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Abstract In this paper, we provide a splitting method for finding a zero of the sum
of a maximally monotone operator, a Lipschitzian monotone operator, and a normal
cone to a closed vector subspace of a real Hilbert space. The problem is characterised
by a simpler monotone inclusion involving only two operators: the partial inverse of
the maximally monotone operator with respect to the vector subspace and a suitable
Lipschitzian monotone operator. By applying the Tseng’s method in this context, we
obtain a fully split algorithm that exploits the whole structure of the original problem
and generalises partial inverse and Tseng’s methods. Connections with other methods
available in the literature are provided, and the flexibility of our setting is illustrated
via applications to some inclusions involving m maximally monotone operators, to
primal-dual composite monotone inclusions, and to zero-sum games.

Keywords Composite operator · Partial inverse · Monotone operator theory ·
Splitting algorithms · Tseng’s method
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1 Introduction

This paper is concerned with the numerical resolution of the problem of finding a zero
of the sum of a set-valued, maximally monotone operator, a Lipschitzian monotone
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operator, and a normal cone to a closed vector subspace of a real Hilbert space. This
problem arises in a wide range of areas such as optimisation [1,2], variational inequal-
ities [3–5], monotone operator theory [6–9], partial differential equations [3,10,11],
economics [12,13], signal and image processing [14–16], evolution inclusions [17,18],
traffic theory [19,20], and game theory [21], among others.

When the single-valued operator is zero, the problem is solved in [9] via the method
of partial inverses. On the other hand, when the vector subspace is the whole Hilbert
space, the normal cone is zero and our problem is reduced to finding a zero of the
sum of two monotone operators. In this case, the problem is solved in [22] via the
forward–backward–forward splitting or Tseng’s method (see also [23] and the refer-
ences therein). In addition, in the case when the single-valued operator is cocoercive,
the problem is solved in [24].

In the general case, several algorithms are available in the literature for solving
our problem, but any of them exploits its intrinsic structure. The Tseng’s method [22]
can be applied to the general case, but it needs to compute the resolvent of the sum
of the set-valued operator and the normal cone, which is not always easy to imple-
ment. It is preferable to activate both operators separately. Some ergodic approaches
for solving this problem can be found in [25]. A disadvantage of these methods is
the presence of vanishing parameters, which usually leads to numerical instabilities.
The algorithms proposed in [9,23,26] permit us to find a zero of the sum of finitely
many maximally monotone operators by activating them independently, without con-
sidering vanishing parameters. However, these methods need the computation of the
resolvent of the single-valued operator, which is not easy to compute in general.
An algorithm proposed in [27] overcomes this difficulty by explicitly activating the
single-valued operator. However, this method does not take advantage of the vector
subspace involved. Indeed, by using product space techniques, the method in [27]
needs to store additional auxiliary variables at each iteration, which can be difficult in
high-dimensional problems.

In this paper, we propose a fully split method for finding a zero of the sum of
the three monotone operators detailed before, by exploiting each of their intrinsic
properties. The algorithm computes, at each iteration, explicit steps on the single-
valued operator and the resolvent of the partial inverse of the set-valued operator with
respect to the closed vector subspace [9]. This resolvent has an explicit expression
in several cases, and it reduces to a Douglas–Rachford step [7,28] in a particular
instance. In this case, our method can be perceived as a forward–Douglas–Rachford–
forward splitting, which generalises partial inverse and Tseng’s methods when the
single-valued operator is zero and the vector subspace is the whole Hilbert space,
respectively. We also provide connections with other methods in the literature, and we
illustrate the flexibility of our framework via some applications to inclusions involving
m maximally monotone operators, to primal-dual composite monotone inclusions,
and to zero-sum games. In the application to primal-dual inclusions, we introduce
a new operation between set-valued operators, called partial sum with respect to a
closed vector subspace, which preserves monotonicity and takes a central role in the
problem and algorithm. On the other hand, in continuous zero-sum games, we provide
an interesting splitting algorithm for calculating a Nash equilibrium that avoids the
computation of the projection onto mixed strategy spaces in infinite dimensions by
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performing simpler projections alternately. These applications enlighten the flexibility
and usefulness of the vector space setting, which appears naturally in a different form
in each instance.

The paper is organised as follows. In Sect. 2, we provide the notation and some
preliminaries. We also obtain a relaxed version of Tseng’s method [22], which is inter-
esting in its own right. In Sect. 3, a characterisation of our problem in terms of two
appropriate monotone operators is given and a method for solving this problem is
derived from the relaxed version of Tseng’s algorithm. Moreover, we provide connec-
tions with other methods in the literature. Finally, in Sect. 4, we apply our method
to the problem of finding a zero of a sum of m maximally monotone operators and a
Lipschitzian monotone operator, to a primal-dual composite monotone inclusion, and
to continuous zero-sum games. The methods derived in each instance generalise and
improve available algorithms in the literature.

2 Notation and Preliminaries

Throughout this paper,H is a real Hilbert space with scalar product denoted by 〈· | ·〉
and associated norm ‖ · ‖. The symbols ⇀ and → denote, respectively, weak and
strong convergence, and Id denotes the identity operator. The indicator function of a
subset C ofH is ιC , which takes the value 0 in C and+∞ inH\C . If C is non-empty,
closed, and convex, then the projection of x onto C , denoted by PC x , is the unique
point in Argminy∈C ‖x − y‖, and the normal cone to C is the maximally monotone
operator

NC : H ⇒ H : x �→
{{

u ∈ H : (∀y ∈ C) 〈y − x | u〉 ≤ 0
}
, if x ∈ C;

∅, otherwise.
(1)

An operator T : H → H is β–cocoercive for some β ∈ ]
0,+∞[

iff, for every x ∈ H
and y ∈ H, 〈x − y | T x − T y〉 ≥ β‖T x − T y‖2, it is χ -Lipschitzian iff, for every
x, y ∈ H, ‖T x − T y‖ ≤ χ‖x − y‖, it is non-expansive iff it is 1-Lipschitzian, and
the set of fixed points of T is given by Fix T .

We denote by gra A = {
(x, u) ∈ H × H : u ∈ Ax

}
the graph of A : H ⇒ H, by

JA = (Id+A)−1 its resolvent, by dom A = {
x ∈ H : Ax �= ∅

}
its domain, and by

zer A = {
x ∈ H : 0 ∈ Ax

}
its set of zeros. If A is monotone, i.e., for every (x, u)

and (y, v) in gra A, 〈x − y | u − v〉 ≥ 0, then JA is a single-valued, non-expansive
operator. In addition, A is maximally monotone iff dom JA = H. Let A : H ⇒ H
be maximally monotone. The reflection operator of A is RA = 2JA − Id, which is
non-expansive. The partial inverse of A with respect to a vector subspace V of H,
denoted by AV , is defined by

(∀(x, y) ∈ H2) y ∈ AV x ⇔ (PV y + PV ⊥ x) ∈ A(PV x + PV ⊥ y). (2)

Note that AH = A and A{0} = A−1. The following properties of the partial inverse
will be useful throughout this paper.
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Proposition 2.1 Let A : H ⇒ H be a set-valued operator and let V be a closed
vector subspace of H. Then, (AV )−1 = (A−1)V = AV ⊥ and PV (A + NV )−1PV =
PV (AV ⊥ + NV )PV .

Proof Let (x, u) ∈ H2. We have from (2) that

u ∈ (AV )−1x ⇔ x ∈ AV u

⇔ PV x + PV ⊥u ∈ A(PV u + PV ⊥ x) (3)

⇔ PV u + PV ⊥ x ∈ A−1(PV x + PV ⊥u)

⇔ u ∈ (A−1)V x . (4)

On the other hand, it follows from (3) and (2) that u ∈ (AV )−1x is equivalent to
u ∈ AV ⊥ x . For the second identity, we deduce from (2) that

u ∈ PV (A + NV )−1(PV x) ⇔ (u ∈ V ) u ∈ (A + NV )−1(PV x)

⇔ (u ∈ V ) PV x ∈ Au + NV u

⇔ (u ∈ V )(∃ y ∈ V ⊥) PV x − y ∈ Au

⇔ (u ∈ V )(∃ y ∈ V ⊥) u − y ∈ AV ⊥(PV x)

⇔ (u ∈ V ) u ∈ (AV ⊥ + NV )(PV x)

⇔ u ∈ PV (AV ⊥ + NV )(PV x),

which yields the result. ��

The following result is a relaxed version of the methods proposed in [22,23,29].

Proposition 2.2 Let η ∈ ]
0,+∞[

, let A : H ⇒ H be maximally monotone, and let
B : H → H be monotone and η–Lipschitzian such that zer(A + B) �= ∅. Moreover,
let z0 ∈ H, let ε ∈ ]

0,max{1, 1/2η}[, let (δn)n∈N be a sequence in [ε, (1/η) − ε], let
(λn)n∈N be a sequence in [ε, 1], and iterate

(∀n ∈ N)

⎢⎢⎢⎢⎢⎣
rn := zn − δnBzn

sn := JδnArn

tn := sn − δnBsn

zn+1 := zn + λn(tn − rn).

(5)

Then, zn ⇀ z̄ for some z̄ ∈ zer(A + B) and zn+1 − zn → 0.

Proof First note that (5) yields

(∀n ∈ N) δ−1
n (rn − sn) ∈ Asn . (6)
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Let z ∈ zer(A + B) and fix n ∈ N. We have

‖zn+1 − z‖2=‖(1 − λn)(zn − z) + λn(zn − z + tn − rn)‖2
=(1−λn)‖zn −z‖2 + λn‖zn − z + tn − rn‖2 − λn(1 − λn)‖tn − rn‖2
=(1 − λn)‖zn − z‖2 + λn‖sn − δn(Bsn − Bzn) − z‖2

− λn(1 − λn)‖tn − rn‖2
≤(1−λn)‖zn −z‖2+λn

(‖zn −z‖2+δ2n‖Bsn −Bzn‖2−‖sn −zn‖2)
− λn(1−λn)‖tn −rn‖2

≤ ‖zn − z‖2 − ε
(
1−(δnη)2

)‖sn −zn‖2 − λn(1 − λn)‖tn −rn‖2, (7)

where the first and third equality follow from (5), the second equality is a conse-
quence of [30, Corollary 2.14], the inequality in the fourth line is obtained from
[22, Lemma 3.1], and the last inequality follows from the Lipschitz property on B,
supn∈N δn < 1/η, and infn∈N λn ≥ ε. Hence, since δn < 1/η and 0 < λn ≤ 1,
we obtain ‖zn+1 − z‖2 ≤ ‖zn − z‖2, which yields the boundedness of the sequence
(zk)k∈N. Moreover, we deduce from (7) and [23, Lemma 2.1] that (‖sk − zk‖2)k∈N
and (‖tk − rk‖2)k∈N are summable and, in particular,

sk − zk → 0 and tk − rk → 0, (8)

which yields zk+1 − zk = λk(tk − rk) → 0. By setting, for every k ∈ N, uk :=
δ−1

k (rk −tk), it follows from (5), (6), and (8) that uk = δ−1
k (rk −sk)+Bsk ∈ (A+B)sk

and uk → 0. Hence, for any weak cluster point of (zk)k∈N, say zk

⇀ w, (8) yields

sk

⇀ w, uk


→ 0, and (sk

, uk


) ∈ gra(A+B). SinceB is monotone and continuous,
it is maximally monotone [30, Corollary 20.25]. Moreover, since domB = H, we
deduce from [30, Corollary 24.4(i)] that A + B is maximally monotone and, hence,
its graph is sequentially closed in Hweak × Hstrong [30, Proposition 20.33(ii)], which
yields w ∈ zer(A + B). Finally, from [23, Lemma 2.2], we deduce that there exists
z̄ ∈ zer(A + B) such that zn ⇀ z̄. ��
Remark 2.1 As in [23, Theorem 2.5], absolutely summable errors can be incorporated
in each step of the algorithm in (5). However, for ease of presentation, we only provide
the error-free version.

3 Forward–Partial Inverse–Forward Splitting

We aim at solving the following problem.

Problem 3.1 Let H be a real Hilbert space, and let V be a closed vector subspace
of H. Let A : H ⇒ H be a maximally monotone operator, and let B : H → H be
monotone and χ–Lipschitzian for some χ ∈ ]

0,+∞[
. The problem is to

find x ∈ H such that 0 ∈ Ax + Bx + NV x, (9)

under the assumption Z := zer(A + B + NV ) �= ∅.
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In Problem 3.1, the operator NV is separated from A in order to exploit the intrin-
sic structure of each operator. Indeed, the proposed method and its variants activate
separately each constituent of the inclusion, as we will see in Sect. 3.2. In Sect. 4,
we justify the importance of the vector subspace framework via some applications, in
which this setting appears naturally. In this section, we study a characterisation of the
solutions to Problem 3.1, we provide our algorithm, and we prove its convergence to
a solution to Problem 3.1.

3.1 Characterisation

The following result provides a characterisation of the solutions to Problem 3.1, in
terms of two suitable monotone operators.

Proposition 3.1 In the context of Problem 3.1, let γ ∈ ]
0,+∞[

and define

Aγ := (γ A)V : H ⇒ H and Bγ := γ PV ◦ B ◦ PV : H → V . (10)

Then, the following hold:

(i) Aγ is maximally monotone and, for every δ ∈ ]
0,+∞[

and x ∈ H, there exist
p and q in H such that x = p + γ q, JδAγ

x = PV p + γ PV ⊥q, and

PV q

δ
+ PV ⊥q ∈ A

(
PV p + PV ⊥ p

δ

)
. (11)

In particular, JAγ
= 2PV Jγ A − Jγ A + Id−PV = (Id+RNV Rγ A)/2.

(ii) Bγ is monotone and γχ–Lipschitzian.
(iii) Let x ∈ H. Then, x is a solution to Problem 3.1 if and only if x ∈ V and

(∃ y ∈V ⊥ ∩ (Ax+Bx)
)
such that x+γ (y−PV ⊥ Bx) ∈ zer(Aγ +Bγ ). (12)

(iv) Z = PV
(
zer(Aγ + Bγ )

)
.

Proof (i): Since γ A is maximally monotone, Aγ inherits this property [9, Proposi-
tion 2.1]. In addition, for every (r, x) ∈ H2 and δ ∈ ]

0,+∞[
, it follows from

(2) that

r = JδAγ
x ⇔ x − r

δ
∈ Aγ r

⇔ PV (x − r)

δ
+ PV ⊥r ∈ γ A

(
PV r + PV ⊥(x − r)

δ

)

⇔ PV (x − r)

γ δ
+ PV ⊥r

γ
∈ A

(
PV r + PV ⊥(x − r)

δ

)
. (13)

Hence, by taking p := PV ⊥(x − r)+ PV r and q := (PV (x − r)+ PV ⊥r)/γ , we
have p + γ q = (x − r) + r = x , PV p + γ PV ⊥q = r = JδAγ

x , and (11). Now,
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in the particular case when δ = 1, (11) reduces to p = Jγ A(p + γ q) = Jγ Ax
and, hence,

JAγ
x = PV (Jγ Ax) + PV ⊥(x − Jγ Ax)

= 2PV Jγ Ax − Jγ Ax + x − PV x

= 1

2

(
x + 2PV (2Jγ Ax − x) − 2Jγ Ax + x

)
= 1

2

(
x + RNV Rγ Ax

)
. (14)

(ii): Let (x, y) ∈ H2. We have from (10) the monotonicity of B, the linearity of PV ,
and P∗

V = PV that
〈
x − y | Bγ x − Bγ y

〉=γ 〈PV x − PV y | B(PV x) − B(PV y)〉
≥ 0, and from theLipschitzian property on B and (10), we obtain ‖Bγ x−Bγ y‖ ≤
γ ‖B(PV x) − B(PV y)‖ ≤ γχ‖PV x − PV y‖ ≤ γχ‖x − y‖. (iii): Let x ∈ H be
a solution to Problem 3.1. We have x ∈ V , and there exists y ∈ V ⊥ = NV x such
that y ∈ Ax + Bx . Since B is single valued and PV is linear, it follows from (2)
that

y ∈ Ax + Bx ⇔ γ y − γ Bx ∈ γ Ax

⇔ −γ PV (Bx) ∈ (γ A)V
(
x + γ (y − PV ⊥ Bx)

)
⇔ 0 ∈ (γ A)V (x + γ (y − PV ⊥ Bx))

+ γ PV
(
B

(
PV (x + γ (y − PV ⊥ Bx))

))
⇔ x + γ (y − PV ⊥ Bx) ∈ zer(Aγ + Bγ ), (15)

which yields the result. (iv): Direct from (iii). ��

3.2 Algorithm and Convergence

In the following result, we propose our algorithm and we prove its convergence to a
solution to Problem 3.1. Since Proposition 3.1 asserts that Problem 3.1 can be written
as amonotone inclusion involving amaximallymonotone operator and a single-valued
Lipschitzian monotone operator, our method is a consequence of Proposition 2.2
applied to this context.

Algorithm 3.1 In the context of Problem 3.1, let γ ∈ ]
0,+∞[

, let ε ∈]
0,max{1, 1/(2γχ)}[, let (δn)n∈N be a sequence in

[
ε, 1/(γ χ) − ε

]
, let (λn)n∈N be

a sequence in [ε, 1], let x0 ∈ V , let y0 ∈ V ⊥, and for every n ∈ N,

Step 1. find (pn, qn) ∈ H2 such that xn − δnγ PV Bxn + γ yn = pn + γ qn

and
PV qn

δn
+ PV ⊥qn ∈ A

(
PV pn + PV ⊥ pn

δn

)
.

Step 2. set xn+1 := xn + λn(PV pn + δnγ PV (Bxn − B PV pn) − xn)

and yn+1 := yn + λn(PV ⊥qn − yn). Go to Step 1. (16)
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Theorem 3.1 Let (xn)n∈N and (yn)n∈N be the sequences generated by Algorithm 3.1.
Then (xn)n∈N and (yn)n∈N are in V and V ⊥, respectively, xn ⇀ x and yn ⇀ y for
some solution x ∈ zer(A + B + NV ) and y ∈ V ⊥ ∩ (Ax + PV Bx), xn+1 − xn → 0 ,
and yn+1 − yn → 0.

Proof Since x0 ∈ V and y0 ∈ V ⊥, (16) yields (xn)n∈N ⊂ V and (yn)n∈N ⊂ V ⊥.
Thus, for every n ∈ N, it follows from (16) and Proposition 3.1(i) that

PV pn + γ PV ⊥qn = Jδn(γ A)V (xn + γ yn − δnγ PV Bxn). (17)

For every n ∈ N, denote zn := xn + γ yn and

sn : = Jδn(γ A)V (xn + γ yn − δnγ PV Bxn) = JδnAγ
(zn − δnγ PV B PV zn)

= JδnAγ
(zn − δnBγ zn). (18)

Hence, it follows from (17) that PV pn = PV sn , γ PV ⊥qn = PV ⊥sn , and, from (16),
we obtain

xn+1 = xn + λn(PV sn + δnγ PV (Bxn − B PV sn) − xn) and

γ yn+1 = γ yn + λn(PV ⊥sn − γ yn). (19)

By adding the latter equations, we deduce that the algorithm described in (16) can be
written as

(∀n ∈ N)

⎢⎢⎢⎢⎢⎣
rn := zn − δnBγ zn

sn = JδnAγ
rn

tn := sn − δnBγ sn

zn+1 = zn + λn(tn − rn),

(20)

which is a particular instance of (5) when B = Bγ andA = Aγ . Therefore, it follows
from Proposition 3.1 (i) & (ii) and Proposition 2.2 that zn ⇀ z ∈ zer(Aγ + Bγ ) and
zn+1 − zn → 0. By defining x := PV z and y := PV ⊥ z/γ , the results follow from
Proposition 3.1 and Proposition 2.2. ��
Remark 3.1 (i) The Tseng’s method allows for errors in the computations of the

operators involved [23,29]. In our algorithm, these inexactitudes have not been
considered for simplicity.

(ii) In the particular case when λn ≡ 1 and B ≡ 0 (χ = 0), Algorithm 3.1 reduces
to the classical partial inverse method [9] for finding x ∈ V such that there exists
y ∈ V ⊥ satisfying y ∈ Ax .

(iii) Under further assumptions on the operators Aγ and/or Bγ , e.g., as demi-
regularity (see [31, Definition 2.3&Proposition 2.4]), strong convergence can
be achieved. In particular, under the assumptions of Proposition 4.2 below, the
strong monotonicity ofAγ can be guaranteed, and by following the proof in [23,
Theorem 2.5 (iii)], we obtain strong convergence of the iterates.
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The sequence (δn)n∈N in Algorithm 3.1 can be manipulated in order to accelerate
the convergence. However, as in [9], Step 1 in Algorithm 3.1 is not always easy to
compute. The following results show us a particular case of our method, in which Step
1 can be obtained explicitly when the resolvent of A is computable. The method can
be seen as a forward–Douglas–Rachford–forward splitting.

Corollary 3.1 In the setting of Problem 3.1, let γ ∈ ]
0, 1/χ

[
, let ε ∈ ]

0, 1
[
, let

(λn)n∈N be a sequence in [ε, 1], let z0 ∈ H, and iterate, for every n ∈ N,

⎢⎢⎢⎢⎢⎢⎢⎣
rn := zn − γ PV B PV zn

pn := Jγ Arn

sn := 2PV pn − pn + rn − PV rn

tn := sn − γ PV B PV sn

zn+1 := zn + λn(tn − rn).

(21)

Then, by setting, for every n ∈ N, xn := PV zn and yn := PV ⊥ zn/γ , we have xn ⇀ x̄
and yn ⇀ ȳ for some x ∈zer(A+B+NV )and y ∈ V ⊥∩(Ax+PV Bx), xn+1−xn → 0,
and yn+1 − yn → 0.

Proof Indeed, it follows from the proof ofTheorem3.1 thatAlgorithm3.1 is equivalent
to (20), where, for every n ∈ N, zn = xn + γ yn . In the particular case when δn ≡ 1 ∈]
0, 1/(γ χ)

[
, it follows from Proposition 3.1 (i) that (20) reduces to (21). Hence, the

results follow from Theorem 3.1. ��
Remark 3.2 (i) Note that, when V = H and λn ≡ 1, we have V ⊥ = {0}, PV = Id,

(Id+RNV Rγ A)/2 = Jγ A, and, therefore, (21) reduces to

(∀n ∈ N)

⎢⎢⎢⎢⎢⎣
rn = xn − γ Bxn

sn = Jγ Arn

tn = sn − γ Bsn

xn+1 = xn + tn − rn,

(22)

which is a version with constant step size of the Tseng’s method [22] for finding
a zero of A + B.

(ii) On the other hand, when B ≡ 0, (21) reduces to

(∀n ∈ N)

⌊
sn = (zn + RNV Rγ Azn)/2
zn+1 = zn + λn(sn − zn),

(23)

which is the Douglas–Rachford splitting method [7,28] for finding x ∈ H such
that 0 ∈ NV x + Ax . It coincides with Spingarn’s partial inverse method with
constant step size [6]. On the other hand, in the particular case when A is a
normal cone to a closed and convex set, a detailed study of this method and some
extensions and modifications may be found in [32].

(iii) Let H and G be real Hilbert spaces, let L : H → G be linear and bounded, let A
and B be maximally monotone operators, and define T : (x, y) ∈ H �→ y − Lx.
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WhenH = H×G, V = ker T , B = 0, and A : (x, y) �→ Ax ×By, Problem 3.1
reduces to the primal-dual inclusions (see [33])

find x ∈ H such that 0 ∈ Ax + L∗B(Lx)

find u ∈ G such that 0 ∈ −LA−1(−L∗u) + B−1u. (24)

In this context, the algorithm proposed in Corollary 3.1 is the method proposed
recently in [33] in the absence of errors. This algorithm needs the computation
of PV , which involves the inverse of a suitable linear operator. Since our frame-
work allows for a non-zero Lipschitzian monotone operator, it can address more
complicated structures than (24).

4 Applications

In this section, we study three applications of our method. In each instance, a different
closed vector subspace arises naturally, which illustrates the flexibility of our setting.
Connections with other algorithms in each framework are provided.

4.1 Inclusion Involving the Sum of m Monotone Operators

Problem 4.1 Let (H, | · |) be a real Hilbert space, for every i ∈ {1, . . . , m}, let Ai :
H ⇒ H bemaximallymonotone, and letB : H → H bemonotone andχ–Lipschitzian.
The problem is to

find x ∈ H such that 0 ∈
m∑

i=1

Aix + Bx, (25)

under the assumption that solutions exist.

Problem 4.1 has several applications in image processing, principally in the vari-
ational setting (see, e.g., [1,34] and the references therein), variational inequalities
[4,5], partial differential equations [10,11], and economics [12,13], among others. In
[34,35], Problem 4.1 is solved by a fully split algorithm in the particular case when B
is cocoercive. Nevertheless, this approach does not seem to work in the general case.
In [27], a method for solving a more general problem than Problem 4.1 is proposed.
However, this approach stores and updates at each iteration m dual variables, which
may be unfavourable in large-scale systems. Our method exploits the whole structure
of the problem, and it is obtained from Theorem 3.1, when the underlying closed
vector subspace is the diagonal space in Hm .

Let us first provide a connection between Problem 4.1 and Problem 3.1 via product
space techniques. Let (ωi )1≤i≤m be real numbers in

]
0, 1

[
such that

∑m
i=1 ωi = 1,

let H be the real Hilbert space obtained by endowing the Cartesian product Hm with
the scalar product and associated norm defined by 〈x | y〉 := ∑m

i=1 ωi 〈xi | yi 〉 and

‖x‖ :=
√∑m

i=1 ωi |xi |2, respectively, where x = (xi )1≤i≤m and y = (yi )1≤i≤m are
generic elements of H.
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Proposition 4.1 In the context of Problem 4.1, define

V := {
x = (xi )1≤i≤m ∈ H : x1 = · · · = xm

}
,

j : H → V ⊂ H : x �→ (x, . . . , x),

A : H ⇒ H : x �→ 1

ω1
A1x1 × · · · × 1

ωm
Amxm,

B : H → H : x �→ (Bx1, . . . ,Bxm). (26)

Then, the following hold:

(i) V is a closed vector subspace of H, for every x = (xi )1≤i≤m ∈ H, PV x =
j (

∑m
i=1 ωixi ), and, if x ∈ V , then NV x = V ⊥ = {

x = (xi )1≤i≤m ∈ H :∑m
i=1 ωixi = 0

}
; otherwise, NV x = ∅.

(ii) j : H → V is a bijective isometry and j−1 : (x, . . . , x) �→ x.
(iii) A is a maximally monotone operator and, for every γ ∈ ]

0,+∞[
, Jγ A :

(xi )1≤i≤m �→ (JγAi /ωi xi ).
(iv) B is monotone and χ–Lipschitzian, B( j (x)) = j (Bx), and B(V ) ⊂ V .
(v) For every x ∈ H, x is a solution to Problem 4.1 if and only if j (x) ∈ zer(A +

B + NV ).

Proof (i) & (ii): They follow from (1) and easy computations. (iii): [30, Proposi-
tion 23.16]. (iv): They follow from simple computations by using (26) and the prop-
erties on B. (v): Let x ∈ H. We have

0 ∈
m∑

i=1

Aix + Bx ⇔
(

∃ (yi )1≤i≤m ∈
m×

i=1
Aix

)
0 =

m∑
i=1

yi + Bx

⇔
(

∃ (yi )1≤i≤m ∈
m×

i=1
Aix

)
0 =

m∑
i=1

ωi (−yi /ωi − Bx)

⇔
(

∃ (yi )1≤i≤m ∈
m×

i=1
Aix

)
− (y1/ω1, . . . , ym/ωm) − j (Bx) ∈ V ⊥

⇔ 0 ∈ A( j (x)) + B( j (x)) + NV ( j (x))

⇔ j (x) ∈ zer(A + B + NV ), (27)

which yields the result. ��

The following algorithm for solving Problem 4.1 is a direct consequence of Corol-
lary 3.1 applied to the monotone inclusion in Proposition 4.1(v).
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Algorithm 4.1 In the context of Problem 4.1, let γ ∈ ]
0, 1/χ

[
, let ε ∈ ]

0, 1
[
, let

(λn)n∈N be a sequence in [ε, 1], let (zi,0)1≤i≤m ∈ Hm , and iterate, for every n ∈ N,

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn := ∑m
j=1 ω jz j,n

For i = 1, . . . , m⌊
ri,n := zi,n − γBxn

pi,n := JγAi /ωi ri,n
qn := ∑m

j=1 ω jp j,n

For i = 1, . . . , m⎢⎢⎢⎣si,n := 2qn − pi,n + zi,n − xn

ti,n := si,n − γBqn

zi,n+1 := zi,n + λn(ti,n − ri,n).

(28)

Theorem 4.1 Let (xn)n∈N be the sequence generated by Algorithm 4.1. Then, xn ⇀ x
for some solution x to Problem 4.1 and xn+1 − xn → 0.

Proof Set, for every n ∈ N, xn := j (xn), qn := j (qn), sn := (si,n)1≤i≤m , zn :=
(zi,n)1≤i≤m , and pn := (pi,n)1≤i≤m . It follows from Proposition 4.1 (i) and (28) that,
for every n ∈ N, xn = PV zn and qn = PV pn = PV sn . Hence, it follows from (26) and
Proposition 4.1 that (28) can be written equivalently as (21). Altogether, Corollary 3.1
and Proposition 4.1(v) yield the results. ��
Remark 4.1 In the particular case when m = 2, B = 0, and ω1 = ω2 = 1/2,
Algorithm 4.1 reduces to the method in [24, Remark 6.2 (ii)] for finding a zero of
A1+A2, which computes the resolvents ofA1 andA2 in parallel.When these resolvents
are hard to calculate, this method provides an alternative to the Douglas–Rachford
splitting [7].

4.2 Primal-Dual Monotone Inclusions

This section is devoted to the numerical resolution of a very general composite
primal-dual monotone inclusion involving vector subspaces. The proposed algorithm
addressesmonotone operators composedwith linear transformations and solves simul-
taneously primal and dual inclusions.

Let us introduce a partial sum operation with respect to a closed vector subspace.
This notion is a generalisation of the parallel sum (see, e.g., [36] and the references
therein).

Definition 4.1 LetH be a real Hilbert space, let U ⊂ H be a closed vector subspace,
and let A : H ⇒ H and B : H ⇒ H be nonlinear operators. The partial sum of A
and B with respect to U is defined by

A �U B := (
AU + BU

)
U . (29)

In particular, we have A �HB = A + B and A �{0} B = A � B = (A−1 + B−1)−1.
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The operation A �→ AU preserves monotonicity [9]. Hence, A �U B is monotone
if A and B are monotone. In this section, we are interested in the following problem.

Problem 4.2 Let H, (Gi )1≤i≤m be real Hilbert spaces, for every i ∈ {1, . . . , m}, let
U ⊂ H and Vi ⊂ Gi be closed vector spaces, let A : H ⇒ H and Bi : Gi ⇒ Gi be
maximally monotone, let Li : H → Gi be linear and bounded, let Di : Gi ⇒ Gi be
monotone such that (Di )V⊥

i
is νi -Lipschitzian for some νi ∈ ]

0,+∞[
, letC : H → H

be monotone and μ-Lipschitzian for some μ ∈ ]
0,+∞[

, let z ∈ H, and let bi ∈ Gi .
The problem is to solve the primal inclusion

find x ∈ H such that

z ∈ Ax + NUx +
m∑

i=1

(
L∗

i PVi (Bi �V⊥
i
Di + NVi )PVi (Lix − bi )

)
+ Cx (30)

together with the dual inclusion: find u1 ∈ G1, . . . ,um ∈ Gm such that

(∃ x ∈ H)

{
z − ∑m

i=1 L
∗
i PViui ∈ Ax + Cx + NUx

(∀i ∈ {1, . . . , m}) ui ∈ PVi (Bi �V⊥
i
Di + NVi )PVi (Lix − bi ).

(31)

The set of solutions to (30) and (31) are denoted by P �= ∅ and D �= ∅, respectively.

In the particular case when U = H, for every i ∈ {1, . . . , m}, Vi = Gi , Di0 = Gi ,
for every y �= 0, Diy = ∅, and C = 0, Problem 4.2 is solved in [23,33] via fully split
primal-dual algorithms. In particular, in [33], a proximal point algorithm applied to
the partial inverse of a maximally monotone operator with respect to the kernel of a
linear operator is proposed for solving Problem 4.2. On the other hand, when U = H
and, for every i ∈ {1, . . . , m}, Vi = Gi , Problem 4.2 is solved by a splitting method
proposed in [27]. To the best of our knowledge, the general case has not been tackled
in the literature via splitting methods.

Problem 4.2 requires a Lipschitzian condition on (DiV⊥
i
)1≤i≤m . When, for every

i ∈ {1, . . . , m}, Vi = Gi , this condition reduces to the Lipschitzian property onDi
−1,

which is trivially satisfied, e.g., when Di0 = Gi and, for every y �= 0, Diy = ∅. The
next proposition furnishes other non-trivial instances, in which the partial inverse of
a monotone operator is Lipschitzian.

Proposition 4.2 Let V ⊂ H be a closed vector space and suppose that one of the
following holds:

(i) D : H → H is β-strongly monotone and ν-cocoercive.
(ii) D = ∇f, where f : H → ] − ∞,+∞]

is differentiable, β-strongly convex, and
∇f is ν−1-Lipschitzian.

(iii) D is a linear bounded operator satisfying, for every x ∈ H, 〈x | Dx〉 ≥ β‖x‖2,
and ν = β/‖D‖2.

Then, DV is α-cocoercive and α-strongly monotone with α = min{β, ν}/2. In partic-
ular, DV is α−1-Lipschitzian.
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Proof (i): Let (x,u) and (y, v) in gra(DV). It follows from (2) that (PVx+PV⊥u, PVu+
PV⊥x) and (PVy+PV⊥v, PVv+PV⊥y) are in gra(D), and from the strongmonotonicity
assumption on D, we have

〈x − y | u − v〉 = 〈
PV(x − y)PV(u − v)

〉 + 〈
PV⊥(u − v) | PV⊥(x − y)

〉
= 〈

PVx + PV⊥u − (PVy + PV⊥v) | PVu + PV⊥x − (PVv + PV⊥y)
〉

≥ β‖PVx + PV⊥u − (PVy + PV⊥v)‖2
= β(‖PV(x − y)‖2 + ‖PV⊥(u − v)‖2). (32)

Analogously, the cocoercivity assumption on D yields 〈x − y | u − v〉 ≥ ν(‖PV(u −
v)‖2 + ‖PV⊥(x − y)‖2). Hence, it follows from (32) that

〈x−y | u−v〉 ≥ β

2
(‖PV(x−y)‖2+‖PV⊥(u−v)‖2)

+ν

2
(‖PV(u−v)‖2+‖PV⊥(x−y)‖2), (33)

which yields 〈x − y | u − v〉 ≥ α
(‖x − y‖2 + ‖u − v‖2), and the result follows. (ii):

From the strong convexity of f, we have that D = ∇f is β-strongly monotone and,
from [37], it is ν-cocoercive. Hence, the result follows from (i). (iii): Since D is linear
and bounded, we have ‖x‖2 ≥ ‖Dx‖2/‖D‖2. Then, D is β-strongly monotone and
ν-cocoercive, and the result follows from (i). ��

The following proposition gives a connection between Problem 4.2 and Prob-
lem 3.1.

Proposition 4.3 Set H := H ⊕ G1 ⊕ · · · ⊕ Gm, set

χ := max{μ, ν1, . . . , νm} +
√√√√ m∑

i=1

‖Li‖2,

and set

A : H ⇒ H : (x,u1, . . . ,um) �→ (−z + Ax) × (PV1b1 + (B1)V⊥
1
u1) × · · ·

× (PVmbm + (Bm)V⊥
m
um)

L : H → H : (x,u1, . . . ,um) �→
(

m∑
i=1

L∗
i PViui ,−PV1L1x, . . . ,−PVmLmx

)

C : H → H : (x,u1, . . . ,um) �→ (
Cx, (D1)V⊥

1
u1, . . . , (Dm)V⊥

m
um

)
B : H → H : (x,u1, . . . ,um) �→ (C + L)(x,u1, . . . ,um)

W := U × V1 × · · · × Vm . (34)

Then, the following hold:
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(i) A is maximally monotone and, for every γ ∈ ]
0,+∞[

,

Jγ A : (x, u1, . . . , um) �→
(

JγA(x+z), Jγ (B1)V⊥
1
(u1−PV1b1), . . . , Jγ (Bm )V⊥

m
(um −PVmbm)

)
.

(35)

(ii) L is linear, bounded, L∗ = −L, and ‖L‖ ≤
√∑m

i=1 ‖Li‖2.

(iii) B is monotone and χ -Lipschitzian.
(iv) W is a closed vector subspace of H, NW : (x,u1, . . . ,um) �→ NUx × NV1u1 ×

· · · × NVmum, and PW : (x,u1, . . . ,um) �→ (PUx, PV1u1, . . . , PVmum).

(v) zer(A + B + NW ) ⊂ P × D.
(vi) P �= ∅ ⇔ zer(A + B + NW ) �= ∅ ⇔ D �= ∅.

Proof (i): Since, for every i ∈ {1, . . . , m}, (Bi )V⊥
i

is maximally monotone, the
result follows from [30, Proposition 23.15 and Proposition 23.16]. (ii): Let us
define M : (u1, . . . ,um) �→ ∑m

i=1 L
∗
i PViui . Since (Li )1≤i≤m and (PVi )1≤i≤m

are linear bounded operators, M is linear and bounded and, for every x ∈ H,
M∗x = (PV1L1x, . . . , PVmLmx). Since L can be written as L : (x,u1, . . . ,um) �→
(M(u1, . . . ,um),−M∗x), we deduce from [23, Proposition 2.7(ii)] that L is linear
and bounded, that L∗ = −L , and that ‖L‖ = ‖M‖. Now, for every (u1, . . . ,um) ∈
G1⊕· · ·⊕Gm , we have from triangle andHölder inequalities that ‖M(u1, . . . ,um)‖ ≤∑m

i=1 ‖Li‖‖PVi ‖‖ui‖ ≤ ∑m
i=1 ‖Li‖‖ui‖ ≤

√∑m
i=1 ‖Li‖2

√∑m
i=1 ‖ui‖2. (iii): Since

(ii) implies that L is linear, bounded, and skew, it is monotone and ‖L‖-Lipschitzian.
Moreover, because C and (Di )V⊥

i
are monotone and Lipschitzian, C is monotone and

Lipschitzian with constant max{μ, ν1, . . . , νm}. Altogether, B = C + L is monotone
and χ -Lipschitzian. (iv): Clear. (v): Let (x,u1, . . . ,um) ∈ H × G1 × · · ·Gm . From
(34) and Proposition 2.1, we obtain

(x,u1, . . . ,um) ∈ zer(A + B + NW )

⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ∈ −z + Ax + Cx + ∑m
i=1 L

∗
i PViui + NUx

0 ∈ PV1b1 + (B1)V⊥
1
u1 + (D1)V⊥

1
u1 − PV1L1x + NV1u1

...

0 ∈ PVmbm + (Bm)V⊥
m
um + (Dm)V⊥

m
um − PVmLmx + NVmum

⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ∈ −z + Ax + Cx + ∑m
i=1 L

∗
i PViui + NUx

PV1(L1x − b1) ∈ ((B1)V⊥
1

+ (D1)V⊥
1

+ NV1)u1, u1 ∈ V1

...

PVm (Lmx − bm) ∈ ((Bm)V⊥
m

+ (Dm)V⊥
m

+ NVm )um, um ∈ Vm

⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ∈ −z + Ax + Cx + ∑m
i=1 L

∗
i PViui + NUx

u1 ∈ PV1((B1)V⊥
1

+ (D1)V⊥
1

+ NV1)
−1PV1(L1x − b1)

...

um ∈ PVm ((Bm)V⊥
m

+ (Dm)V⊥
m

+ NVm )−1PVm (Lmx − bm)
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⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z − ∑m
i=1 L

∗
i PViui ∈ Ax + Cx + NUx

u1 ∈ PV1(B1 �V⊥
1
D1 + NV1)PV1(L1x − b1)

...

um ∈ PVm (Bm �V⊥
m
Dm + NVm )PVm (Lmx − bm)

(36)

⇒ z ∈ Ax + NUx +
m∑

i=1

L∗
i PVi (Bi �V⊥

i
Di + NVi )PVi (Lix − bi ) + Cx, (37)

which yields x ∈ P . Moreover, (36) yields (u1, . . . ,um) ∈ D. (vi): If x ∈ P ,
then there exist (u1, . . . ,um) such that (36) holds and, hence, (u1, . . . ,um) ∈ D.
Now, if (u1, . . . ,um) ∈ D, then there exists x ∈ H such that (36) holds and, hence,
(x,u1, . . . ,um) ∈ zer(A + B + NW ). The last implication follows from (v). ��
Algorithm 4.2 In the setting of Problem 4.2, let γ ∈ ]

0, 1/χ
[
, where χ is defined

in Proposition 4.3, let (λn)n∈N be a sequence in [ε, 1], let x0 ∈ H, let (ui,0)1≤i≤m ∈
G1 × · · · × Gm , and iterate, for every n ∈ N,

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1,n := xn − γ PU
(
CPUxn + ∑m

i=1 L
∗
i PViui,n

)
p1,n := JγA(r1,n + γ z)
s1,n := 2PUp1,n − p1,n + r1,n − PUr1,n
For i = 1, . . . , m⎢⎢⎢⎢⎢⎢⎢⎢⎣

r2,i,n := ui,n − γ PVi (DiV⊥
i

PViui,n − Li PUxn)

p2,i,n := JγBiV⊥
i
(r2,i,n − γ PVibi )

s2,i,n := 2PVip2,i,n − p2,i,n + r2,i,n − PVi r2,i,n
t2,i,n := s2,i,n − γ PVi (DiV⊥

i
PVi s2,i,n − Li PUs1,n)

ui,n+1 := ui,n + λn(t2,i,n − r2,i,n)

t1,n := s1,n − γ PU
(
CPUs1,n + ∑m

i=1 L
∗
i PVi s2,i,n

)
xn+1 := xn + λn(t1,n − r1,n).

(38)

Theorem 4.2 Let (xn)n∈N and (u1,n)n∈N, . . . , (um,n)n∈N be the sequences generated
by Algorithm 4.2. Then, xn ⇀ x ∈ H, xn+1 − xn → 0, for every i ∈ {1, . . . , m},
ui,n ⇀ ui ∈ Gi , ui,n+1 − ui,n → 0, and (PUx, PV1u1, . . . , PVmum) is a solution to
Problem 4.2.

Proof By defining, for every n ∈ N, zn := (xn,u1,n, . . . ,um,n), rn :=
(r1,n, r2,1,n, . . . , r2,m,n), pn:=(p1,n,p2,1,n, . . . ,p2,m,n), sn:=(s1,n, s2,1,n, . . . , s2,m,n),
and tn = (t1,n, t2,1,n, . . . , t2,m,n), it follows from Proposition 4.3 that (38) is a par-
ticular instance of (21). Hence, the results follow from Corollary 3.1 and Proposi-
tion 4.3(v). ��
Remark 4.2 (i) Even if Problem4.1 canbe seen as a particular case ofProblem4.2, the

methods in (38) and (28) have different structures. Indeed, in (38), dual variables
are updated at each iteration, which may be numerically costly in large-scale
problems. Only primal variables are updated in Algorithm 4.1.
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(ii) Algorithm 4.2 activates each operator involved in Problem 4.2 independently.
The algorithm is explicit in each step if the resolvents of A and (BiV⊥

i
)1≤i≤m

can be computed. Observe that the resolvent of the partial inverse of a monotone
operator can be explicitly found via Proposition 3.1(i).

(iii) Note that, when λn ≡ 1, U = H, and, for every i ∈ {1, . . . , m}, Vi = Gi ,
Algorithm 4.2 reduces to the method in [27, Theorem 3.1] with constant step
size.

(iv) In the simplest case when m = 2, z = A = C = b1 = b2 = 0, L1 = L2 = Id,
U = H, V1 ≡ G1, V2 ≡ G2, D10 = G1, D20 = G2, and for every y �= 0,
D1y = D2y = ∅, we have, for every i ∈ {1, 2}, Di V ⊥

i
= Di {0} = D−1

i : y �→ 0,

Problem 4.2 reduces to find a zero of B1 + B2, and (38) becomes

(∀n ∈ N)

⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,n = J
γB−1

1
(u1,n + γ xn)

p2,n = J
γB−1

2
(u2,n + γ xn)

xn+1 = xn − γ λn(p1,n + p2,n)

u1,n+1 = (1 − λn)u1,n + λn
(
p1,n − γ 2(u1,n + u2,n)

)
u2,n+1 = (1 − λn)u2,n + λn

(
p2,n − γ 2(u1,n + u2,n)

)
.

(39)

This method solves this problem and its dual, simultaneously, and differs from
the algorithm derived in Remark 4.1.

4.3 Zero-Sum Games

Our last application is devoted to the problem of finding a Nash equilibrium in contin-
uous zero-sum games. Some comments on finite zero-sum games are also provided.
This problem can be formulated in the form of Problem 3.1, and it can be solved via
an algorithm derived from Algorithm 3.1.

Problem 4.3 For every i ∈ {1, 2}, letHi andGi be real Hilbert spaces, letCi ⊂ Hi be
closed and convex, let Li : Hi → Gi be a linear bounded operator with closed range,
let ei ∈ Hi , set bi := Liei , set Si := {

x ∈ Ci : Lix = bi
}
, let χ ∈ ]

0,+∞[
, and

let f : H1 ×H2 → R be a differentiable function with a χ–Lipschitzian gradient such
that, for every z1 ∈ H1, f(z1, ·) is concave and, for every z2 ∈ H2, f(·, z2) is convex.
Moreover, suppose that int(C1 − e1) ∩ ker L1 �= ∅ and int(C2 − e2) ∩ ker L2 �= ∅.
The problem is to

find x1 ∈ S1 and x2 ∈ S2 such that

⎧⎪⎨
⎪⎩
x1 ∈ Argmin

z1∈S1

f(z1, x2)

x2 ∈ Argmax
z2∈S2

f(x1, z2),
(40)

under the assumption that solutions exist.

Problem 4.3 is a generic zero-sum game, in which the sets S1 and S2 are usually
convex bounded sets representing mixed strategy spaces. For example, if, for every
i ∈ {1, 2}, Hi = R

Ni , Ci is the positive orthant, Gi ≡ R, bi ≡ 1, and Li is the sum
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of the components in R
Ni , then Si is the simplex in R

Ni . In that case, for a bilinear
function f, Problem 4.3 reduces to a finite zero-sum game. Beyond this particular
case, Problem 4.3 covers continuous zero-sum games, in which mixed strategies are
distributions and L1 and L2 are integral operators.

As far as we know, some alternating methods are proposed in [38,39] for solving
Problem 4.3, when the function f has a special separable structure involving specific
coupling schemes. On the other hand, amethod proposed in [40] can solve Problem 4.3
when the projections onto S1 and S2 are computable. However, in infinite dimension,
these projections are not always easy to compute, as we will discuss in Example 4.1.
The following result provides a convergent algorithm for solving Problem 4.3, which
replaces the projections onto S1 and S2 by simpler projections onto C1, C2, ker(L1),
and ker(L2). It is a consequence of Corollary 3.1 when the underlying subspace is
V = ker(L1) × ker(L2). Let us first introduce the generalised Moore-Penrose inverse
of a bounded linear operator L : H → G with closed range, defined by L† : G → H :
y �→ PCy0, where, for every y ∈ G, Cy := {

x ∈ H : L∗Lx = L∗y
}
. The operator L†

is also linear and bounded, and, in the particular case when L∗L is invertible, we have
L† = (L∗L)−1L∗. For further details and properties, see [30, section 3].

Algorithm 4.3 In the context of Problem 4.3, let ε ∈ ]
0, 1

[
, let γ ∈ ]

0, 1/χ
[
, let

(λn)n∈N be a sequence in [ε, 1], let (z1,0, z2,0) ∈ H1 ⊕ H2, and iterate, for every
n ∈ N,

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,n := (Id−L∗
1L

∗†
1 )z1,n + e1

u2,n := (Id−L∗
2L

∗†
2 )z2,n + e2

g1,n := (Id−L∗
1L

∗†
1 )∇(

f(·,u2,n)
)
(u1,n)

g2,n := −(Id−L∗
2L

∗†
2 )∇(

f(u1,n, ·))(u2,n)

r1,n := z1,n − γg1,n
r2,n := z2,n − γg2,n
p1,n := PC1(r1,n + e1) − e1
p2,n := PC2(r2,n + e2) − e2
v1,n := (Id−L∗

1L
∗†
1 )p1,n

v2,n := (Id−L∗
2L

∗†
2 )p2,n

s1,n := 2v1,n − p1,n + L∗
1L

∗†
1 r1,n

s2,n := 2v2,n − p2,n + L∗
2L

∗†
2 r2,n

h1,n := (Id−L∗
1L

∗†
1 )∇(

f(·,e2 + v2,n)
)
(e1 + v1,n)

h2,n := −(Id−L∗
2L

∗†
2 )∇(

f(e1 + v1,n, ·))(e2 + v2,n)

t1,n := s1,n − γh1,n
t2,n := s2,n − γh2,n
z1,n+1 := z1,n + λn(t1,n − r1,n)
z2,n+1 := z2,n + λn(t2,n − r2,n).

(41)

Theorem 4.3 Let (u1,n,u2,n)n∈N be the sequence generated by Algorithm 4.3. Then,
u1,n ⇀ x1 and u2,n ⇀ x2, where (x1, x2) is a solution to Problem 4.3.

Proof It follows from [30, Theorem 16.2] that Problem 4.3 can be written equivalently
as the problem of finding x1 and x2 such that 0 ∈ ∂(ιS1 + f(·, x2))(x1) and 0 ∈
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∂(ιS2 − f(x1, ·))(x2), or, equivalently, such that 0 ∈ NS1(x1) + ∇(
f(·, x2)

)
(x1) and

0 ∈ NS2(x2) − ∇(
f(x1, ·)

)
(x2) [30, Corollary 16.38]. Now since, for every i ∈ {1, 2},

Si = Ci ∩ L−1
i (bi ) = Ci ∩ (ei + ker Li ), it follows from qualification conditions that

Problem 4.3 is equivalent to

0 ∈ NC1(e1 + z1) + Nker L1(z1) + ∇(
f(·,e2 + z2)

)
(e1 + z1)

0 ∈ NC2(e2 + z2) + Nker L2(z2) − ∇(
f(e1 + z1, ·)

)
(e2 + z2), (42)

where z1 := x1 − e1 and z2 := x2 − e2. Hence, by defining V := ker(L1) × ker(L2)
and, for every (z1, z2) ∈ H1 × H2,

A(z1, z2) := NC1×C2 (e1 + z1,e2 + z2)

B(z1, z2) :=
( ∇(

f(·,e2 + z2)
)
(e1 + z1)

−∇(
f(e1 + z1, ·)

)
(e2 + z2)

)
, (43)

Problem 4.3 is equivalent to find z1 ∈ H1 and z2 ∈ H2 such that 0 ∈ A(z1, z2) +
B(z1, z2)+ NV (z1, z2). Note that V is a closed vector subspace ofH1×H2, A is max-
imally monotone [30, Proposition 20.22], and B is monotone ([30, Proposition 20.22]
and [41]). Moreover, since ∇f is χ -Lipschitzian, B is also χ -Lipschitzian. On the
other hand, it follows from [30, Proposition 3.28 (iii)] and [30, Proposition 23.15 (iii)]
that, for every (z1, z2) ∈ H1 × H2, PV (z1, z2) = (

z1 − L∗
1L

∗†
1 z1, z2 − L∗

2L
∗†
2 z2

)
,

Jγ A(z1, z2) = (
PC1(z1 + e1) − e1, PC2(z2 +e2) − e2

)
, and we deduce that (41) is a

particular case of (21) when A, B, and V are defined as before. Altogether, the result
follows from Corollary 3.1. ��
Remark 4.3 The proposed method does not need to compute the projection onto S1
and S2 at each iteration, but it converges to solution strategies belonging to these sets.
This new feature is very useful when the projection onto S1 and S2 are not easy to
compute.

Example 4.1 We consider a 2-player, zero-sum game, where X1 ⊂ R
N1 is

a bounded set of pure strategies for player 1 and S1 := {
f ∈ L2(X1) :

f ≥ 0 a.e.,
∫

X1
f (x)dx = 1

}
is her set of mixed strategies (X2, N2, and S2 are defined

likewise). We recall that L2(X) stands for the set of square-integrable functions
f : X ⊂ R

n → ] − ∞,+∞]
. Moreover, let F ∈ L2(X1 × X2) be a function

representing the payoff for player 1, and let −F be the payoff of player 2. The prob-
lem is to

find f1 ∈ S1 and f2 ∈ S2 such that⎧⎪⎪⎨
⎪⎪⎩

f1 ∈ Argmin
g1∈S1

∫
X1

∫
X2

F(x1, x2)g1(x1) f2(x2)dx2dx1

f2 ∈ Argmax
g2∈S2

∫
X1

∫
X2

F(x1, x2) f1(x1)g2(x2)dx2dx1.
(44)

Note that S1 and S2 are closed and convex sets in L2(X1) and L2(X2), respectively.
Hence, the projection of any square-integrable function onto S1 or S2 is well defined.
However, these projections are not easy to compute. A possible way for avoiding the
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explicit computation of these projections is to split S1 and S2 in S1 = C1∩(e1+ker L1)
and S2 = C2 ∩ (e2 + ker L2), as in the proof of Theorem 4.3, where, for every i ∈
{1, 2}, Hi := L2(Xi ), Ci := {

f ∈ Hi : f ≥ 0 a.e.
}
, ei := (mi (Xi ))

−1, Li : f �→∫
Xi

f (x)dx , and mi (Xi ) is the Lebesgue measure of the set Xi . Moreover, define the
bilinear differentiable function f : ( f1, f2) �→ ∫

X1

∫
X2

F(x1, x2) f1(x1) f2(x2)dx2dx1.

It follows from F ∈ L2(X1 × X2) that

∇f : ( f1, f2) �→
( ∫

X2

F(·, x2) f2(x2)dx2,
∫

X1

F(x1, ·) f1(x1)dx1
)
∈H1 × H2, (45)

and that ∇f is χ -Lipschitzian with χ := ‖F‖L2(X1×X2)
. Thus, (44) is a particular

instance of Problem 4.3. Note that, for every i ∈ {1, 2}, L∗
i : R → L2(Xi ) : ξ �→ δξ ,

where, for every ξ ∈ R, δξ : x �→ ξ is the constant function. Moreover, Li ◦L∗
i : ξ →

mi (Xi )ξ is invertible and (Li ◦ L∗
i )

−1 : ξ �→ ξ/mi (Xi ), which yields Id−L∗
i L

∗†
i =

Id−L∗
i (Li ◦L∗

i )
−1Li : f �→ f −δ f̄ , where f̄ = ∫

Xi
f (x)dx/mi (Xi ) is themean value

of f . In addition, for every i ∈ {1, 2}, PCi : f �→ f+ : t �→ max{0, f (t)}. Altogether,
Algorithm 4.3 applied to this instance is a fully split method for solving (44). In the
particular case when X1 and X2 are finite sets of actions (or pure strategies), S1 and
S2 are finite dimensional simplexes, F : (x1, x2) �→ x�

1 Fx2, and F is a payoff matrix,
Algorithm 4.3 provides a first order method for finding Nash equilibria in the finite
zero-sum game (for complements and background on finite games, see [42])

find x1 ∈ S1 and x2 ∈ S2 such that

⎧⎪⎨
⎪⎩

x1 ∈ Argmin
y1∈S1

x�
1 Fx2

x2 ∈ Argmax
y2∈S2

x�
1 Fx2.

(46)

When a large number of pure actions are involved (e.g., Texas Hold’em poker), clas-
sical linear programming methods for solving (44) are enormous and unsolvable via
standard algorithms as simplex. Other attempts use acceleration schemes for obtaining
good convergence rates [21]. However, the proposed method does not guarantee the
convergence of the iterates. Algorithm 4.3 is an explicit convergent method that solves
(46) overcoming previous difficulties. Numerical simulations and comparisons with
other methods are part of further research.

5 Conclusions

We provide a fully split algorithm for finding a zero of A + B + NV . The proposed
method exploits the intrinsic properties of each of the operators involved, by explic-
itly activating the single-valued operator B and by computing the resolvent of A
and projections onto V . Weak convergence to a zero of A + B + NV is guaranteed,
and the flexibility of our framework is illustrated via applications to monotone inclu-
sions involvingm maximallymonotone operators, to primal-dual composite inclusions
involving partial sums of monotone operators, and to continuous zero-sum games. It
is worth mentioning that the three applications studied in this paper use different
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closed vector subspaces: the diagonal vector subspace in a product Hilbert space, the
product of vector subspaces, and the kernel of a linear bounded operator. In addition,
it follows from Remark 3.2 (iii) that it is possible to tackle very complex monotone
inclusions, including compositions with linear operators, by using the kernel of appro-
priate bounded linear operators as closed vector subspaces. The influence of the linear
operators of the original inclusion can be split from the other operators involved via
these closed vector subspaces. The resulting algorithm shall need to compute inverses
of suitable linear operators, which can be obtained easily without perturbing the effi-
ciency of the method in several cases [33]. Altogether, the flexibility of the vector
subspace setting gives a promising future to splitting methods involving this feature.
It is part of further research to study the performance of the methods under specific
assumptions of each problem. On the other hand, the partial sum of two set-valued
operators with respect to a closed vector subspace is introduced. This operation pre-
serves monotonicity, and further study will be done in this direction in future work.
Finally, in zero-sum games, a splitting method is provided for computing Nash equi-
libria. The algorithm replaces the projections onto mixed strategy spaces by simpler
projections.
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