theory Appl (2015) 167:195–218

Acknowledgments This work was carried out at Airbus Defence and Space in 2013–2014 in the frame
of the internal R&D. I would like to thank the R&D team project for having supported this work.

References

1. Position paper on space debris mitigation. International Academy of Astronautics (2005)
2. Klinkrad, K. (s.d.): Space debris models and risks analysis. ISBN:3-540-25448-X
3. Liou, J.: An assessment of the current LEO debris environment and what needs to be done to preserve

it for future generations (2008)
4. Walker R., Martin C.E., Stokes P.H., Wilkinson J.E. : Studies of space debris mitigation options

using the debris environment long term analysis (DELTA) model. In: 51st International Astronautical
Congress, Brazil, pp. IAA-00_IAA.6.6.07. Rio de Janeiro (2000)

5. Nemhauser, G.L., Rinnooy Kan, A.H.G., Todd, M.J.: Optimization. In: Handbooks in Operations
Research and Management Science, vol. 1. Elsevier, Amsterdam (1989)

6. Dréo J., Pétrowski A., Siarry P., Taillard E.: Métaheuristiques Pour l’optimisation Difficile. Eyrolles,
Paris (2003)

7. Schneider, J.J., Kirkpatrick, S.: Stochastic Optimization. Springer, Berlin (2006)
8. Cerf, M.: Multiple space debris collecting mission, debris selection and trajectory optimization. J.

Optim. Theory Appl. 156, 761–796 (2013). doi:10.1007/s10957-012-0130-6
9. Braun, Vitali, Lüpken, A., Flegel, S., Gelhaus, J., Möckel, M., Kebschull, C., Wiedemann, C., Vörs-

mann, P.: Active debris removal of multiple priority targets. Adv. Space Res. 51, 1638–1648 (2013)
10. Barbee, B.W., Alfano, S., Piñon, E., Gold, K., Gaylor, D.: Design of spacecraft missions to remove

multiple orbital debris objects. AAS 12-017. In: 35th Annual AAS Guidance and Control Conference
(2012)

11. Zuiani, F., Vasile, M.: Preliminary design of debris removal missions by means of simplified models
for low-thrust many revolution transfers. Int. J. Aerosp. Eng. 836250 (2012)

12. Olympio, J.T., Frouvelle, N.: Space debris selection and optimal guidance for removal in the SSO with
low thrust propulsion. Acta Astronaut. 99, 263–275 (2014)

13. Stuart, J., Howell, K., Wilson, R.: Application of multi-agent coordination methods to the design of
space debris mitigation tours. In: 24th International Symposium on Space Flight Dynamics (2014)

14. Chobotov, V.: Orbital Mechanics, 3rd edn. AIAA Education Series (2002)
15. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 3rd edn. Space Technology Library

(2007)
16. Leitmann, G.: Theory of maxima and minima. In: Optimization Technique with Applications to

Aerospace System. Academic Press, New York (1962)
17. Conway, B.A.: Spacecraft Trajectory Optimization. Cambridge University Press, Cambridge (2010)
18. NORAD Two Line Elements. http://www.celestrak.com/NORAD/elements/

123

http://dx.doi.org/10.1007/s10957-012-0130-6
http://www.celestrak.com/NORAD/elements/

	Multiple Space Debris Collecting Mission: Optimal Mission Planning
	Abstract
	1 Introduction
	1.1 Space Debris
	1.2 Problem Statement
	1.3 Method Overview
	1.4 Solution Method Proposed

	2 Problem Formulation
	2.1 Path Problem
	2.1.1 Problem Features
	2.1.2 Path Problem Formulation

	2.2 Transfer Problem
	2.2.1 Debris Orbits
	2.2.2 Transfer Strategy
	2.2.3 High Thrust Propulsion
	2.2.4 Low-Thrust Propulsion
	2.2.5 Transfer Problem Formulation


	3 Solution Method
	3.1 Simulated Annealing
	3.2 Response Surface Modeling
	3.3 Mission Cost
	3.4 Practical Process

	4 Application Case
	4.1 Debris List
	4.2 Cleaning Program Specification
	4.3 Cost Matrices
	4.4 Path Optimization
	4.5 Refined Solution

	5 Conclusions
	Acknowledgments
	References




