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Abstract The main purpose of this paper is to investigate on the existence of a com-
petitive equilibrium for a market with consumption and exchange. A variational rep-
resentation is used to study this problem. More precisely, we consider an economy
where utility functions are assumed concave and non-differentiable, and we charac-
terize the equilibrium by means of a variational problem involving the subdifferential
multimap. Thanks to this approach, by introducing suitable perturbed utility functions,
we achieve an existence result when the operator is not coercive and the convex set
might be unbounded.
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1 Introduction

The aimof this paper is to dealwith a competitive equilibriummodel in a pure exchange
economy. In this workwe tackle the problem using the variational inequality approach:
a widely used method (see, e.g., [1–5] and [6,7] for the state-of-the-art of this topic).
The variational inequality theory was introduced by Fichera and Stampacchia, in
the early 1960s, in connection with several equilibrium problems originating from
mathematical physics. In 1973, to study impulse control problems, Bensoussan and
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Lions [8] introduced the idea of quasi-variational inequality which involves point-
to-set maps. Later on, in order to study some problems from operations research,
mathematical programming and optimization theory, Chan and Pang in [9] generalized
the quasi-variational inequality considered in [8], by introducing the so-called gene-
ralized quasi-variational inequality. In [10–15] different equilibrium problems are
studied by means of variational inequalities.

The founder of the theory of competitive economic equilibrium is Leon Walras
[16], who built a system of simultaneous equations to describe an economy and then
showed that the system could be solved to give the equilibrium prices and quantities of
commodity. Yet, eventually, he did not achieve the solutions of this system. Only later
on, with the work ofWald [17], the first rigorous result on the existence of equilibrium
was established. Stimulated by the advances in linear programming, nonlinear analysis
and game theory, many authors, like Arrow and Debreu [18], Mc Kenzie [19], Gale
[20], Nikaido [21], obtained numerous existence results and developed algorithms for
the calculus of the equilibrium by using fixed-point theory.

Starting from 1985, thanks to the development of the variational inequality theory,
several authors provided a more sophisticated analysis, which was characterized by
a considerably deeper approach to the competitive equilibrium problem. Indeed, the
variational inequality method represents an innovative and powerful methodology to
provide not only existence results, but also qualitative results such as sensitivity and
stability analysis and to develop efficient computational processes for the calculation
of the solution.

Our approach is based on the fundamental results presented in the work [4]. Here,
the authors reformulated a competitive equilibrium model of consumption and pro-
duction with trading in the market by means of a suitable variational inequality. Thus,
they studied a variational problem which incorporates Lagrange multipliers, and they
achieved the existence of the equilibrium. Following the idea of [4], in the papers [22–
26] the authors propose the study of competitive equilibrium using a totally different
variational approach. More precisely, they characterize the equilibrium as solution
of a suitable quasi-variational inequality without appealing Lagrange multipliers and
propose a new procedure in order to obtain its existence.

The aim of this paper is to improve the results obtained in the latter works, by relax-
ing the differentiability assumptions on utility functions. Thus, our equilibriummodel
is related to a suitable generalized quasi-variational inequality. By using variational
arguments we are able to give the existence of equilibrium solutions. Such approach is
useful not only from a mathematical point of view but also from an economic point of
view, since it allows weakening some classical assumptions. Indeed, in the economic
literature, in order to guarantees the existence of an equilibrium, the strong survivabil-
ity assumption is requested: each consumer must be endowed with all goods to survive
in the market. Here, as introduced in [11], we consider the minima prices which can
be not equal to zero, and we assume aweaker survivability assumption. This condition
ensures that, for any current price, the consumer has always the opportunity to earn
on the sale of its endowment; hence, he can survive in the market.

We would like to conclude by underlining that usually the concept of equilibrium
is connected with the optimization of a functional. Such conclusion can be applied
to Nash, traffic, oligopolistic …equilibrium problems. The competitive equilibrium
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model represents a more complicate version of the equilibrium, that is, in addition to
maximization to the actions of agents, the determination of market prices is crucial.
Hence, the interest of our study is addressed to the competitive equilibrium since it
represents a general framework into which we can set a wide class of equilibrium
problems, including the aforementioned equilibria.

The paper is organized as follows. In Sect. 2 we recall basic definitions and results.
In Sect. 3 we present the competitive economic equilibrium model. In Sect. 4 we
reformulate the equilibrium as a solution to a suitable variational inequality involving
point-to-set maps. Finally, in Sect. 5 we investigate on the existence of the equilibrium
by using the variational inequality theory.

2 Preliminaries

For the reader’s convenience, in this Section we recall some notations that will be
useful in the sequel.

Let F : Rn ⇒ R
m be a multivalued map (multimap). The domain and the graph of

F(·) are defined, respectively, as follows:

Dom F := {x ∈ R
n : F(x) �= ∅} ⊆ R

n,

Gph F := {(x, t) : t ∈ F(x), x ∈ DomF} ⊆ R
n × R

m .

Definition 2.1 (see [27]) A multimap F : Rn ⇒ R
m , with Dom F �= ∅ is

(a) upper semicontinuous (usc) at x ∈ R
n iff for each open set V ⊂ R

m , where
F(x) ⊂ V , there exists a neighborhood U ⊂ R

n of x such that for all x ′ ∈ U :
F(x ′) ⊂ V ;

(b) lower semicontinuous (lsc) at x ∈ R
n iff for any sequence of elements {xn}n∈N ⊂

R
n , xn → x , and for any y ∈ F(x), there exists a sequence {yn}n∈N ⊂ R

m , with
yn ∈ F(xn) ∀n and yn → y;

(c) closed iff for any sequences {xn}n∈N ⊂ R
n , {yn}n∈N ⊂ R

m , if xn → x and
yn ∈ F(xn), yn → y then y ∈ F(x).

Definition 2.2 (see [28]) A multimap F : Rn ⇒ R
n is

(a) monotone iff it has the property that

〈h1 − h2, x1 − x2〉 ≥ 0 whenever h1 ∈ F(x1), h2 ∈ F(x2);

(b) strongly monotone iff there exists ν > 0 such that

〈h1 − h2, x1 − x2〉 ≥ ν‖x1 − x2‖2 whenever h1 ∈ F(x1), h2 ∈ F(x2);

(c) a monotone mapping F is maximal monotone iff for every pair
(̂x, v̂) ∈ (Rn ×R

n)\Gph F there exists (̃x, ṽ) ∈ Gph F with 〈̂v − ṽ, x̂ − x̃〉 < 0,

where 〈·, ·〉 is the usual inner product of Rn .
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Let f : Rn → R ∪ {±∞} be a function. The domain of f is denoted by dom f :=
{x ∈ R

n : f (x) < ∞}. A function f is called proper iff f (x) < ∞ for at least one
x ∈ R

n and f (x) > −∞ for all x ∈ R
n .

Definition 2.3 (see [28]) A proper function f is

(a) convex iff for every x0, x1 ∈ dom f one has

f ((1 − τ)x0 + τ x1) ≤ (1 − τ) f (x0) + τ f (x1) ∀τ ∈ [0, 1];

(b) strongly convex iff there is a constant σ > 0 such that

f
(

(1 − τ)x0 + τ x1
) ≤ (1 − τ) f (x0) + τ f (x1) − 1

2
στ(1 − τ)‖x0 − x1‖2

for all x0, x1 ∈ dom f when τ ∈ (0, 1);
(c) concave iff − f is convex.

Definition 2.4 (see [29]) A vector x∗ is said to be a subgradient of a convex function
f at a point x ∈ dom f iff

f (y) ≥ f (x) + 〈x∗, y − x〉 ∀ y ∈ R
n .

The set of all subgradients of f at x is called the subdifferential of f at x and is
denoted by ∂ f (x).

The map x → ∂ f (x) is a multimap whose values are subsets of Rn . In general,
∂ f (x) may be empty; when ∂ f (x) is not empty, f is subdifferentiable at x . We recall
some properties of the subdifferential of convex functions. By f : Rn → R we mean
a function defined on the whole of Rn .

Proposition 2.1 (see [30,31]) Let f : Rn → R be convex. Then

(a) for x ∈ R
n, ∂ f (x) is a nonempty, convex, and compact set;

(b) ∂ f : Rn ⇒ R
n is a usc multimap.

Proposition 2.2 (see [28,29]) Let f : R
n → R ∪ {±∞} be a proper and convex

function. Then

(a) for x ∈ dom f , the set ∂ f (x) is convex and closed;
(b) the multimap ∂ f : Rn ⇒ R

n is monotone;
(c) if f is lsc, its subdifferential ∂ f is a maximal monotone operator.

Proposition 2.3 (see [28]) For a function f : Rn → R ∪ {±∞} and a value σ > 0,
the following properties are equivalent:

(a) ∂ f is strongly monotone with constant σ ;
(b) f is strongly convex with constant σ ;
(c) f − 1

2σ‖ · ‖2 is convex.
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Proposition 2.4 (see [28])Let f : Rn → R∪{±∞}bea function such that f = g+ f0
with g finite at x, f0 smooth on a neighborhood of x, and f0, g convex functions. Then
∂ f (x) = ∂g(x) + ∇ f0(x)

We recall a definition and some results about variational problems.

Definition 2.5 Let C ⊆ R
n be a nonempty, closed, and convex set and let S : C ⇒

R
n and Φ : C ⇒ R

n be multimaps. A Generalized Quasi-Variational Inequality
associated with C, S, Φ, denoted by GQVI, is the following problem: Find u ∈ S(u)

and ϕ ∈ Φ(u) such that

〈ϕ, u − u〉 ≥ 0 ∀u ∈ S(u) . (1)

In particular, when S(u) = C for all u ∈ C , (1) is aGeneralizedVariational Inequal-
ity (GVI); when Φ is single-valued, (1) reduces to the Quasi-Variational Inequality
(QVI).When bothΦ(u) is singleton and S(u) = C , for all u ∈ C , we have the classical
Variational Inequality (VI).

Theorem 2.1 (see [32]) Let f : Rn → R be a convex function and let C ⊆ R
n be a

nonempty, convex, and closed set. Then, x ∈ C is a solution to problem minx∈C f (x)
if and only if there exists ϕ ∈ ∂ f (x) such that

〈ϕ, x − x〉 ≥ 0 ∀x ∈ C.

Theorem 2.2 (see [33]) If C is a compact, convex and nonempty set and the function
Φ : C → R

n is continuous, then the VI admits a solution.

Theorem 2.3 (see [32]) If Φ is usc, stronglymonotone onC and has nonempty convex
and compact values, then GVI has a unique solution.

3 Equilibrium Model

Let us consider an economy of pure exchange with n consumers indexed by a ∈ A =
{1, . . . , n} and l different goods indexed by j ∈ J = {1, . . . , l}. To each consumer a
is associated a consumption set Xa ⊂ R

l . As usual in the classical theory, the set Xa is
nonempty, convex, and closed. Furthermore, Xa is bounded from below: there exists
a vector x̂a such that xa ≥ x̂a for all xa ∈ Xa . However, it is not restrictive assuming
Xa ⊆ R

l+; indeed, since Xa is bounded from below, with a change of variables from
xa to x ′

a = xa − x̂a , it is possible to translate Xa into a set X ′
a ⊆ R

l+. Thus, we
can assume Xa ⊆ R

l+. In this market, the aggregate amount of each commodity is
given exogenously, and the economic problem is that of allocating these among the
consumers. In the study of the consumer behavior it is important to know how the
income is generated. The standard way is to consider that the consumer has an initial
endowment ea = (e1a, . . . , e

l
a) ∈ Xa which represents the amount of various goods

that he can consume or trade with other individuals.Moreover, each consumer chooses
a consumption plan xa = (x1a , . . . , x

l
a) ∈ Xa . The matrix x = (x1, ..., xn)T is the total

consumption of the market.

123



J Optim Theory Appl (2016) 168:646–660 651

For each a ∈ A we denote by Ia the set of indexes corresponding to positive
initial endowments, namely Ia := { j ∈ J : e ja > 0}, and we assume that each
consumer is endowed with at least one commodity, then Ia �= ∅. To each commodity
j is associated a non-negative price p j such that p j ≥ q j , for all j ∈ J , where
q j represents a fixed minimum price associated to each commodity j and such that
0 ≤ q j < 1

l . The vector p = (p1, . . . , pl) ∈ R
l+ represents the market prices

which all consumers take as given. In this market, the consumer is characterized by
preferences over commodities so that he can compare and rank various goods available
in the economy. These consumers’ preferences can be represented by utility functions
ua : Rl → R, with a ∈ A. Each consumer is operating in the market to maximize his
utility subject to a natural budget constraint: the value of the consumption plan of the
consumer a at the current price p, 〈p, xa〉, cannot exceed his initial income 〈p, ea〉.
This leads to the following maximization problem: for all a ∈ A

find x̄a ∈ Ma(p) such that ua(x̄a) = maxxa∈Ma(p) ua(xa),

where the set Ma(p) := {xa ∈ Xa : 〈p, xa〉 ≤ 〈p, ea〉} represents the budget con-

straint. From homogeneity of Ma , we can assume that p belongs to the set P :=
{

p ∈
R
l+ :

∑

j∈J
p j = 1, p j ≥ q j ∀ j ∈ J

}

. For all a ∈ A and p ∈ P , the set Ma(p) is

convex and closed, and it is unbounded when p j = 0 for some j .

Definition 3.1 Let p ∈ P and x ∈ M(p) :=
∏

a∈A
Ma(p), we say that (p, x) is a

competitive equilibrium for a pure exchange economy iff

for all a ∈ A ua(xa) = max
xa∈Ma(p)

ua(xa), (2)

for all j ∈ J
∑

a∈A

(x j
a − e ja) ≤ 0. (3)

Froman economic point of view, condition (3)means that the total consumption cannot
exceed the available commodity in the market. From now on, we will use following
assumptions about the consumers’ utility and endowments.

Assumptions

(A1) for all consumers a ∈ A there exists j ∈ J such that q j �= 0 and e ja �= 0;
(A2) for all consumers a ∈ A, the utility function ua is continuous and concave.

Assumption (A1) means that the consumer a is endowed with at least one com-
modity e ja with minimum price greater than zero, q j �= 0. More precisely, he can be
active in the market even if he is not endowed with some goods. In fact the consumer
a has always the opportunity to earn on the sale of its income 〈p, ea〉 > 0. We would
like to stress that our assumption (A1) is not usual in the economic literature. That
is, a classical equilibrium exists under the strong survivability assumption: in order
to survive in the market, the consumer a must be endowed with a positive quantity
of every commodity j , namely Ia = J . Thanks to the introduction of the minima
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prices and to our variational approach, we are able to obtain that: the existence of the
equilibrium can be ensured without resorting to the strong survivability.

Remark 3.1 If (p, x) is a competitive equilibrium, then

〈

p − q,
∑

a∈A

(xa − ea)

〉

≤ 0. (4)

Indeed, from condition (3) and being p j − q j ≥ 0, it follows (4). It is interesting to
observe that when q j = 0 for all j ∈ J , the inequality (4) represents the well-known
Walras’ law in the general sense:

〈

p,
∑

a∈A

(xa − ea)

〉

≤ 0. (5)

Whenequality is verified in (5), the corresponding identity is referred to theWalras’ law
in the narrow sense. Moreover, for each element x ∈ M(p) one has 〈p, xa − ea〉 ≤ 0
for all a ∈ A; then the Walras’ law (5) holds.

4 Variational Approach

Now, our aim is to relate the competitive equilibria with the solutions of a suitable
variational inequality problem. We consider the following problem:

Find p ∈ P , x ∈ M(p) =
∏

a∈A
Ma(p) and h = {ha}a∈A with ha ∈

∂(−ua(xa)):

∑

a∈A

〈ha, xa − xa〉 +
〈

∑

a∈A

(ea − xa), p − p

〉

≥ 0 ∀ (p, x) ∈ P × M(p). (6)

We observe that, according to Definition 2.5, with

Φ(p, x) :=
(

∂(−u1(x1)), . . . , ∂(−un(xn)),
∑

a∈A

(ea − xa)

)

, ∀(p, x) ∈ P × R
n×l ,

x = (x1, . . . , xn), S(p, x) := P × M(p), ∀(p, x) ∈ P × R
n×l ,

the problem (6) represents a generalized quasi-variational inequality. It will be useful
the following:

Remark 4.1 The pair (p, x) is a solution to GQVI (6) if and only if for all a ∈ A, xa
and ha ∈ ∂(−ua(xa)) are solutions to

〈ha, xa − xa〉 ≥ 0 ∀xa ∈ Ma(p), (7)
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and p is a solution to

〈

∑

a∈A

(ea − xa), p − p

〉

≥ 0 ∀p ∈ P. (8)

This is easily seen by testing equation (6), respectively, with (p, x) for x ∈ M(p)
such that

xs =
{

xs, i f s �= a,

xa, for all xa ∈ Ma(p),

and with (p, x) for all p ∈ P .

Theorem 4.1 Under assumptions (A1)–(A2), let (p, x) be a solution to GQVI (6).
Then, if (p, x) verifies inequality (4), it is a competitive equilibrium.

Proof From Remark 4.1, for all a ∈ A, xa is a solution to (7) and p is a solution to
(8). Hence, from Theorem 2.1, xa is a maximum point of ua in Ma(p). It remains to
prove condition (3). We pose

J+ :=
{

j ∈ J :
∑

a∈A

(x j
a − e ja) > 0

}

,

J−
0 :=

{

j ∈ J :
∑

a∈A

(x j
a − e ja) ≤ 0, p j = q j

}

,

and J− :=
{

j ∈ J :
∑

a∈A

(x j
a − e ja) ≤ 0, p j > q j

}

.

We suppose by contradiction that J+ �= ∅. Firstly, we observe that J− �= ∅. Indeed,
if J− = ∅, since ∑

j∈J q
j < 1, we have p �= q, then there exists at least one index

j ∈ J+ such that p j > q j . Hence

〈

∑

a∈A

(ea − xa), p − q

〉

=
∑

j∈J+

(

∑

a∈A

(e ja − x j
a)

)

(p j − q j )

+
∑

j∈J−
0

(

∑

a∈A

(e ja − x j
a)

)

(p j − q j )

=
∑

j∈J+

(

∑

a∈A

(e ja − x j
a)

)

(p j − q j ) < 0 ,
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but this contradicts (4), then J− �= ∅. We consider

p̃ j =

⎧

⎪

⎨

⎪

⎩

p j + ε, ∀ j ∈ J+,

p j , ∀ j ∈ J−
0 ,

p j − ε
|J+|
|J−| , ∀ j ∈ J−,

where 0 < ε < min
j∈J−

{

(p j − q j )
|J−|
|J+|

}

, with 0 < |J−|, |J+| < l denoting, respec-

tively, the cardinality of sets J− and J+. From choosing of ε, we have p̃ j ≥ q j for
all j ∈ J and

∑

j∈J

p̃ j =
∑

j∈J+
(p j + ε) +

∑

j∈J−
0

p j +
∑

j∈J−

(

p j − ε
|J+|
|J−|

)

= 1 + ε|J+| − |J−|ε |J+|
|J−| = 1,

then p̃ ∈ P . Replacing p̃ in (8); it results

〈

∑

a∈A

(ea−xa), p̃− p

〉

=ε
∑

j∈J+

(

∑

a∈A

(e ja−x j
a)

)

−ε
|J+|
|J−|

∑

j∈J−

(

∑

a∈A

(e ja−x j
a)

)

< 0.

But this is false because p is a solution to VI (8). Then J+ = ∅, hence, condition (3)
holds. Then, we conclude that (p, x) is a competitive equilibrium. ��

Remark 4.2 Under the classical survivability assumption one has that, for all a ∈
A, e ja > 0 for all j ∈ J . Then, it is possible to assume that the minimum price is
equal to zero: q j = 0 for all j ∈ J . Since x ∈ M(p), the Walras’ law in the general
sense holds; hence, Theorem 4.1 can be reformulated as follows:

Theorem 4.2 Let assumption (A2) be satisfied and e ja > 0 ∀a ∈ A ∀ j ∈ J . Then a
solution (p, x) to GQVI (6) is a competitive equilibrium.

5 Existence Result

In this Section, we investigate on the existence of the competitive equilibrium. Our aim
is to give an existence result without assuming strong concavity and differentiability
conditions on utility functions. Firstly, we observe that, the variational problem (6)
fits in the following general formulation:

Find (u, v) ∈ S1(v) × S2 and (ϕ1, ϕ2) ∈ Φ1(u, v) × Φ2(u, v) such that

〈ϕ1, u − u〉 + 〈ϕ2, v − v〉 ≥ 0 ∀(u, v) ∈ S1(v) × S2 , (9)
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where S2 ⊆ R
m and Φ ≡ (Φ1, Φ2) and S1 are multimaps defined, respectively, from

C1 × C2 and C2, with C1 ⊆ R
n and C2 ⊆ R

m nonempty, closed, and convex sets. In
order to give an existence result, we use the following two-level procedure (see, e.g.,
[15]): fixed v ∈ S2, we consider the parametric GVI

find u ∈ S1(v) and ϕ1 ∈ Φ1(u, v) such that 〈ϕ1, u−u〉 ≥ 0 ∀u ∈ S1(v) . (10)

For this problem we obtain existence and regularity results of the solution u(v). Then
we consider the VI

find v ∈ S2 and ϕ2 ∈ Φ2(u(v), v) such that

〈ϕ2, v − v〉 ≥ 0 ∀v ∈ S2 . (11)

For this problem we also obtain the existence of the solution. Finally, (u(v), v) repre-
sents the solution to (9). It will be later useful the following:

Proposition 5.1 Let assumption (A1) holds. For all a ∈ A, the multimap Ma : P ⇒
Xa defined as, for all p ∈ P, Ma(p) := {xa ∈ Xa : 〈p, xa − ea〉 ≤ 0} is closed and
lsc and with closed and convex values.

Proof The multimap Ma is closed and with closed and convex values. We prove that
Ma is lsc. Let {pn}n∈N ⊆ P such that pn → p and we fix xa ∈ Ma(p).

– If 〈p, xa − ea〉 < 0, from the strict inequality and the continuity of the scalar
product, for sufficiently large n, one has 〈pn, xa − ea〉 < 0. So xa ∈ Ma(pn).

– If 〈p, xa − ea〉 = 0. We pose I+ := { j ∈ J : x j
a > 0} ; from (A1), since

〈p, xa〉 = 〈p, ea〉 > 0, there exists s ∈ I+ such that ps > 0. We pose

x j
a,n =

⎧

⎪

⎨

⎪

⎩

0, if j /∈ I+,

x j
a − p j

n
∑

j∈I+(p j
n)

2
〈pn, xa − ea〉, i f j ∈ I+.

It results: xa,n → xa , x
j
a,n ≥ 0 for all j ∈ J and

〈pn, xa,n − ea〉 = 〈pn, xa − ea〉 −
∑

j∈I+
p j
n

p j
n

∑

j∈I+(p j
n)

2
〈pn, xa − ea〉 = 0;

hence xa,n ∈ Ma(pn).

Then, for all xa ∈ Ma(p) there exists {xa,n}n∈N such that xa,n ∈ Ma(pn) and xa,n →
xa ; namely, Ma is a lsc multimap. ��

Firstly, we give a preliminary existence result for the variational problem (6), when
utility functions are strongly concave. ��
Theorem 5.1 Let assumptions (A1)–(A2) be satisfied and ua be strongly concave.
Then there exists (p, x) solution to GQVI (6).
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Proof We fix p ∈ P , a ∈ A, and we consider the following parametric GVI: Find
xa ∈ Ma(p) and ha ∈ ∂(−ua(xa)) such that

〈ha, xa − xa〉 ≥ 0 ∀xa ∈ Ma(p) . (12)

In accordance with Proposition 2.1, ∂(−ua) is usc with compact and convex values.
Moreover, from Propositions 2.2 and 2.3, ∂(−ua) is a maximal monotone and strongly
monotone map. Hence, by Theorem 2.3, there exists a unique solution to GVI (12).
So, we can define the function:

xa : P → R
l such that ∀p ∈ P, xa (p) is the solution to (12).

Weprove that xa(·) is continuous on P . Let {pn}n∈N ⊆ P be a sequence converging
to p for all n ∈ N there exist xa,n and ha,n ∈ ∂(−ua(xa,n)):

〈ha,n, xa − xa,n〉 ≥ 0 ∀xa ∈ Ma(pn) . (13)

We consider the sequence {xa,n}n∈N, it results:

(i) there is at least one subsequence of {xa,n}n∈N converging to some t ∈ R
l . By

Proposition 2.1, ∂(−ua(ea)) �= ∅; thus, we consider h0 ∈ ∂(−ua(ea)). Thanks to
the strong monotonicity of ∂(−ua), there exists ν > 0 such that

〈h1 − h2, x1 − x2〉 ≥ ν‖x1 − x2‖2 ∀x1 x2 ∈ R
l , (14)

whenever h1 ∈ ∂(−ua(x1)), h2 ∈ ∂(−ua(x2)). In particular for x1 = ea , x2 =
xa,n and h1 = h0 ∈ ∂(−ua(ea)), h2 = ha,n ∈ ∂(−ua(xa,n)) and being xa,n the
solution to n-GVI (13) and ea ∈ Ma(pn) for all n, one has

ν‖xa,n − ea‖2 ≤ 〈h0 − ha,n, ea − xa,n〉 ≤ ‖h0‖ · ‖xa,n − ea‖.

Namely, ‖xa,n‖ ≤ ‖ea‖ + ‖xa,n − ea‖ ≤ ‖ea‖ + ‖h0‖
ν

= M .

So, there exists at least one subsequence {xa,nk } such that xa,nk → t ∈ R
l .

(ii) t is the solution to (12): t = xa(p).
Since Ma is a closed multimap, t ∈ Ma(p). Being xa,n the solution to (13):

ua(xa,n) = max
xa,n∈Ma(pn)

ua(xa,n) ⇔ ua(xa,n) ≤ ua(xa,n) ∀xa,n ∈ Ma(pn) .

(15)
For all xa ∈ Ma(p), being Ma lsc, one has ∃ {x ′

a,n}n∈N: x ′
a,n ∈ Ma(pn), x ′

a,n →
xa . If we replace x ′

a,n = xa,n in (15) and we pass to the limit, then one has
ua(xa) ≤ ua(t). That is t is the unique solution to GVI (12): t = xa(p).

So, for all a ∈ A, each function xa is continuous on P . Finally, we consider

〈

∑

a∈A

(ea − xa(p)), p − p

〉

≥ 0 ∀ p ∈ P . (16)
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Since the operator g(p) = ∑

a∈A(xa(p) − ea) is continuous and P is compact, from
Theorem 2.2 there exists at least one solution p to VI (16). Hence (x(p), p) is a
solution to GQVI (6). ��

Now, by using perturbation arguments, we obtain another existence result when
utility functions are concave and non-differentiable.

Proposition 5.2 Let assumption (A2) be satisfied. For each ε > 0, we define the
perturbed utility function: ua,ε(x) := ua(x) − ε‖x‖2 ∀ x ∈ R

l . It results

(i) ua,ε verifies assumption (A2);
(ii) for all x ∈ R

l one has ∂(−ua,ε)(x) = ∂(−ua(x)) + 2εx;
(iii) ua,ε is strongly concave.

Proof Clearly (i) holds; the equality (i i) follows from Proposition 2.4. We prove
(i i i) with standard arguments. From (i i), for all x1, x2 ∈ R

l , h1 ∈ ∂(−ua,ε(x1))
and h2 ∈ ∂(−ua,ε)(x2), one has h1 = v1 + 2εx1 and h2 = v2 + 2εx2, for some
v1 ∈ ∂(−ua(x1)) and v2 ∈ ∂(−ua(x2)). Then, being ∂(−ua) a monotone map (see
Proposition 2.2), one has:

〈h1 − h2, x1 − x2〉 = 〈v1 + 2εx1 − v2 − 2εx2, x1 − x2〉 =
= 〈v1 − v2, x1 − x2〉 + 2ε〈x1 − x2, x1 − x2〉 ≥ 2ε‖x1 − x2‖2 ;

that is ∂(−ua,ε) is strongly monotone; so ua,ε is strongly concave. ��
Theorem 5.2 Let assumptions (A1)-(A2) be satisfied, then there exists at least one
solution to GQVI (6).

Proof Fixed n ∈ N and a ∈ A, we consider the perturbed function ua,ε with ε = 1

n
:

ua,n(x) = ua(x) − 1

n
‖x‖2 ∀x ∈ R

l . By Proposition 5.2, ua,n satisfies assumption

(A2), and it is strongly concave. Then, from Theorem 5.1 there exist (pn, xn) ∈
P × M(pn) and hn = {ha,n}a∈A with ha,n ∈ ∂(−ua,n(xa,n)):

∑

a∈A

〈ha,n, xa,n − xa,n〉+
〈

∑

a∈A

(ea − xa,n), p − pn

〉

≥ 0 ∀ (p, xn) ∈ P ×M(pn) .

(17)
The sequence {xa,n}n∈N is bounded. Indeed, since ∂(−ua,n(ea)) �= ∅, there exists

h0,n ∈ ∂(−ua,n(ea)) and h0,n = v0 + 2

n
ea with v0 ∈ ∂(−ua(ea)). From the strong

monotonicity of ∂(−ua,n), there exists ν > 0 such that

〈h1,n − h2,n, x1 − x2〉 ≥ ν‖x1 − x2‖2 ∀x1 x2 ∈ R
l , (18)

whenever h1,n ∈ ∂(−ua,n(x1)), h2,n ∈ ∂(−ua,n(x2)). In particular for x1 = ea ,
x2 = xa,n and h1,n = h0,n ∈ ∂(−ua,n(ea)), h2,n = ha,n ∈ ∂(−ua,n(xa,n)), being
xa,n the solution to n-GVI:

〈ha,n, xa,n − xa,n〉 ≥ 0 ∀xa,n ∈ Ma(pn) (19)
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and since ea ∈ Ma(pn) for all n, one has

ν‖xa,n − ea‖2 ≤ 〈h0,n − ha,n, ea − xa,n〉 = 〈h0,n, ea − xa,n〉 − 〈ha,n, ea − xa,n〉

≤ ‖h0,n‖ · ‖xa,n − ea‖ = ‖v0 + 2

n
ea‖ · ‖xa,n − ea‖

≤
(

‖v0‖ + 2

n
‖ea‖

)

‖xa,n − ea‖;

which yields ‖xa,n − ea‖ ≤ 1
ν

(

‖v0‖ + 2
n ‖ea‖

)

≤ M ∀n ∈ N.

Namely ‖xa,n‖ ≤ ‖ea‖ + ‖xa,n − ea‖ ≤ ‖ea‖ + M = K , that is the sequence
{xa,n}n∈N is bounded. Then, since {pn} ⊆ P with P compact, there exists a subse-
quence {(pnk , xnk )}k∈N converging to (p, x) ∈ P × M(p). The limit point (p, x) is
a solution to GQVI (6). Indeed, one has

∀a ∈ A 〈ha,n, xa,n − xa,n〉 ≥ 0 ∀xa,n ∈ Ma(pn), (20)
〈

∑

a∈A

(ea − xa,n), p − pn

〉

≥ 0 ∀p ∈ P. (21)

For all p ∈ P , passing to the limit in (20) one has

〈

∑

a∈A

(ea − xa), p − p

〉

≥ 0 . (22)

Moreover, for all xa ∈ Ma(p), since Ma is lsc, there exists a sequence {xa,n}n∈N such
that xa,n ∈ Ma(pn) and xa,n → xa . From Theorem 2.1 one has

ua,n(xa,n) ≤ ua,n(xa,n) ⇔ ua(xa,n) − 1

n
‖xa,n‖2 ≤ ua(xa,n) − 1

n
‖xa,n‖2 .

Passing to the limit, from continuity of ua , one has ua(xa) ≤ ua(xa). Hence, xa is a
maximal point of ua inMa(p). Then, fromTheorem2.1, there exists ha ∈ ∂(−ua(xa))
such that

〈ha, xa − xa〉 ≥ 0 ∀xa ∈ Ma(p) . (23)

So, from (23) and (22), it follows that (p, x) is a solution to GQVI (6). ��
We observe that, under assumptions (A1) and (A2), there exists (p, x) solution

to GQVI (6) (Theorem 5.2). Moreover, if (p, x) verifies inequality (4), then it is a
competitive equilibrium (Theorem 4.1).

Theorem 5.3 Let assumption (A2) be satisfied and e ja > 0 ∀a ∈ A, ∀ j ∈ J . Then
there exists the competitive equilibrium for a pure exchange economy.

Proof It follows from Theorems 4.2 and 5.2. ��
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6 Conclusions

In this paper we investigated on the existence of a competitive equilibrium for a
market with consumption and exchange using a variational inequality approach. The
variational representation, which we set up for a competitive economic model, fits in
the general formulation (9). In this paper we achieved a new and useful methodology
to obtain both the existence of the solution and the computational procedures for the
calculus by using a two-level procedure (see Sect. 5). Thesemethods,whichwe applied
to an economic equilibrium problem, can be used in a more general context. We point
out that the above procedure is useful not only to provide existence results but also
to provide efficient computational procedure for the calculus of solutions (see, e.g.,
[24], where an example is illustrated). Indeed, instead of solving the GQVI (9), it is
certainly easier and more convenient to solve two variational inequalities where the
convex set does not depend on the solution.

Furthermore, it deserves emphasis the fact that in the variational problem (9) the
operator is not coercive and the convex set might be unbounded. This represents a con-
siderable difficulty in the tractability of the problem. Indeed, in literature, existence
results are mainly based either on coercivity conditions over the operator or on com-
pactness conditions over the convex set. But these conditions are not satisfied directly
by our problem. We overcome this difficulty by introducing suitable perturbed utility
functions, in order to study perturbed variational problems with strongly monotone
operator converging to the initial variational problem. Then, thanks to our approach,
we are able to provide an existence theorem when the operator is not coercive and the
set is unbounded.

Acknowledgments The authors are indebted to the editor and unknown referees for valuable suggestions
and comments which improved the quality of the paper.
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