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1 Introduction

Symmetric optimization (SO) problem is a convex optimization problem, which min-
imizes a linear function over the intersection of an affine subspace and a symmetric
cone. The SO problem is an important class of convex optimization problems, because
it includes linear optimization (LO), second-order cone optimization (SOCO), and
semidefinite optimization (SDO) as special cases. Particularly, many interior-point
methods (IPMs) for LO are successfully extended to SOCO and SDO (see, e.g., [1–5]),
due to their polynomial complexity and practical efficiency.

Güler [6] was the first to realize that symmetric cones serve as a unifying framework
towhich the important types of cones used in optimization such as nonnegative orthant,
second-order cone, and cone of positive semidefinitematrices belong. Faybusovich [7]
made the first attempt to generalize IPMs from LO to SO using EJAs and associated
symmetric cones. Consequently, several efficient IPMs for SO have been developed
(see, e.g., [8–15]). For an overview of the relevant results, we refer to the recent book
on this subject [16] and the references therein.

The primal-dual full Newton-step feasible IPM for LO was first analysed by Roos
et al. in [17] and was later extended to infeasible version by Roos [18]. Subsequently,
Gu et al. [19] proposed an improved version of full Newton-step infeasible IPM for
LO where the convergence analysis of the algorithm was simplified. However, it still
maintains the currently best known iteration bound. Both versions of the method were
extended by Gu et al. [8] to SO using EJAs. The search direction used in [8] is based
on the Nesterov–Todd (NT) scheme. The obtained iteration bounds coincide with the
ones derived for LO,where n is replaced by r , the rank of EJAs, which are the currently
best known iteration bounds for SO. Some other references, related to full step IPMs,
without any attempt to be complete, are [12,20–24].

In this paper, we present an improved convergence and complexity analysis of the
fullNT-step feasible IPMfor SOdiscussed in [8].More specifically, a sharper quadratic
convergence result is established, which leads to a wider neighbourhood of the central
path for the iterates in the algorithm. The purpose of the paper is mainly theoretical,
which is to show that despite full NT-steps in the wider neighbourhood of the central
path, the best complexity known for these types of methods is still maintained. More-
over, these features give a certain numerical appeal to the methods although they are
still small-update methods and cannot quite compare in efficiency with large-update
methods whose theoretical complexity is far worse (the “irony” of IPMs).

The outline of the paper is as follows. In Sect. 2, we recall some known results
that are needed in this paper. More importantly, some new results are developed that
are used to perform the new complexity analysis of feasible IPM. In Sect. 3, we
present the full NT-step feasible IPM for SO with its complexity analysis. Finally,
some concluding remarks are made in Sect. 4.

2 Preliminaries

In what follows we assume that the reader is familiar with the basic concepts of
EJAs and symmetric cones. A comprehensive treatment of EJAs can be found in the
monograph [25] and in [7,8,11,12,26] as it relates to optimization.
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Let (V, ◦) be an n-dimensional EJA with rank r equipped with the standard inner
product 〈x, s〉 = tr(x ◦ s) (see, (8)) and K be the corresponding symmetric cone.
Moreover, we always assume that there exists an identity element e ∈ V such that
e ◦ x = x for all x ∈ V .

For any element x ∈ V , the Lyapunov transformation L(x) : V → V is given by

L(x)y := x ◦ y, ∀y ∈ V. (1)

Furthermore, we define the quadratic representation of x in V as follows:

P(x) := 2L(x)2 − L
(
x2

)
, (2)

where L(x)2 = L(x)L(x).
For any EJA V , the corresponding cone of squares

K(V) :=
{
x2 : x ∈ V

}
(3)

is indeed a symmetric cone, i.e. self-dual closed convex and homogeneous cone [25].
For any x ∈ V , let r be the smallest integer such that the set {e, x, . . . , xr } is linearly

dependent. Then r is the degree of x which is denoted as deg(x). Clearly, this degree
of x is bounded by the dimension of the vector space V . The rank of V , denoted by
rank(V), is the largest deg(x) of any element x ∈ V . An element x ∈ V is called
regular if its degree equals the rank of V . In the sequel, otherwise stated, V is used to
be denoted an EJA with rank(V) = r .

For a regular element x ∈ V , since {e, x, x2, . . . , xr } is linearly dependent, there
are real numbers a1(x), . . . , ar (x) such that the minimal polynomial of every regular
element x is given by

f (λ; x) = λr − a1(x)λ
r−1 + · · · + (−1)r ar (x), (4)

which is the characteristic polynomial of the regular element x . The coefficient a1(x)
is called the trace of x , denoted as tr(x). And the coefficient ar (x) is called the deter-
minant of x , denoted as det(x).

An element c ∈ V is said to be an idempotent if c2 = c. Two idempotents c1 and
c2 are said to be orthogonal if c1 ◦ c2 = 0. Moreover, an idempotent is primitive if it
is non-zero and cannot be written as the sum of two (necessarily orthogonal) non-zero
idempotents. We say that {c1, . . . , cr } is a complete system of orthogonal primitive
idempotents, or Jordan frame, if each ci is a primitive idempotent, ci ◦ c j = 0, i �= j ,
and

∑r
i=1 ci = e. The Löwner partial ordering “	K” of V defined by a cone K is

defined by x 	K s if x − s ∈ K. The interior of K is denoted as intK and we write
x 
K s if x − s ∈ intK.

The following theorem describes a spectral decomposition of elements in V , which
plays an important role in the analysis of the IPMs for SO.
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Theorem 2.1 (Theorem III.1.2 in [25]) Let x ∈ V . Then there exist a Jordan frame
{c1, . . . , cr } and real numbers λ1(x), . . . , λr (x) such that

x =
r∑

i=1

λi (x)ci . (5)

The numbers λi (x) (with their multiplicities) are the eigenvalues of x. Furthermore,
the trace and the determinant of x are given by

tr(x) =
r∑

i=1

λi (x) and det(x) =
r∏

i=1

λi (x). (6)

Fix a Jordan frame {c1, c2, . . . , cr } in an EJA V . For i, j ∈ {1, 2, . . . , r}, define the
eigenspaces

Vi i := {x ∈ V : x ◦ ci = x} = IR ci ,Vi j :=
{
x ∈ V : x ◦ ci = 1

2
x = x ◦ c j

}
, i �= j.

The following theorem provides another important decomposition, the Peirce
decomposition, of the space V .
Theorem 2.2 (Theorem IV.2.1 in [25]) The space V is the orthogonal direct sum of
the spaces Vi j (i ≤ j), i.e.

V =
⊕
i≤ j

Vi j .

Furthermore, we have Vi j ◦ Vi j ⊂ Vi i + V j j , Vi j ◦ V jk ⊂ Vik, if i �= k, and

Vi j ◦ Vkl = {0}, if {i, j} ∩ {k, l} = ∅.

Thus, the Peirce decomposition of x ∈ V with respect to the Jordan frame
{c1, . . . , cr } is given by

x =
r∑

i=1

xi ci +
∑
i< j

xi j (7)

with xi ∈ IR, i = 1, . . . , r and xi j ∈ Vi j , 1 ≤ i < j ≤ r .

Corollary 2.1 (Lemma 12 in [11]) Lex x ∈ V and its spectral decomposition with
respect to the Jordan frame {c1, . . . , cr } is given by (5). Then the following statements
hold.

(i) The matrices, L(x) and P(x) commute and thus share a common system of
eigenvectors; in fact the ci are among their common eigenvectors.

(ii) The eigenvalues of L(x) have the form
λi+λ j

2 , 1 ≤ i ≤ j ≤ r.
(iii) The eigenvalues of P(x) have the form λiλ j , 1 ≤ i ≤ j ≤ r.
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As already indicated, for any x, s ∈ V , the trace inner product is defined by

〈x, s〉 := tr(x ◦ s). (8)

Thus, tr(x) = 〈x, e〉. Hence, it is easy to verify that

tr(x + s) = tr(x) + tr(s) and x �K s ⇒ tr(x) ≤ tr(s). (9)

The Frobenius norm induced by this trace inner product is given by

‖x‖F := √〈x, x〉. (10)

It follows from Theorem 2.1 that

‖x‖F =
√
tr(x2) =

√√√√
r∑

i=1

λ2i (x). (11)

One can easily verify that

|λmin(x)| ≤ ‖x‖F and |λmax(x)| ≤ ‖x‖F . (12)

Furthermore, we have

∥∥∥x2
∥∥∥
F

≤ ‖x‖2F . (13)

In the following two lemmas, we recall several important inequalities used in the
sequel.

Lemma 2.1 (Lemma 2.13 in [8]) Let x, s ∈ V and 〈x, s〉 = 0. Then

−1

4
‖x + s‖2F e �K x ◦ s �K

1

4
‖x + s‖2F e.

Lemma 2.2 (Lemma 2.16 in [8]) Let x, s ∈ V . Then

‖x ◦ s‖F ≤ 1

2

∥∥∥x2 + s2
∥∥∥
F

.

Next lemma provides an important inequality connecting eigenvalues of x ◦ s with
the sum of Frobenius norms of x and s.

Lemma 2.3 Let x, s ∈ V . Then
r∑

i=1

|λi (x ◦ s)| ≤ 1

2

(
‖x‖2F + ‖s‖2F

)
.
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Proof For any x, s ∈ V , we have

x2 + s2 − 2x ◦ s = (x − s)2 ∈ K and x2 + s2 + 2x ◦ s = (x + s)2 ∈ K.

This implies that

−1

2
(x2 + s2) �K x ◦ s �K

1

2
(x2 + s2).

From Theorem 8 in [27], we have

λ
↓
i (x ◦ s) ≤ 1

2
λ

↓
i (x2 + s2) and − λ

↓
i (x ◦ s) ≤ 1

2
λ

↓
i (x2 + s2)

for all i , where for z ∈ V , λ↓
i (z) (i = 1, 2, . . . , r) denote the eigenvalues of z written

in the decreasing order. Thus,

|λ↓
i (x ◦ s)| ≤ 1

2
λ

↓
i (x2 + s2)

for all i . This implies that

r∑
i=1

|λi (x ◦ s)| ≤ 1

2

r∑
i=1

λi (x
2 + s2) = 1

2
tr(x2 + s2) = 1

2
(tr(x2) + tr(s2)).

Since tr(x2) = ‖x‖2F and tr(s2) = ‖s‖2F , we have
r∑

i=1

|λi (x ◦ s)| ≤ 1

2

(
‖x‖2F + ‖s‖2F

)
.

This completes the proof. ��
If 〈x, s〉 = 0, then ‖x+s‖2F = ||x ||2F +||s||2F . Thus, the following corollary follows

immediately from Lemma 2.3.

Corollary 2.2 Let x, s ∈ V and 〈x, s〉 = 0. Then

r∑
i=1

|λi (x ◦ s)| ≤ 1

2
‖x + s‖2F .

Lemma 2.4 (Lemma C.6 in [17]) Let γ be a vector in IR p such that γ > −1 and
1T γ = σ , where 1 denotes the all-one vector in IR p. Then if either γ ≥ 0 or γ ≤ 0,

p∑
i=1

−γi

1 + γi
≤ −σ

1 + σ
.

Equality holds if and only if at most one of the coordinates of γ is non-zero.
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Lemma 2.5 Let u, v ∈ V and 〈u, v〉 = 0, and suppose ‖u + v‖F = 2a with a < 1.
Then

〈
e, (e + u ◦ v)−1 − e

〉
≤ 2a4

1 − a4
.

Proof It follows from Lemma 2.1 that

|λi (u ◦ v)| ≤ 1

4
‖u + v‖2F = 1

4
· 4a2 = a2 < 1, i = 1, . . . , r.

This implies that −e ≺K u ◦ v ≺K e. Let β := u ◦ v, then tr(β) = 0 by assumption.
It easily follows that 〈e, β〉 = 0. Next, let

I+(β) := {i : λi (β) > 0} and I−(β) := {i : λi (β) < 0}.

Then

σ :=
∑

i∈I+(β)

λi (β) = −
∑

i∈I−(β)

λi (β).

Let γi = λi (β) for i ∈ I+(β) and γi = λi (β) for i ∈ I−(β). From Lemma 2.4, we
have

〈
e, (e + u ◦ v)−1 − e

〉
=

〈
e, (e + β)−1 − e

〉
=

〈
e,−β ◦ (e + β)−1

〉

=
r∑

i=1

−λi (β)

1 + λi (β)
=

∑
i∈I+(β)

−λi (β)

1 + λi (β)
+

∑
i∈I−(β)

−λi (β)

1 + λi (β)

≤ −σ

1 + σ
+ σ

1 − σ
= 2σ 2

1 − σ 2 . (14)

The last expression is monotonically increasing in σ . Hence we may replace it by
an upper bound, which can be obtained from Corollary 2.2 as follows:

σ = 1

2

r∑
i=1

|λi (β)| = 1

2

r∑
i=1

|λi (x ◦ s)| ≤ 1

4
‖u + v‖2F = a2.

Substitution of this bound for σ into (14) yields the desired inequality

〈
e, (e + u ◦ v)−1 − e

〉
≤ 2a4

1 − a4
.

This completes the proof. ��
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3 Full Nesterov–Todd Step Feasible Interior-Point Method

In this section, we present a new convergence and complexity analysis for the full
NT-step feasible IPM for SO given in [8]. It is shown that the iterates can be taken
in the wider quadratic convergence neighbourhood of the central path than previously
obtained in [8]. Furthermore, we establish the currently best known iteration bound
for full NT-step feasible small-update methods.

3.1 The SO Problems

In this paper, we consider the primal SO problem in the standard form

(SOP) min {〈c, x〉 : Ax = b, x ∈ K},

and its dual problem

(SOD) max {bTy : ATy + s = c, s ∈ K},

where A is a matrix representation of the linear operator from V to IRm . Vector c and
the rows of A lie in V , b ∈ IRm , and AT is the adjoint of A. Throughout the paper, we
assume that the rows of A are linearly independent. Many researchers have studied
SO and achieved numerous important results [8–12].

3.2 A Brief Outline of the Full NT-Step Feasible IPM

Without loss of generality, as established in [28], we can assume that both (SOP) and
(SOD) satisfy the interior-point condition (IPC), i.e. there exists (x0, y0, s0) such that

Ax0 = b, x0 ∈ intK, ATy0 + s0 = c, s0 ∈ intK.

The Karush–Kuhn–Tucker (KKT) conditions for (SOP) and (SOD) are given by

Ax = b, x ∈ K, ATy + s = c, s ∈ K, x ◦ s = 0. (15)

The standard approach of primal-dual IPMs is to replace the third equation in (15),
that is called complementarity condition for (SOP) and (SOD), by the parameterized
equation x ◦ s = μe with μ > 0, which yields the following system

Ax = b, x ∈ K, ATy + s = c, s ∈ K, x ◦ s = μe. (16)

The parameterized system (16) has a unique solution (x(μ), y(μ), s(μ)) for each
μ > 0. The x(μ) component is called the μ-centre of (SOP) and the pair (y(μ), s(μ))

is called the μ-centre of (SOD). The set of μ-centres forms a homotopy path with μ

running through all positive real numbers, which is called the central path. If μ → 0,
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then the limit of the central path exists and since the limit points satisfy the comple-
mentarity condition, i.e., x ◦ s = 0, it naturally yields an optimal solution for (SOP)
and (SOD) (see, e.g., [7,11]).

The core idea of primal-dual IPMs is to follow the central path approximately, i.e.
within a certain neighbourhood, and to approach the optimal set of SO by gradually
reducing μ to zero. The standard ‘tool’ for tracing the central path approximately is a
Newton method. Given an iterate (x, y, s) ‘close’ to the central path (the measure of
the closeness will be defined in the sequel), the new iterate is obtained by taking full
NT-step as described below. Applying Newton’s method to the system (16), we have

A�x = 0, AT�y + �s = 0, x ◦ �s + s ◦ �x = μe − x ◦ s. (17)

The system does not always have a unique solution due to the fact that x and s
do not operator commute in general, i.e. L(x)L(s) �= L(s)L(x). To overcome this
difficulty, the third equation of the system (16) is replaced by the following equivalent
scaled equation (cf. Lemma 28 in [11])

P(u)x ◦ P(u−1)s = μe,

where u is a scaling point from the interior of the cone K.
Applying Newton’s method to this modified system, we have

A�x = 0,

AT�y + �s = 0, (18)

P(u)x ◦ P(u−1)�s + P(u−1)s ◦ P(u)�x = μe − P(u)x ◦ P(u−1)s.

There are several appropriate choices for the scaling point u that lead to obtaining
unique search directions from system (18) (see, e.g. [9]). In this paper, we use the

classical NT-scaling point to find unique NT-direction. Let u := w− 1
2 , where

w := P(x)
1
2

(
P

(
x

1
2

)
s
)− 1

2
[
= P(s− 1

2 )
(
P

(
s
1
2

)
x
) 1

2
]

(19)

is theNT-scaling point of x and s. This scaling pointwas first proposed byNesterov and
Todd for self-scaled cones [29,30] and then adapted by Faybusovich [7] for symmetric
cones.

Introducing the variance vector

v := P(w)− 1
2 x√

μ

[
= P(w)

1
2 s√

μ

]
, (20)

and the scaled search directions

dx := P(w)− 1
2 �x√

μ
, ds := P(w)

1
2 �s√
μ

, (21)
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the system (18) is further simplified

Adx = 0, A
T
�y + ds = 0, dx + ds = v−1 − v, (22)

where A := 1√
μ
AP(w)

1
2 . This system has a unique solution (dx ,�y, ds).

From the first two equations of the system (22), one can easily verify that the scaled
search directions dx and ds are orthogonal with respect to the trace inner product, i.e.
〈dx , ds〉=0. Hence, we have

dx = ds = 0 ⇔ v−1 − v = 0 ⇔ v = e,

which implies that the iterate (x, y, s) coincides with the corresponding μ-centre if
and only if v = e. The original search directions can then be obtained from (21)

�x = √
μP(w)

1
2 dx and �s = √

μP(w)−
1
2 ds . (23)

If (x, y, s) �= (x(μ), y(μ), s(μ)), then (�x,�y,�s) is non-zero. The new iterate is
obtained by taking full NT-steps

x+ := x + �x, y+ := y + �y, and s+ := s + �s. (24)

To measure the distance of an iterate to the corresponding μ-centre, a norm-based
proximity measure δ(x, s;μ) is introduced

δ(v) := δ(x, s;μ) := 1

2

∥∥∥v−1 − v

∥∥∥
F

. (25)

One can easily verify that

δ(v) = 0 ⇔ v = e ⇔ dx = ds = 0 ⇔ x ◦ s = μe, (26)

which implies that the value of δ(v) can indeed be considered as a measure for the
distance between the given iterate and the corresponding μ-centre.

The τ -neighbourhood of the central path can now be defined as

N (τ )=
{
(x, y, s) ∈ intK× IRm × intK : Ax = b, ATy + s = c, δ(v) ≤ τ

}
. (27)

The brief outline of the feasible algorithm given above can now be summarized as
follows.At the start of the algorithm,we choose a strictly feasible point (x0, y0, s0) and

μ0 = 〈x0,s0〉
r such that δ(x0, s0;μ0) ≤ τ with 0 < τ < 1. Using Newton’s method

with NT scaling, the NT-search directions are calculated. A new iterate (x, y, s) is
constructed by taking a full NT-step. Then, μ is reduced by the factor 1 − θ with
0 < θ < 1. The appropriate choice of parameters τ and θ is crucial to assure that
the new iterate stays in the τ -neighbourhood (27) of the central path. This process is
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repeated until μ is small enough, say until rμ < ε. At this stage an ε-approximate
optimal solution of SO has been found.

The generic full NT-step feasible IPM is as follows:

Input:

A threshold parameter 0 < τ < 1;

an accuracy parameter ε > 0;

a fixed barrier update parameter 0 < θ < 1;

a strictly feasible (x0, y0, s0) and μ0 = x0,s0

r
such that δ(x0, s0;μ0) < τ .

begin
x := x0; y := y0; s := s0; μ := μ0.

while rμ ≥ ε do

begin
solve the system (22) and use (23) to obtain (Δx, Δy, Δs);

update (x, y, s) := (x, y, s) + (Δx, Δy, Δs);

μ := (1 − θ)μ.
end

end

3.3 Analysis of the Full NT-Step Feasible IPM

The condition for strict feasibility of the full NT-step is established in the lemma below.

Lemma 3.1 (Lemma 3.3 in [8]) Let δ := δ(x, s;μ) < 1. Then the full NT-step is
strictly feasible.

The following lemma shows that, after a full NT-step, the duality gap assumes the
same value as at the μ-centres, namely rμ.

Lemma 3.2 (Lemma 3.4 in [8]) After a full NT-step, the duality gap is given by

〈
x+, s+〉 = rμ.

Lemma 3.3 (Proposition 5.6 in [31]) One has

v+ ∼
(
P(v + dx )

1
2 (v + ds)

) 1
2
.

Symbol ∼ denotes the similarity of elements in EJA. Recall, two elements x and s
in V are similar, denoted by x ∼ s, if they share the same set of eigenvalues, including
their multiplicities. Furthermore, v+ represents the variance vector after a full NT-step,
which, according to (20), is given by

v+ := P(w+)− 1
2 x+

√
μ

[
= P(w+)

1
2 s+

√
μ

]
, (28)

where w+ is the NT-scaling point of x+ and s+.
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The following technical lemma is a slight modification of Lemma 30 in [11].

Lemma 3.4 Let x, s ∈ intK. Then

‖x ◦ s‖F ≥ ‖P(x)
1
2 s‖F .

Proof Corollary 2.1 implies that L(x) and L(x2) commute and the matrix

L
(
x2

)
− L(x)2 = L(x)2 −

(
2L(x)2 − L

(
x2

))
= L(x)2 − P(x)

has the eigenvalues

(
λi + λ j

2

)2

− λiλ j ≥ 0, 1 ≤ i ≤ j ≤ r.

Thus, L
(
x2

) 	 L(x)2 and we have

‖x ◦ s‖2F = 〈x ◦ s, x ◦ s〉 = 〈s, L(x)2s〉 = 〈s, 2L(x)2s〉 − 〈s, L(x)2s〉
≥ 〈s, 2L(x)2s〉 − 〈s, L(x2)s〉 = 〈s, (2L(x)2 − L(x2))s〉
= 〈s, P(x)s〉 = 〈P(x)

1
2 s, P(x)

1
2 s〉 = ‖P(x)

1
2 s‖2F .

This completes the proof. ��
Corollary 3.1 Let x, s ∈ intK. Then

‖(x ◦ s)−
1
2 ‖F ≤ ‖(P(x)

1
2 s)−

1
2 ‖F .

The key part in proving the quadratic convergence is to investigate the effect on
proximity measure δ(x, s;μ) of a full NT-step to the target point (x(μ), y(μ), s(μ)).
For this purpose, Gu et al. [8] extended Theorem II.50 in [17] for LO to the SO case.
This result is stated in the theorem below.

Theorem 3.1 (Theorem 3.6 in [8]) Let δ := δ(x, s;μ) < 1. Then

δ(x+, s+;μ) ≤ δ2√
2(1 − δ2)

.

Furthermore, if δ ≤ 1√
2
, then δ(x+, s+;μ) ≤ δ2.

In what follows, we derive a sharper quadratic convergence result than the one
mentioned above. Our derivation is based on the generalization of Theorem II.52 in
[17] for LO. This leads to a wider quadratic convergence neighbourhood of the central
path for the algorithm presented in this paper.
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Theorem 3.2 Let δ := δ(x, s;μ) < 1. Then, the full NT-step is strictly feasible and

δ(x+, s+;μ) ≤ δ2√
2(1 − δ4)

.

Proof Let

u := P(v + dx )
1
2 (v + ds) and ū := (v + dx ) ◦ (v + ds).

Then, it follows from Lemma 3.3 that v+ ∼ u
1
2 . Furthermore, we have

ū = v2 + v ◦ (dx + ds) + dx ◦ ds = v2 + v ◦ (v−1 − v) + dx ◦ ds = e + dx ◦ ds .

From (28) and Lemma 3.2, we have

‖u 1
2 ‖2F = ‖v+‖2F = 〈v+, v+〉 = 1

μ
〈x+, s+〉 = r.

Corollary 3.1 implies that

‖u− 1
2 ‖2F ≤ ‖ū− 1

2 ‖2F .

Thus, we have

4δ(x+, s+;μ)2 = ‖(v+)−1 − v+‖2F = ‖u− 1
2 − u

1
2 ‖2F = ‖u− 1

2 ‖2F + ‖u 1
2 ‖2F − 2r

= ‖u− 1
2 ‖2F − r ≤ ‖ū− 1

2 ‖2F − r = 〈e, (e + dx ◦ ds)
−1 − e〉.

Application of the Lemma 2.5 to the last expression above with u = dx and v = ds
yields the result of the theorem, since ‖dx + ds‖ = 2δ, with δ < 1. This completes
the proof. ��
Corollary 3.2 Let δ := δ(x, s;μ) ≤ 1

4√2
. Then the full NT-step is strictly feasible

and

δ(x+, s+;μ) ≤ δ2.

The corollary above shows the quadratic convergence of the full NT-step to the
target μ-centre (x(μ), y(μ), s(μ)) in the wider neighbourhood determined by 1/ 4

√
2

as opposed to 1/
√
2 in [8].

In the previous theorem, the μ was kept fixed and (x, y, s) was updated to
(x+, y+, s+). In the following theorem, the effect on the proximity measure is inves-
tigated when (x, y, s) is kept fixed and μ is updated to μ+ = (1− θ)μ. The theorem
is a generalization of Lemma II.54 in [17].
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Theorem 3.3 Let δ := δ(x, s;μ) < 1 and μ+ = (1 − θ)μ with 0 < θ < 1. Then

δ(x, s;μ+)2 = (1 − θ)δ2 + rθ2

4(1 − θ)
.

Proof From (20), we have μtr(v2) = tr(x ◦ s). This shows that tr(v2) = tr(e) = r .
Therefore, v and v−1 − v are orthogonal with respect to the trace inner product. Thus,
we have

4δ(x, s;μ+)2 =
∥∥∥∥
√
1 − θv−1 − v√

1 − θ

∥∥∥∥
2

F
=

∥∥∥∥
√
1 − θ(v−1 − v) + θv√

1 − θ

∥∥∥∥
2

F

= (1 − θ)‖(v−1 − v)‖2F + θ2‖v‖2F
1 − θ

= 4(1 − θ)δ2 + rθ2

1 − θ
.

This completes the proof. ��
Corollary 3.3 Let δ := δ(x, s;μ) ≤ 1

4√2
and θ = 1√

2r
with r ≥ 2. Then

δ(x+, s+;μ+) ≤ 1
4
√
2
.

Proof From Corollary 3.2 and the fact that δ ≤ 1
4√2

, we have

δ(x+, s+;μ)2 ≤ (δ2)2 = δ4 ≤ 1√
2
.

Then, after the barrier parameter is updated toμ+ = (1−θ)μ, with θ = 1√
2r
, Theorem

3.3 yields the following upper bound for δ(x+, s+;μ+)2:

δ(x+, s+;μ+)2 ≤ 1 − θ

2
+ 1

8(1 − θ)
≤ max

{
5

8
,
1

2

}
= 5

8
.

The last inequality holds due to the fact that the left-hand side is a convex function of θ ,
whose values are 5/8 and 1/2 at θ = 0 and θ = 1/2, respectively. Since θ ∈ [0, 1/2],
the left-hand side does not exceed 5/8. Note that 5/8 < 1/

√
2. Hence, the desired

inequality follows

δ
(
x+, s+;μ+) ≤ 1

4
√
2
.

This completes the proof. ��
The consequence of the above results is that if we set the values of the threshold

parameter and the barrier update parameter to

τ = 1
4
√
2

and θ = 1√
2r

, (29)
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the algorithm will generate a sequence of iterates that are not only feasible; they, in
addition, always lay in the τ -neighbourhood (27) of the central path. Moreover, the
duality gap will be reduced according to 〈x+, s+〉 = rμ. Hence, the algorithm is well
defined and globally convergent.

Similar to the proof of Lemma 4.7 in [12], we can easily verify the validity of the
following lemma.

Lemma 3.5 Let x0 and s0 are strictly feasible, μ0 = 〈x0,s0〉
r ≤ 1

4√2
. Moreover, let

(xk, yk, sk) be the k-th iterate of the algorithm. Then the inequality 〈xk, sk〉 ≤ ε is
satisfied if

k ≥ 1

θ
log

〈x0, s0〉
ε

.

From Lemma 3.5, we have the following theorem which provides an upper bound
for the total number of the iterations produced by the algorithm.

Theorem 3.4 Let τ = 1
4√2

and θ = 1√
2r

with r ≥ 2. Then the algorithm requires

√
2r log

〈x0, s0〉
ε

iterations to obtain an iterate (x, y, s) satisfying 〈x, s〉 ≤ ε which is an ε-approximate
optimal solution of (SOP) and (SOD).

Thus, the feasible algorithm is well defined, globally convergent, and achieves
quadratic convergence of full NT-steps in the wider neighbourhood while still main-
taining the best known iteration bound known for these types of methods, namely

O
(√

r log
rμ0

ε

)
.

Although the neighbourhood iswider, it is not substantiallywider, hence, the algorithm
is still a small-update method.

4 Conclusions

In this paper, we have presented an improved convergence and complexity analysis
of the full NT-step feasible IPM for SO discussed in [8]. It has been shown that the
iterates in this modified version of the algorithm can be taken in the wider quadratic
convergence neighbourhood of the central path characterized by 1/ 4

√
2 as opposed to

1/
√
2 in [8]. However, the currently best iteration bound known for feasible algorithm

of the type described in the paper is still achieved. For the analysis of the algorithm,
some new results on EJAs has to be developed including Lemmas 2.3 and 2.5 as two
important ones. Moreover, these results are interesting in their own right.
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Some interesting topics for further research include the design and analysis of a full
NT-step infeasible IPMwith polynomial iteration bound and the generalization of these
algorithms to the Cartesian P∗(κ)-linear complementarity problem over symmetric
cones [32,33].
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