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Abstract A generalizing analysis is made in order to ease the solvability of the gen-
erally complex single-leader–single-follower reverse Stackelberg game. This game is
of a hierarchical nature and can therefore be implemented as a structure for multi-level
decision-making problems, like in road pricing. In particular, a leader function of the
affine type is analyzed in order to procure a systematic approach to solving the game
to optimality. To this end, necessary and sufficient existence conditions for this opti-
mal affine leader function are developed. Compared to earlier results reported in the
literature, differentiability of the follower objective functional is relaxed, and locally
strict convexity of the sublevel set at the desired reverse Stackelberg equilibrium is
replaced with the more general property of an exposed point. Moreover, a full charac-
terization of the set of optimal affine leader functions that is derived, which use in the
case of secondary optimization objectives as well as for a constrained decision space,
is illustrated.

Keywords Stackelberg games · Hierarchical decision making · Existence conditions

Mathematics Subject Classification 91A35 · 91A65

1 Introduction

Hierarchical optimization approaches have proven useful in settings, in which conflict-
ing objectives appear [1,2], or as a means of dealing with large-scale control problems

Communicated by Mauro Pontani.

N. Groot (B) · B. De Schutter · H. Hellendoorn
Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
e-mail: n.b.groot@tudelft.nl

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-014-0694-4&domain=pdf


J Optim Theory Appl (2016) 168:348–374 349

[3]. Here, the hierarchical reverse Stackelberg game [4] is considered, which is also
known as a Stackelberg game with incentive strategies [5], or more recently, as the
inverse Stackelberg game [6,7]. As compared to the original Stackelberg game [2], in
the reverse Stackelberg game, instead of an immediate decision variable, the leader
proposes a mapping of the follower’s decision space into her decision space. Com-
pared to the original Stackelberg game, this structure provides the leader with a stronger
influence in case of a nonunique follower response to the single-leader decision.

While diverse research directions have been considered w.r.t. the reverse Stack-
elberg game, e.g., partial information [8], sensitivity [9], and applications like road
tolling [1,10], by the best knowledge of the authors, no structural approach to finding
optimal leader functions has yet been provided. Instead, much research is tailored to
the specific case of a quadratic, (strictly) convex and differentiable cost functional
and, in a dynamic game framework, of a linear state update equation [8,11–16], in
which case affine solutions have been shown to be optimal [8]. Our aim is to expand
available solution methods by first considering problem instances in which nonconvex
sublevel sets for the follower objective function as well as nondifferentiable objective
functions apply.

In this article, a first step is made toward developing a systematic solution approach
that on the one hand eases the solution process of the generally complex single-leader–
single-follower reverse Stackelberg game, and that at the same time deals with a game
setting in which assumptions that could restrict the application to certain problem
settings are relaxed as much as possible. In particular, leader functions of the affine
type are analyzed in order to procure a systematic approach for solving the game to
optimality.

To this end, we formulate necessary and sufficient existence conditions for an opti-
mal affine solution as initially presented in [17] in their most general form. Compared
to earlier results reported in the literature, the differentiability requirement of the fol-
lower objective functional is relaxed, and locally strict convexity of the follower’s
sublevel set at the desired reverse Stackelberg equilibrium is replaced by the more
general property of an exposed point.

Moreover, a full characterization of the set of optimal affine leader functions is
derived. The parametrized characterization of such a set facilitates further optimiza-
tion, e.g., when considering the sensitivity to deviations from the optimal follower
response as a secondary objective, as is illustrated in [18]. Furthermore, the charac-
terization can be used to verify the existence of an optimal affine leader function in
a constrained decision space, in which case the derivation of existence conditions is
a challenging task. The computational complexity of the original game and of the
proposed solution approach is considered, and illustrative examples are provided.

The remainder of this paper is structured as follows. Section 2 includes a defini-
tion of the reverse Stackelberg game along with a brief analysis of its computational
complexity and with an outline of the solution approach, followed by a clarification of
notation and assumptions. In Sect. 3, necessary and sufficient conditions are proven
for the existence of an optimal affine leader function, considering separately the case
of a scalar leader input, and the cases in which the desired equilibrium is either an
interior or a boundary point of the sublevel set. The characterization of the set of
optimal affine leader functions is provided in Sect. 4 and illustrated by an example,
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after which the use of this set for the constrained case is illustrated by an example in
Sect. 5. Conclusions are presented in Sect. 6.

2 Preliminaries

2.1 Reverse Stackelberg Game

The basic single-leader–single-follower, static, deterministic reverse Stackelberg game
without constraints can be defined as follows.

Let the leader and follower decision variables be denoted by up ∈ �p ⊆ R
n p ,

n p ∈ N, p ∈ {L, F}, while Jp : �L × �F → R denotes, respectively, the leader’s
and follower’s objective (cost) functional. We assume the leader to have complete
knowledge of the follower’s objective functional and decision space.

Given that the leader player acts first by announcing the leader function γL : �F →
�L while taking into account the follower’s response, we can write the problem as a
set of composed functions similar as is done in [6]:

γ ∗
L (·) ∈ arg min

γL(·)JL(γL(u∗
F(γL(·))),u∗

F(γL(·))),
u∗

F = arg min
uF∈�F

JF(γ ∗
L (uF),uF), (1)

where we assume that γ ∗
L is constructed such that the optimal—indicated by an super-

scribed asterisk—follower response is unique. An overview of symbols that are fre-
quently used in this article can be found in Table 1.

2.1.1 Computational Complexity

Already the single-leader–single-follower static reverse Stackelberg problem is com-
plex and, in general, difficult to solve analytically due to the composed functions
appearing in the optimization problem formulated in (1) as well as the possible exis-
tence of multiple optima (hence solutions) and a nonunique follower response [6,7,19].

Theorem 2.1 The reverse Stackelberg game (1) is at least strongly NP-hard.

Proof The original Stackelberg game is a special case of (1), i.e., for γL : �F → {ud
L},

with ud
L ∈ �L a free variable, (1) can be written as

(
ud

L,ud
F

)
∈ arg min

uL∈�L,uF∈�F

{
JL(uL,uF) : uF ∈ arg min

uF∈�F
{JF(uL,uF)}

}
, (2)

from which a suitable, explicit value ud
L for γL(uF) follows.

Moreover, the Stackelberg game (2) is equivalent [20,21] to the bilevel program-
ming problem that can be written as

min
x∈X

{
F(x, ỹ) : G(x, ỹ) ≤ 0, ỹ ∈ arg min

y∈Y { f (x, y) : g(x, y) ≤ 0}
}

, (3)
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Table 1 List of Important Symbols

JL,JF Objective functions of leader, follower player

�L, �F Decision spaces of leader, follower player(
ud

L, ud
F

)
Leader’s desired equilibrium point, ud

L ∈ �L,ud
F ∈ �F

�d Sublevel set for JF(·) at JF

(
ud

L,ud
F

)

Lc( f ) Contour of function f (·) at the value c ∈ R

nL, nF Number of leader, follower decision components

γL Leader function, γL : �F → �L

�L Set of admissible leader functions

�∗
L Set of optimal affine leader functions for �L, �F unconstrained

�
∗,con
L Set of optimal affine leader functions for �L, �F constrained

�X (x) Supporting hyperplane to X at x ∈ X

�t
x Tangent nF-dimensional subspace to x ∈ X

AL Set of affine relations (sets) through
(
ud

L, ud
F

)

AX
L Set of affine relations (sets) through

(
ud

L, ud
F

)
that are subsets of X

RL,RF Matrices that characterize an affine leader function

RL Set of realizations RL that yield an optimal affine leader function

V(X (x)) Generalized normal to X at x ∈ X

for general cost functions F(·), f (·) and constraint functions G(·), g(·). The linear
bilevel programming problem is proven to be NP-hard [22] and later strongly NP-
hard [23].

Hence, the reverse Stackelberg game can be reduced to the strongly NP-hard bilevel
optimization problem, and therefore belongs at least to this complexity class. ��

A common, simplifying approach to the reverse Stackelberg problem is for the
leader player to first determine a particular desired optimum

(
ud

L,ud
F

)
that she

seeks to achieve [4,5]. A natural choice would be the leader’s global optimum(
ud

L,ud
F

) ∈ arg minuL∈�L,uF∈�F JL(uL,uF). Given such an equilibrium point, the
remaining problem can be written as follows:

To find: γL ∈ �L, (4)

s.t. arg min
uF∈�F

JF(γL(uF),uF) = ud
F, γL(ud

F) = ud
L, (5)

where �L denotes the class of leader functions γL : �F → �L that is allowed in a
particular game setting.

In other words, the leader should construct her function γL such that it passes
through the desired optimum, but without intersection with other points in the sublevel
set

�d :=
{
(uL,uF) ∈ �L × �F : JF(uL,uF) ≤ JF

(
ud

L,ud
F

)}
. (6)
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Then, the optimal follower response coincides with the desired input ud
F.

2.1.2 Affine Incentive Compatibility

In order to further reduce the complexity of the general reverse Stackelberg game and
to create a systematic approach toward solving the general game, in this paper, we
focus on the particular affine structure of the leader function, i.e., we assume �L to
include only functions of the form

uL := γL(uF) = ud
L + B

(
uF − ud

F

)
, (7)

where B denotes a linear operator mapping �F → �L, represented by an nL × nF
matrix in the finite-dimensional case we will consider according to assumption A.3 in
Sect. 2.3 below.

The property of a particular desired leader equilibrium to be feasible for an instance
of the reverse Stackelberg game is known as incentive compatibility in the literature [5];
it will therefore be analyzed under what conditions an optimal affine leader function
exists, meaning that the leader is able to induce the follower to choose the desired
input ud

F, and thus reach her desired equilibrium.
From now on, we denote by AL the set of affine relations through

(
ud

L,ud
F

)
defined

as sets of dimension nF in �L×�F and such that, for αL ∈ AL, αL∩�d = {(
ud

L,ud
F

)}
.

Note that the introduction of AL is necessary in order to be able to work with the
function γL : �F → �L as a set of points

{(uL,uF) : uF ∈ �F,uL = γL(uF)} . (8)

Remark 2.1 Note that, in this paper, the leader function γL is defined as a mapping
�F → �L that can also be represented by the set of points (8) [24]. In the following,
both the mapping and the set representation of γL are adopted, depending on the
context.

For αL ∈ AL, αL(�L) = �F, we can then characterize a candidate leader function by
γL := (αL)−1. To indicate that a function αL ∈ AL is not only affine, but also it is in
addition a subset of X , we define AX

L := {αL ∈ AL : αL ⊆ X}.

2.2 Notation

The analysis mostly relies on concepts from convex analysis and geometry, such as
hyperplanes and strictly convex functions and sets (see, e.g., [24,25]). We denote the
convex hull of a set X by conv(X). In addition, the following notation is adopted:

Fig. 1 The points a and d of
this closed convex set X are
exposed; points b and c are not

a
b

c
dX
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– By f (X̃), we denote the image of a function f : X → Y for a subset X̃ ⊆ X ,
where the domain is denoted X := dom( f ).

– �X (x) denotes a supporting hyperplane to the set X at the point x ∈ X .
– As in [24], a set X is an affine subspace iff ∀y, z ∈ X,∀α ∈ R : αy+(1−α)z ∈ X .
– An exposed point of a convex set X is defined as a point in its closure X̄ :=⋂ {X + εB : ε > 0} with B the Euclidean unit ball B := {x : |x |2 ≤ 1} that

intersects with a strictly supporting hyperplane to X [25] (see also Fig. 1). Sim-
ilarly, a point x̃ in the closure of a nonconvex set X̃ is an exposed point if there
exists a neighborhood of x̃ , N (x̃), such that x̃ intersects with a strictly supporting
hyperplane to N (x̃).

– The projection of the set P ⊆ R
n onto the space X = R

m,m ≤ n is denoted
projX (P).

– By {0}nL × �F, we denote the decision space in which the leader components are
taken to be zero.

– A generalized gradient ∂ f (x) of a locally Lipschitz continuous function f : R
n →

R at x is defined as follows:

∂ f (x) := conv({ lim
m→∞ ∇ f (xm) : xm → x, xm ∈ dom( f )\� f }),

with � f being the set of points where f is nondifferentiable [26]. By V(X (x)),
we denote the generalized normal to the set X at the point x ∈ X̄ , defined as a
basis of the generalized gradient at x ∈ X̄ . Thus, in case �d is smooth at

(
ud

L,ud
F

)
,

V (
�d

(
ud

L,ud
F

)) = ∇JF
(
ud

L,ud
F

)
. The generalized normal can be defined through

a finite or an infinite number of linearly independent basis vectors as clarified in
Fig. 5.

2.3 Assumptions

[A.1] Let �L,�F be convex sets.
[A.2] Let �d be a connected set.
[A.3] Let nL, nF be finite.
[A.4] Let �d = {(

ud
L,ud

F

)}
.

The first assumption is taken from the literature on Stackelberg games, e.g., [8,27].
Assumption A.2 is a less restrictive case of taking JF, and therefore also �d to be
strictly convex, as was done in [8]. Note that we do not require JF to be continuous. In
case

(
ud

L,ud
F

) ∈ bd(conv(�d)), the assumption can even be omitted altogether as the
analysis below is focused on conv(�d) rather than �d. Assumption A.3 is accepted
in many control applications [28,29]; moreover, it is necessary in order to use the
concept of a supporting hyperplane. Finally, the special case excluded by assumption
A.4 presents the trivial situation in which

(
ud

L,ud
F

)
is automatically optimal for the

follower as well.

3 Existence Conditions

In the current section, basic necessary and sufficient conditions for the existence of
an optimal affine leader function are proposed for the most general case, in which the
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Λd

ud
L

uL

uF,2 ud
F,2

uF,1
ud
F,1

V Λd(ud
L,ud

F)

(a)

γL

Λd

uF

uL,2

uL,1

(ud
L,ud

F)

(b)
Fig. 2 a Example of a convex set �d that is nonsmooth at

(
ud

L, ud
F

)
, for which no optimal affine leader

function exists. b Example of an optimal affine leader function not lying on a supporting hyperplane

��d

(
ud

L, ud
F

)
for nL > 1,

(
ud

L, ud
F

)
∈ int(conv(�d))

sublevel set �d is allowed to be nonconvex and nonsmooth, in an unconstrained deci-
sion space. These conditions form the basis for a characterization of the set of optimal
solutions, as provided in Sect. 4. An explicit analysis of the subcases in which convex
sublevel sets apply that are smooth at

(
ud

L,ud
F

)
can be found in [17]. Here, it should

be noted that, when relaxing the strict convexity of the follower objective functional
from the original results in [8], the desired leader equilibrium is not automatically a
boundary point of the convex hull of the sublevel set. Exclusion of this case prevents
the current theory from being generally applicable, as is illustrated in Fig. 2b. There,
an example is shown of an optimal affine leader function for a desired equilibrium(
ud

L,ud
F

)
, that is, in the interior of the convex hull of �d.

We first need to consider the special case of nL = 1; no optimal affine leader
function then exists if, in addition,

(
ud

L,ud
F

)
is not an exposed point of conv(�d).

Proposition 3.1 Let �L = R
nL ,�F = R

nF and assume that nL = 1. Then, the
desired equilibrium

(
ud

L,ud
F

)
can be reached under an affine γL : �F → �L if and

only if it holds both that
(
ud

L,ud
F

)
is an exposed point of conv(�d) and that

proj�L

(
V

(
conv

(
�d

(
ud

L,ud
F

))))
= {0}.

Proof First note that, since nL = 1, if and only if a strictly supporting hyperplane
�conv(�d)

(
ud

L,ud
F

)
exists, it coincides with an affine αL ∈ AL, as is shown in Lemma

6.3. Note that a plane �conv(�d)

(
ud

L,ud
F

)
is strictly supporting if and only if

(
ud

L,ud
F

)
is an exposed point of conv(�d) (implying that

(
ud

L,ud
F

)
/∈ int(conv(�d))).

It remains to be shown that, in addition to
(
ud

L,ud
F

)
being exposed, in order for

α
��d
L (�L) = �F to hold, it is necessary and sufficient that there exists a vector
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ν ∈ V (
�d

(
ud

L,ud
F

)) : proj�L
(ν) = {0}, from which it follows that the projection

proj�L

(V (
conv

(
�d

(
ud

L,ud
F

))))
should not include only the zero vector. In that case,

no explicit description of a leader function exists. This sufficiency and necessity is
proven next.

(⇒) By contraposition: Suppose that proj�L

(V (
conv

(
�d

(
ud

L,ud
F

)))) = {0}.
Then, there exists a tangent plane �conv(�d)

(
ud

L,ud
F

)
with a normal vector ν for

which it holds that proj�L
(ν) = {0}. It follows that this normal vector defining the

hyperplane �conv(�d)

(
ud

L,ud
F

)
is parallel to the decision space �F, i.e., the hyper-

plane is orthogonal to {0}nL × �F. Therefore, proj�F

(
��d

(
ud

L,ud
F

)) ⊃ �F and
��d

(
ud

L,ud
F

)
will not include any elements (uL,uF) ∈ �L × (�F\{ud

F}), which

implies that α
��d
L (�L) � �F.

(⇐) If proj�L

(V (
conv

(
�d

(
ud

L,ud
F

)))) = {0}, then there exists a normal vec-
tor ν ∈ V (

conv
(
�d

(
ud

L,ud
F

)))
defining a hyperplane �conv(�d)

(
ud

L,ud
F

)
that is not

orthogonal to the decision space �L.
It follows that the hyperplane is not orthogonal to {0}nL × �F: proj�L(V (

conv
(
�d

(
ud

L,ud
F

)))) = �F.
Hence, for all uF ∈ �F, there exists uL ∈ �L : (uL,uF) ∈ �conv(�d)

(
ud

L,ud
F

)
.

Thus, there exists an affine α
��d
L : α

��d
L (�L) = �F.

Under the use of a leader function γL :=
(

α
�

conv(�d)(ud
L ,ud

F)
L

)−1

, by definition of the

level set (6), the minimum of JF(·) will be obtained at
(
ud

L,ud
F

)
. ��

An example of a case in which �d is nonsmooth and no affine γL exists is depicted
in Fig. 2a: here, proj�L

(V (
�d

(
ud

L,ud
F

))) = {0}.
Propositions 3.2 and 3.3 consider, respectively, the case in which the desired leader

equilibrium
(
ud

L,ud
F

)
is an exposed point of conv(�d), or is in the interior of conv(�d)

for nL ≥ 1 and nL > 1.

Proposition 3.2 Let nL ≥ 1 and assume that
(
ud

L,ud
F

)
is an exposed point of

conv(�d). Allow �d to be nonsmooth at
(
ud

L,ud
F

)
and assume that �L = R

nL ,�F =
R
nF . Then, the desired equilibrium

(
ud

L,ud
F

)
can be reached under an affine γL : �F →

�L if and only if proj�L

(V (
conv

(
�d

(
ud

L,ud
F

)))) = {0}.
Proof The necessity and sufficiency of the expression

proj�L

(
V

(
conv

(
�d

(
ud

L,ud
F

))))
= {0}

is proven in the previous Proposition 3.1 for γL := �conv(�d)

(
ud

L,ud
F

)
. In case nL > 1,

it holds that γL ⊂ �conv(�d)

(
ud

L,ud
F

)
. Thus, there exists at least one leader function

on the plane that satisfies the condition that α
��d
L (�L) = �F. ��

Finally, for nL > 1, requiring αL ∈ AL to lie on a supporting hyperplane separating
the full (nF+nL)-dimensional decision space into subspaces is generally too restrictive
for the existence of an optimal affine leader function. This applies to, e.g., the general
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Fig. 3 Example of an affine γL
lying on a supporting hyperplane

��d

(
ud

L, ud
F

)
that is not

strictly supporting

Λd

uL,2

uL,1

uF

γL

(ud
L,ud

F)

nonconvex case under a constrained decision space, and to the case in which
(
ud

L,ud
F

) ∈
int(conv(�d)), as depicted in Fig. 2b. Hence, instead, the tangent hyperplane concept
is adopted in Proposition 3.3 below.

Proposition 3.3 Let nL > 1 and assume that
(
ud

L,ud
F

) ∈ int (conv (�d)). Allow�d to
be nonsmooth at

(
ud

L,ud
F

)
and assume that �L = R

nL ,�F = R
nF . Then, the desired

equilibrium
(
ud

L,ud
F

)
can be reached under an affine γL : �F → �L if and only if there

exists an nF-dimensional tangent, affine subspace �t
d

(
ud

L,ud
F

)
to �d at

(
ud

L,ud
F

)
such

that �t
d

(
ud

L,ud
F

) ∩ �d = {(
ud

L,ud
F

)}
, and such that proj�L

(V (
�d

(
ud

L,ud
F

))) = {0}.
Proof Since αL ∈ AL is of the same dimension as a tangent, affine subspace
�t

d

(
ud

L,ud
F

)
, there exists αL ∈ AL : αL ∩ �d = {(ud

L,ud
F

)} if and only if

∃�t
d

(
ud

L,ud
F

)
: �t

d

(
ud

L,ud
F

)
∩ �d =

{(
ud

L,ud
F

)}
.

In order for αL ∈ A�t
d

(
ud

L,ud
F

)
L to be a mapping �L → �F, it is necessary and sufficient

that proj�L

(V (
�d

(
ud

L,ud
F

))) = {0}, as was proven before in Proposition 3.1. ��
Remark 3.1 Consider the case with

(
ud

L,ud
F

) ∈ bd (conv (�d)), but where
(
ud

L,ud
F

)
is

not an exposed point, i.e., no supporting hyperplane �conv(�d)

(
ud

L,ud
F

)
exists that

intersects with conv(�d), thus also with �d solely in the point
(
ud

L,ud
F

)
. How-

ever, by definition of the convex hull, there does exist a supporting hyperplane
�̃conv(�d)

(
ud

L,ud
F

)
for which thus holds that �̃conv(�d)

(
ud

L,ud
F

)∩�d\
{(
ud

L,ud
F

)} = ∅.
For this case not captured in Proposition 3.2, with nL = 1, an optimal affine γL may
still exist, as depicted in Fig. 3.

Remark 3.2 In the special case with
(
ud

L,ud
F

)
exposed and with scalar decision vari-

ables (nF = 1, nL = 1), an affine γL : �F → �L leading to
(
ud

L,ud
F

)
automatically

exists.
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Since �d is nonsmooth at
(
ud

L,ud
F

)
, a supporting hyperplane to �d will not be

a unique (tangent) hyperplane. By both the convexity of �d and by
(
ud

L,ud
F

)
being

an exposed point, we know that �uL ∈ �L\{ud
L} : {(uL,ud

F)} ∈ �d. Therefore,
there must exist an alternative normal vector defining the hyperplane ��d

(
ud

L,ud
F

)
that is not orthogonal to {0}nL × �F. For such a vector, ��d

(
ud

L,ud
F

)
, and therefore

α
��d

(
ud

L,ud
F

)
L , will cover �F : dom(γL) = �F.

4 Characterization of an Optimal Affine Leader Function

In this section, the full set of affine leader functions will be derived under which
the leader is able to induce the follower to choose the input ud

F and thereby to reach
the desired solution point. In Sect. 4.1, first the case considered in the literature is
summarized, after which we deal with the more general case in Sect. 4.2.

4.1 Under Differentiability Assumptions

A characterization of an optimal affine leader function (7), which reduces to the com-
putation of an nL × nF matrix B, was first derived in [8] in case JF(·) is differentiable
in

(
ud

L,ud
F

)
.

In order to make sure that B exists as defined next, it is assumed in [8] that �L,�F
are Hilbert spaces and that JF(·) is Fréchet differentiable on �L × �F. Additionally,
JF(·) is assumed to be strictly convex on �L × �F. Then, for nL, nF finite – a similar
analysis is applicable for the infinite case – B should satisfy

[
∇uLJF

(
ud

L,ud
F

)]T
B =

[
∇uFJF

(
ud

L,ud
F

)]T
, (9)

which holds under the assumption that ∇uLJF
(
ud

L,ud
F

) = 0 (as follows from the
conditions for the existence of an optimal affine leader function) and which can be
verified by taking the inner product of the expression uL = 0 according to (7) and
[∇uLJF

(
ud

L,ud
F

)]T. This product

0 =
[
∇uLJF

(
ud

L,ud
F

)]T [(
ud

L − uL

)
+ B

(
ud

F − uF

)]
(10)

=
[
∇uLJF

(
ud

L,ud
F

)]T (
ud

L − uL

)
+

[
∇uLJF

(
ud

L,ud
F

)]T
B

(
ud

F − uF

)
(11)

=
[
∇uLJF

(
ud

L,ud
F

)]T (
ud

L − uL

)
+

[
∇uFJF

(
ud

L,ud
F

)]T (
ud

F − uF

)
(12)

corresponds exactly to the expression of a tangent hyperplane �t
�d

(
ud

L,ud
F

)
to �d at(

ud
L,ud

F

)
, from which it is concluded that if (9) holds, the affine function γL indeed

lies on the hyperplane �t
�d

(
ud

L,ud
F

)
.
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Under the condition ∇uLJF
(
ud

L,ud
F

) = 0, the following expression is given in [8]:

B = ∇uLJF

(
ud

L,ud
F

)
∇T
uF
JF

(
ud

L,ud
F

)
/||∇T

uL
JF

(
ud

L,ud
F

)
||2. (13)

Note that this is only one of many possible expressions for nL > 1. Moreover, in some
constrained cases, this expression does not yield an optimal leader function, while
an alternative, optimal affine solution, does exist as will be illustrated by Example
4.1 below. A generalized characterization of the optimal affine leader function will
therefore be presented in Sect. 4.2 below.

Example 4.1 Expression (13) Subject to Constraints
We now provide a situation in which the specific expression of B proposed in [8]

for JF(·) differentiable at
(
ud

L,ud
F

)
does not yield a feasible leader function in the

constrained case, but in which an optimal leader function does exist.
Let

JF(uL,uF) = (uF − 6)2 + (uL,1 − 1)2 + (uL,2 − 5)2,

and let (ud
L,1,u

d
L,2,u

d
F) = (0.5, 6, 4).

Then, ∇uFJF
(
ud

L,ud
F

) = 2uF − 12, ∇uLJF
(
ud

L,ud
F

) =
[

2uL ,1 − 2

2uL ,2 − 10

]
, leading to

B := ∇uLJF
(
ud

L,ud
F

) ∇T
uF
JF

(
ud

L,ud
F

)

||∇T
uL
JF

(
ud

L,ud
F

) ||2

=
([−1

2

]
· (−4)

)
/

([
1 2

] [
1
2

])
=

[
4/5

−8/5

]
. (14)

As can be seen in Fig. 4, a mapping γL as defined through (7) with B as defined in
(14) does not return values for all uF ∈ �F for the constraints

uL,1 ∈ [0, 16],uL,2 ∈ [0, 5],uF ∈ [2, 8].

Thus, a parametrization B as defined by (13) does not belong to the characterization
of an optimal leader function in this constrained case.

However, there do exist optimal affine mappings �F → �L through
(
ud

L,ud
F

)
that

lie on ��d

(
ud

L,ud
F

)
. As also plotted in Fig. 4, a suitable leader function that also lies

on the tangent hyperplane defined by the relation

−uL,1 + 1/2 · uL,2 + 2 · uF − 9/4 = 0

would be

uL = γ̃L(uF) =
[

6

1/2

]
+

[
(−9/4 − 6)/4

−1/8

]
(4 − uF).
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Fig. 4 Situation with a supporting hyperplane ��d

(
ud

L, ud
F

)
that is unique due to the differentiability of

JF(·) at
(
ud

L,ud
F

)
. The bounds of the decision space are indicated by a box.

4.2 The General Case

As the previously presented result only captures the case in which JF(·) is differen-
tiable and moreover as only one particular solution is specified, we now provide a
characterization of the full set of possible leader functions with an affine structure
that are optimal in an unconstrained decision space for the cases in which JF(·) is not
required to be differentiable. Based on such a set, one can apply further, secondary
selection criteria like the minimization of sensitivity of deviations from the optimal
response [18], as well as deal with constraints on the decision space, as will be shown
in Sect. 5 below.

In the following, we characterize γL as a linear combination of matrices R =[
RT

L RT
F

]T
, R ∈ R

(nL+nF)×nF ,RL ∈ R
nL×nF ,RF ∈ R

nF×nF , i.e.,

γL :
[
uL

uF

]
=

[
ud

L

ud
F

]
+

[
RL

RF

]
· s, (15)

where s ∈ R
nF represents the free parameters of the affine function. Now, for RF

invertible—which automatically follows from the necessary conditions, as will be
proven in Lemma 4.1 below—it follows that

uF = ud
F + RF · s ⇒ s = R−1

F (uF − ud
F),

uL = ud
L + RLR

−1
F︸ ︷︷ ︸

B

(uF − ud
F), (16)
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i.e., one arrives at the explicit form of leader function (7). The problem left in order
to arrive at a full characterization of an optimal affine γL is to determine the set of
possible basis vectors.

Lemma 4.1 In order for a leader function γL characterized by (15) to be optimal, for
R = [

RT
L RT

F

]
, the following should hold:

1. ∃ν ∈ V(X
(
ud

L,ud
F

)
) : νTR = 0T, with V (

X
(
ud

L,ud
F

))
the generalized normal

to X at
(
ud

L,ud
F

)
, where X = conv(�d

(
ud

L,ud
F

)
) in case

(
ud

L,ud
F

)
is exposed

with respect to conv(�d) (Proposition 3.2 applies), or X = �d
(
ud

L,ud
F

)
in case

Proposition 3.3 applies, i.e.,
(
ud

L,ud
F

) ∈ int(conv)
(
�d

(
ud

L,ud
F

))
.

2. The columns of RF should be a basis for �F, i.e., RF should be of full rank nF and
thus invertible.

Proof 1. By definition of a tangent hyperplane �d
(
ud

L,ud
F

)
to a set X at

(
ud

L,ud
F

)
, it

holds that �d
(
ud

L,ud
F

) ⊥ ν for some ν ∈ V (
X

(
ud

L,ud
F

))
. Since we require each

optimal γL characterized by (15) to lie on �d
(
ud

L,ud
F

)
, it follows that it is needed

that also each column of R is orthogonal to ν , i.e., νTR = 0T.
Note that, in case JF(·) is differentiable, i.e.,

V
(
X

(
ud

L,ud
F

))

=
{
ν = [

νT
L νT

F

]T : νL = ∇uLJF

(
ud

L,ud
F

)
, νF = ∇uFJF

(
ud

L,ud
F

)}
,

this condition is equivalent to the expression of a tangent hyperplane �t
�d

(
ud

L,ud
F

)
:

[∇uLJF
(
ud

L,ud
F

)]T(ud
L − uL) + [∇uFJF

(
ud

L,ud
F

)]T(ud
F − uF) = 0.

2. For an optimal affine leader function γL(·) characterized by (15) to satisfy
dom(γF) = �F, it is required that the nF columns of RF are independent basis
vectors spanning �F. Thus, RF is of full rank hence invertible. ��

In fact, we can select w.l.o.g. RF := InF = [
e1 . . . enF

]
, as shown in Lemma 4.2.

Lemma 4.2 If there exists an optimal affine γL(·) characterized by (15), one can select
w.l.o.g. RF = InF .

Proof Consider

S :=
{
γL :

[
uL

uF

]
=

[
ud

L

ud
F

]
+

[
RL

InF

]
· s, s ∈ R

nF , with RL,RF = InF

satisfying conditions (1) and (2) of Lemma 4.1

}
,

S̃ :=
{
γL :

[
uL

uF

]
=

[
ud

L

ud
F

]
+

[
R̃L

R̃F

]
· s̃, s̃ ∈ R

nF , with R̃L, R̃F

satisfying conditions (1) and (2) of Lemma 4.1 with R substituted by R̃

}
.
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To prove thatS ≡ S̃, we will show that, for each possible 3-tuple (s, InF ,RL) according

to (15) with νT
[
RT

L InF

]T = 0T that yields some uL,uF, one can find an equivalent

tuple (s̃, R̃F, R̃L), s̃ ∈ R
nF for which additionally it holds that νT

[
R̃T

L R̃F
]T = 0T,

yielding the same values uL,uF.
It can be easily seen that the expression uF = ud

F + InF · s is equivalent to uF =
ud

F + R̃F · s̃ with s = R̃F · s̃: as shown in Lemma 4.1, it follows from the existence of
an optimal affine γL(·) that RF is invertible. Then, for a given s, there exists a unique
s̃ and vice versa. From B = R̃L R̃

−1
F , according to (16) and from the substitution to

B = RLInF , for equivalence, it should hold that RL = R̃L R̃
−1
F . Finally, we have that

νT
LRL + νT

F = 0 ⇔ νT
L R̃L R̃

−1
F + νT

F = 0 ⇔ νT
L R̃L + νT

F R̃F = 0;

hence, S = S̃ . ��
Now, given RF := InF , we still need to identify the set of matrices RL that satisfy

νTR = 0T for some normal vector ν, which reduces to
[
νT

L νT
F

] [
RL
InF

]
= 0T or,

equivalently, νT
LRL = −νT

F.
Due to the necessary condition proj�L

(V(conv(�d
(
ud

L,ud
F

)
))) = {0} (Proposi-

tion 3.2 applies) or proj�L
(V(�d

(
ud

L,ud
F

)
)) = {0} (Proposition 3.3 applies), νT

L
must contain at least one nonzero entry. Hence, the expressions νT

LRL, j = −νF, j ,
j = 1, . . . , nF, can be solved for. Proposition 4.1 below provides a parametrized
characterization of this problem that will be needed for further optimization.

From the previous derivations, the following theorem automatically follows.

Theorem 4.1 Let �L = R
nL ,�F = R

nF . Assume that the conditions in Proposition
3.2 or Proposition 3.3 are satisfied, and that therefore an optimal affine leader function
of the form (7) exists. Then, the set

�∗
L := {γL : �F → �L : γL according to (7) satis f ying (5), (15)}

contains optimal affine solutions that can be characterized by B := RLInF , with
νT

LRL = −νT
F , for some ν ∈ V(conv(�d

(
ud

L,ud
F

)
)) in case

(
ud

L,ud
F

)
is exposed with

respect to conv(�d) (Proposition 3.2 applies), or for some some ν ∈ V (
�d

(
ud

L,ud
F

))
in case

(
ud

L,ud
F

) ∈ int
(
conv

(
�d

(
ud

L,ud
F

)))
(Proposition 3.3 applies).

For the sake of conciseness, in the remainder of this section, we will assume
(
ud

L,ud
F

)
to be an exposed point of conv(�d). As a result, we consider the case in which Proposi-
tion 3.2 is satisfied rather than Proposition 3.3, i.e., we consider the generalized normal
V (

conv
(
�d

(
ud

L,ud
F

)))
. For the case in which Proposition 3.3 holds, the generalized

normal should be substituted by V (
�d

(
ud

L,ud
F

))
in the following.

In order to be able to optimize over the set of possible leader functions and to select
a function that is optimal with respect to some criteria, Proposition 4.1 now provides
a parametrized characterization of the optimal affine leader function.
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Proposition 4.1 Let �∗
L := {γL : �F → �L : γL satisfies (5), (15)}.

1. For JF(·) nondifferentiable at (ud
L,ud

F

)
, the possible realizations of RL ∈ R

nL×nF

can be written as

RL ∈ RL :=
{[

RL,1 . . . RL,nF

] : R j :=
[
RL, j

e j

]
∈ R j , j = 1, . . . , nF

}
,

with the set of possible columns of R ∈ R
(nL+nF)×nF characterized by

R j :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
Q · W · p+

j

∣∣∣∣∣∣∣∣∣∣∣

p+
j :=

⎛
⎜⎝

N f+, j∑
i=1

α+
i, jβ

f
i,+, j +

N e+, j∑
i=1

μ+
i, jβ

e
i,+, j

⎞
⎟⎠

∑
i

α+
i, j = 1, α+

i, j ∈ R+, μ+
i, j ∈ R+

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
Q · (−W) · p−

j

∣∣∣∣∣∣∣∣∣∣∣

p−
j :=

⎛
⎜⎝

N f−, j∑
i=1

α−
i, jβ

f
i,−, j +

N e−, j∑
i=1

μ−
i, jβ

e
i,−, j

⎞
⎟⎠

∑
i

α−
i, j = 1, α−

i, j ∈ R+, μ−
i, j ∈ R+

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (17)

for j = 1, . . . , nF, with Q := [
InL 0nL×nF

]
and with W = [

w1 . . . wm
]
,

where {wi }mi=1, m ∈ {N,∞} with wi ∈ R
nL+nF is the set of generators of

V̄(conv(�d
(
ud

L,ud
F

)
)) such that

V̄(conv(�d

(
ud

L,ud
F

)
))

:=
{

m∑
i=1

βi : wiβi ∈ R+

} ⋃ {
m∑
i=1

βi (−wi ) : βi ∈ R+

}
.

Here, {βf
i,s, j }

N f
s, j

i=1 and {βe
i,s, j }

N e
s, j

i=1 , s ∈ {+,−} are the sets of finite vertices and

extreme rays, respectively, of the polyhedra P+
j = {β : PWβ = e j ,β ∈ (R+)m}

and P−
j = {β : P(−W)β = e j ,β ∈ (R+)m}.

2. For JF(·) differentiable at (ud
L,ud

F

)
, RL belongs to the affine space of the form

RL :=
{
RL : RL = R0

L + BN · T,T ∈ R
dim(N )×nF

}
, (18)

with R0
L a particular solution of ∇T

uL
JF

(
ud

L,ud
F

)
RL = ∇uFJF

(
ud

L,ud
F

)
and with

BN a basis of N := null
(∇T

uL
JF

(
ud

L,ud
F

))
.

Proof 1. For �d nonsmooth at
(
ud

L,ud
F

)
, the associated generalized normal is by

definition a convex and and pointed cone, i.e., for any a1, a2 ∈ R+ and
a1v1 + a2v2 ∈ V (

conv
(
�d

(
ud

L,ud
F

)))
, ν1, ν2 ∈ V (

conv
(
�d

(
ud

L,ud
F

)))
. In fact,
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V (
conv

(
�d

(
ud

L,ud
F

)))
is the normal cone [25], defined by the set of normal vec-

tors to �d at
(
ud

L,ud
F

)
, which is generated by n ∈ {N,∞} generators:

V
(

conv
(
�d

(
ud

L,ud
F

)))
:=

{
n∑

i=1

αiνi : αi ∈ R+, νi ∈ R
nL+nF

a generator of V
(

conv
(
�d

(
ud

L,ud
F

)))}
. (19)

The polar and dual cone ofV (
conv

(
�d

(
ud

L,ud
F

)))
and its orthogonal complement

are denoted, respectively, by1

V0 :=
{
r ∈ R

nL+nF : rT · ν ≤ 0 ∀ν ∈ V
(

conv
(
�d

(
ud

L,ud
F

)))}
,

V∗ :=
{
r ∈ R

nL+nF : rT · ν ≥ 0 ∀ν ∈ V
(

conv
(
�d

(
ud

L,ud
F

)))}
,

V⊥ :=
{
r ∈ R

nL+nF : rT · ν = 0 ∀ν ∈ V
(

conv
(
�d

(
ud

L,ud
F

)))}
.

It now follows from condition (1) of Lemma 4.1 that the set of possible columns
R j , j = 1, . . . , nF of R can be represented by

V̄
(

conv
(
�d

(
ud

L,ud
F

)))

:=
{
r ∈ R

nL+nF : ∃ν ∈ V
(

conv
(
�d

(
ud

L,ud
F

)))
s.t. rT · ν = 0

}

=
(
R
nL+nF\

(
V0 ∪ V∗))

∪ V⊥. (20)

This last expression is illustrated in Fig. 5 where V̄ (
conv

(
�d

(
ud

L,ud
F

)))
corre-

sponds to the area between νo
1, ν

o
2 and the vectors ν′

1, ν
′
2 perpendicular to ν1, ν2.

The expression (20) follows from the fact that the (closure of the) complement of
a cone is again a cone [30]; hence, the complement of the double cone V0 ∪ V∗
[31], which consists of the union of two apex-to-apex placed pointed cones, i.e.,
R
nL+nF\ (V0 ∪ V∗), embodies a cone. Finally, the null vector is recovered in order

to yield a pointed cone. The set V̄ (
conv

(
�d

(
ud

L,ud
F

)))
can therefore be written

as a linear combination of generators wi from the set {±wi }mi=1 as in (19), now
also considering the negatives −wi :

V̄
(

conv
(
�d

(
ud

L,ud
F

)))
:=

{
m∑
i=1

βiwi : βi ∈ R+,wi ∈ R
nL+nF

}

∪
{

m∑
i=1

βi (−wi ) : βi ∈ R+,wi ∈ R
nL+nF

}
. (21)

1 The argument conv
(
�d

(
ud

L,ud
F

))
is omitted for the sake of conciseness.
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ν2

V Λd(ud
L,ud

F)

V̄
V̄

(ud
L,ud

F)

V∗

Vo

ν1

Λd

ν1

ν2

V⊥= 0 νo
1

νo
2

(a)

ν2

V Λd(ud
L,ud

F) ,V∗

V̄V̄

(ud
L,ud

F)

Vo

ν1

ν3

νi

Λd

V⊥= 0

νo
1

νo
i

(b)
Fig. 5 The a finitely and b infinitely generated normal cone V

(
�d

(
ud

L, ud
F

))
and the associated cone

V̄
(
�d

(
ud

L, ud
F

))
=

(
R
nL+nF \

(
V0 ∪ V∗))

∪ V⊥

Finally, since R = [
RT

L InF

]T
by Lemmas 4.1 and 4.2, we need to select from

V̄(conv(�d
(
ud

L,ud
F

)
)) those vectors r such that, for j = 1, . . . , nF,

R j :=
{
r ∈ V̄

(
conv

(
�d

(
ud

L,ud
F

)))
: proj�F

(r) = e j
}

,

i.e., approved as a j-th column of R are those vectors

r = W · β ∈ V̄
(

conv
(
�d

(
ud

L,ud
F

)))
and

r = −W · β ∈ V̄
(

conv
(
�d

(
ud

L,ud
F

)))
,

with W = [
w1 . . . wm

]
, β = [

β1 . . . βm
]T, such that, for P := [

0nF×nL InF

]
, we

have

P · W · β = e j , respectively, P · (−W) · β = e j .

The solutions to these two equations, where it should be noted that β+ ∈ R
m+,

β− ∈ R
m+, can be parametrized using, e.g., the double description method [32] for

the polyhedra

P+
j = {β+ : PWβ+ = e j ,β+ ≥ 0} and P−

j = {β− : P(−W)β− = e j ,β− ≥ 0},

i.e.,

βs
j =

N f
s, j∑

i=1

αs
i, jβ

f
i,s, j +

N e
s, j∑

i=1

μs
i, jβ

e
i,s, j , s ∈ {+,−},
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with
∑
i

αs
i, j = 1, αs

i, j ∈ R+, μk
i, j ∈ R+, and with

{
βf
i,s, j : i = 1, . . . , N f

s, j

}
the

set of finite vertices of Ps
j , and with

{
βe
i,s, j : i = 1, . . . , N e

k,s

}
the set of extreme

rays of Ps
j [33], for s ∈ {+,−}.

2. For JF(·) differentiable at
(
ud

L,ud
F

)
, V (

conv
(
�d

(
ud

L,ud
F

)))
is uniquely defined

by ν = ∇JF
(
ud

L,ud
F

)
with ∇uLJF

(
ud

L,ud
F

) = 0 (by Proposition 3.2 and 3.3), and
therefore νT

LRL, j = −νF, j , j = 1, . . . , νF can be solved as a simple system of
equalities. Here, for each zero element νL,i , the corresponding entry RL,0, j of RL
is free. Therefore, the possible solutions can be written as

∇T
uL
JF

(
ud

L,ud
F

)
RL, j = ∇uF, jJF

(
ud

L,ud
F

)

⇒ RL, j = R0
L, j + B

(
null

(
∇T
uL
JF

(
ud

L,ud
F

)))
︸ ︷︷ ︸

BN

·t, t ∈ R
dim(N ), (22)

where R0
L, j denotes a particular solution to (22) and BN · t, t ∈ R

dim(N ) is a homo-

geneous solution to (22). Note that the basis of the null space of ∇T
uL
JF

(
ud

L,ud
F

)
,

B (
null

(∇T
uL
JF

(
ud

L,ud
F

)))
, as well as a particular solution R0

L, j , can be computed
with a singular value decomposition (SVD) or QR decomposition (see, e.g., [34]).

��
Remark 4.1 So far a static, single-stage reverse Stackelberg game has been considered.
Whereas this basic case serves for developing the conditions summarized in Sect. 3
and the characterization of the present section, real-life control settings will often have
a dynamic, multi-stage nature [7]. As it is also done in e.g., [8], the currently presented
results can be simply applied to the dynamic case with open-loop information when
considering the game as a series of static optimization problems. In other words, at each
(discrete) time step k ∈ K = {1, 2, . . . , K }, K ∈ N of the game the desired values
(ud

L(k),ud
F(k)) are computed, where the mappings γL(uF(k), k) can be computed as

done in the static case. However, for more involved dynamic settings with incomplete
information and deviations of players from the optimal values, further research is
needed.

4.2.1 Computation and Complexity

While the characterization of this section is aimed to provide a structured method to
solve the reverse Stackelberg game with an affine leader function, the computational
efficiency of testing the several conditions should be kept into account:

– Determining a global optimum to represent the desired leader equilibrium
(
ud

L,ud
F

)
is, in general, a constrained nonlinear programming problem; this subproblem has
to be solved in any solution approach. Alternatively, a desired equilibrium that is
not directly derived from a leader objective functional, or a series of such points,
may be provided a priori.
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Fig. 6 The Rosenbrock function and several level curves

– Determining the convex hull of �d is only required in caseJF(·) is both nonconvex
and nondifferentiable at

(
ud

L,ud
F

)
. The vertices of �d can then be determined if

JF(·) is of the particular type of a piecewise-affine function. For a polyhedron
[33] with n vertices as input points, computing the convex hull in case dim =
nL + nF can be done with a worst-case complexity of O(n log p) for dim ≤ 3 and
O(n · f p/p) for dim ≥ 4, where p points are actually on the hull and f p denotes
the maximum number of facets for p vertices [35].

– Verifying whether the projection of the generalized normal onto the leader’s deci-
sion space is nonzero relies on simple vector products.

– Computing particular and homogeneous solutions to (22) with an SVD leads to a
numerically reliable solution due to its ability to deal with rank-deficient matrices;
however, no finite termination can be guaranteed for the computation of the SVD.
The iterative SVD approach can however be terminated when a sufficiently pre-
cise solution is obtained, which leads to a practical overall complexity of O(n3)

floating-point operations, for an m × n matrix in case m ≈ n [34]. The alternative
of using the QR decomposition technique does not have such reliability properties,
but it does have finite termination; the complexity of the algorithms discussed in
[34] is also of the order O(n3) in case n ≈ m.

Example 4.2 (Rosenbrock Function) The nonconvex Rosenbrock function [36] is
often used to show the performance of optimization algorithms and is written as

f (x1, x2) = (1 − x1)
2 + 100

(
x2 − x2

1

)2
, (23)

as depicted in Fig. 6 together with several level curves. If we adopt this function
structure for JF, it can be inferred from these contour lines that several desired leader
equilibria cannot be obtained under an affine leader function, i.e., those in the valleys of
the upper part of the level curves that are associated with increasing objective function
values when considering increasing values of uL.

In order to illustrate the approach in higher dimensions, we however adopt the
extended Rosenbrock function [37], written in general for n dimensions as
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fe(x1, . . . , xn) =
n−1∑
i=1

[
(1 − xi )

2 + 100
(
xi+1 − x2

i

)2
]

. (24)

We now take �L = R, while �F = R
2. The sublevel set �d for JF := fe(uL,uF)

and with the desired equilibrium (ud
L,1,u

d
L,2,u

d
F) = (−0.2,−0.27, 0.15) is plotted in

Fig. 7. Since

∇uLJF

(
ud

L,ud
F

)
= ∇uL

[ (
1 − ud

F

)2 +
(

1 − ud
L,1

)2 + . . .

100
(
ud

L,1 − ud
F

2
)2 + 100

(
ud

L,2 − ud
L,1

2
)2 ]

=
⎡
⎣

(
−2+2uL,1+200uL,1−200u2

F−400uL,2uL,1+400u3
L,1

)
(

200uL,2 − 200u2
L,1

)
⎤
⎦

= [−56.21 15.42
]T = [

0 0
]T

,

∇uFJF

(
ud

L,ud
F

)
= −2 + 2ud

F − 400ud
L,1u

d
F + 400ud

F
3 = −27.20,

the unique supporting hyperplane at
(
ud

L,ud
F

)
, also plotted in Fig. 7, can be written as

��d

(
ud

L,ud
F

)
= [−56.21 15.42

] ([−0.27

0.15

]
−

[
uL,1

uL,2

])
− 27.20(−0.2 − uF) = 0.

Now, γL(·) characterized by (15) withRF = 1 has associated matricesRL according
to (18), where R0

L = [
(15.42/ − 27.20) (−56.21/ − 27.20)

]T is a particular solution
of

∇T
uL
JF

(
ud

L,ud
F

)
RL = ∇uFJF

(
ud

L,ud
F

)
,

and with the basis B
null

(
∇T
uL

JF
(
ud

L,ud
F

)) = [
0.2645 0.9644

]T
, leading to the set of

optimal affine solutions characterized by

RL :=
{
RL : RL =

[
(15.42/ − 27.20)

(−56.21/ − 27.20)

]
+

[
0.2645

0.9644

]
· T,T ∈ R

}
.

5 Constrained Decision Spaces

So far, the situation without constraints has been considered, and conditions have
been provided under which an optimal affine leader function exists that leads to
the desired reverse Stackelberg equilibrium point. These conditions form necessary
but not sufficient conditions for the existence of an optimal affine leader function
in the constrained game in which �L � R

nL or �F � R
nF . In the constrained
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Fig. 7 Sublevel set �d and a part of the strictly supporting hyperplane ��d

(
ud

L,ud
F

)
for the extended

Rosenbrock function

case, the complexity arises that additionally the locally defined supporting hyperplane
��d

(
ud

L,ud
F

)
—or the tangent hyperspace �t

�d

(
ud

L,ud
F

)
for the case with nL > 1 and(

ud
L,ud

F

) ∈ int(conv(�d))—should be within the constrained decision space �L ×�F,
with �L � R

nL or �F � R
nF . This implies that the supporting or tangent hyperplane

should contain an nF-dimensional affine subspace γL satisfying (i) γL should cover
�F, i.e., dom(γL) = �F while (ii) γL(�F) ⊆ �L. However, since the hyperplanes are
derived locally, it thus still has to be verified whether an optimal leader function γL
exists in the bounded decision space such that the global conditions (i) and (ii) hold.

Hence, given the set of feasible solutions characterized in Sect. 4 that is essentially
developed for the unconstrained decision space, constraints can be incorporated to
verify which elements of �∗

L are still valid under the constrained conditions. Here it
should be noted that any constraints on the decision spaces can obviously affect the
desired equilibrium point

(
ud

L,ud
F

)
as well as the set �d, the elements of which are

both assumed to be given in the conditions and the initial characterization of Sects. 3
and 4. In order to use these results, applicable constraints on the decision spaces should
therefore naturally be incorporated in the computation of a desired leader equilibrium(
ud

L,ud
F

)
and in the derivation of the associated sublevel set �d at the initial stage.

The following simple example illustrates this approach.
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0
0

8

10uFud
F

uL

ud
L α α

Λdγ1
L

γ1
L

γ2
L

γ2
L

Fig. 8 Example of a set �∗
L that is reduced under the consideration of constraints on �L, �F. Here, α

indicates the range of possible values of RL. Note that the dashed functions γ 1
L , γ 2

L have an infinitesimal

gap with bd(�d) for values of uL below or above ud
F, respectively

Example 5.1 Consider a reverse Stackelberg game with the desired equilibrium(
ud

L,ud
F

) = (5, 5) and a nonsmooth, convex sublevel set �d as depicted in Fig. 8.
For �L = �F = R, γL characterized by (15) with RF = 1 has associated matrices

RL according to (18) that can be described by the interval RL = (−1, 1). This can
be derived from the two generating vectors of the normal cone V (

�d
(
ud

L,ud
F

))
as

depicted in Fig. 5a, i.e., ν1 = ν′
2 = [

1 1
]T and ν′

1 = ν2 = [−1 −1
]T. Multiplication

with Q = [
1 0

]
yields RL = (−1, 1) and given B = RLR

−1
F according to (3.11), the

set of optimal affine solutions can be characterized by

�∗
L = {uL := γL(uF) = 5 + B · (uF − 5) : B ∈ (−1, 1),uF ∈ �F} .

Note that in this particular case, an optimal affine mapping �F → �L through
(
ud

L,ud
F

)
coincides with a line ��d

(
ud

L,ud
F

)
. In Fig. 8, this interval of possible slopes of γL ∈ �∗

L
is indicated by α.

Now, consider the decision space imposed by the constraints �L = [0, 10], �F =
[0, 8]. Not all mappings γL ∈ �∗

L return values for all uF ∈ �F. Using the extrema
(0, 10), (8, 0), and (8, 10), one can derive the intersection points of affine functions
through

(
ud

L,ud
F

)
with the decision space boundaries bd(�L), bd(�F). Instead of using

the generating vectors of V (
�d

(
ud

L,ud
F

))
as in the unconstrained case, we are now

interested in a smaller cone that is generated by the vectors
[−3/5 1

]T
,
[
3/5 1

]T,
resulting in a new range RL = [−3/5, 3/5]. The full set of possible optimal affine
leader functions can thus be characterized as follows:

�
∗,con
L = {uL := γL(uF) = 5 + B · (uF − 5) : B ∈ [−3/5, 3/5],uF ∈ �F} .

The new interval of possible slopes of γ ′
L ∈ �

∗,con
L is indicated in Fig. 8 by α′.
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Derivation of the set �
∗,con
L

The possible optimal matrices B of (16) computed in Sect. 4 for the cases with
JF(·) differentiable and nondifferentiable, respectively, can be re-evaluated under the
presence of constraints, where we assume the constrained decision spaces to be convex
and closed and bounded, i.e., compact. In particular, one needs to verify whether
γL(�F) ⊆ �L.

(a) In case only �F is restricted while �L = R
nL , we have that �

∗,con
L = �∗

L, which
can be concluded from the fact that �∗

L is derived only locally based on �d, while
�L = R

nL ; hence, γL(�F) ⊂ �L still holds for all γL ∈ �∗
L.

(b) Further, the case with only �L restricted while �F = R
nF is only feasible if

γL,i (�F) = {ci } ∈ �L,i for some ci ∈ R for every index i such that �L,i � R,
where �L,i is the projection of �L on the i-th coordinate and γL,i (·) denotes
the i-th component of the vector-valued function γL(·). Indeed, the realization of
the leader function for each such i-th component of the leader’s decision space
should be constant for any follower decision variable, as for any affine function
γL,i (uF) = ci ∈ R, limuF→±∞ γL,i (uF) will not be finite and therefore not an
element of �L,i � R.

(c) In case both decision spaces are restricted by linear constraints, �L,�F represent
polytopes. By applying the affine mapping γL(·), convexity is preserved, imply-
ing that its image γL (�F) is a polytope as well [38]. As a result, it can be easily
checked whether the image of γL for its domain �F is subject to the linear con-
straints imposed by �L: it is sufficient to verify γL(uv

F) ∈ �L only for the vertices
uv

F of �F.
This result can also be used to obtain the reduced characterization of the set of
optimal affine leader functions in the constrained case. If we denote the linear
constraints on �L by

AL · uL ≤ bL,AL ∈ R
nc×nL ,bL ∈ R

nc , nc ∈ N,

one should add the following set of linear inequality constraints to the charac-
terizations in (17) or (18), respectively, depending on differentiability of JF(·) at(
ud

L,ud
F

)
, where {uv

F}nv
v=1 denotes the set of vertices associated with �F:

{
AL ·

(
ud

L + RL(uv
F − ud

F)
)

≤ bL

}
v=1,...,nv

. (25)

In the nondifferentiable case, this results in the characterization (17) in which
the non-negative parameters αs

i, j , μ
s
i, j are now constrained by (25), as well as by∑

i
αs
i, j = 1, j = 1, . . . , nF and with i = 1, . . . , N f

s, j for s ∈ {+,−}. Similarly,

in the differentiable case, this will result in the characterization (18), in which T
now belongs to the polyhedron R

dim(N )×nF s.t. (25).
(d) Finally, in the case of nonlinear constraints, a similar approach to c) can be adopted

based on a piecewise-affine approximation of the constraints. However, this may
in general generate a large number of vertices. Further, in order to guarantee feasi-
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bility of the leader function, (conservative) inner approximations should be made
with respect to the leader’s decision space and outer approximations should be
made with respect to the follower’s decision space. Alternatively, a fully numerical
evaluation of the set

�∗
L := {γL : �F → �L : γL according to (7) satisfying (5), (15)}

for the unconstrained case may be made, e.g., based on a gridding of the decision
spaces.

6 Conclusions

The single-leader–single-follower reverse Stackelberg game is considered, in which
the leader player faces the problem of selecting a leader function—mapping her deci-
sion space into the follower’s decision space—that will lead to a specific desired
equilibrium. Currently, many examples and applications in which this type of game
is considered adopt strictly convex follower’s objective functionals and unconstrained
decision spaces, in which case an affine leader function is automatically optimal. In
order to allow the reverse Stackelberg game to be more readily applicable as an opti-
mization structure in multi-level control problems like in traffic tolling, there is a need
to develop a more general solution approach.

In this article, we have therefore first developed necessary and sufficient existence
conditions and a characterization of the set of optimal affine leader functions that
can be computed in a systematic manner. After such an initial set of optimal affine
functions that are locally feasible is derived for unconstrained decision spaces, this
set can be further reduced to include only those elements that map the full follower’s
decision space into the leader’s decision space in case these spaces are constrained.
Secondary optimization criteria can be incorporated similarly.

In [39], subsequent results are provided to deal with cases in which no optimal
affine solutions exist. There, several methods are provided for the computation of
optimal nonlinear leader functions, e.g., with piecewise-affine and smooth (piecewise)
polynomial structures. Since these methods are computationally intensive or optimality
cannot be guaranteed, continued research on existence conditions for optimal leader
functions is needed.

In particular, to further develop a systematic solution approach for the general
reverse Stackelberg game, more results on dynamic extensions are needed. Both cases
in which the follower does not adopt the optimal decision values and in which the
leader lacks information on the follower that is crucial to derive an optimal strategy
should be considered. Further steps include analysis of the robustness of a leader
function in case of uncertain conditions.
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[FP7/2007-2013] under Grant agreement no. 257462 HYCON2 Network of Excellence, and by the European
COST Action TU1102.
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Appendix

This appendix presents some lemmata that form basic elements for the proofs of
the propositions in Sect. 3. Lemma 6.1 follows straightforwardly from the support-
ing hyperplane theorem (e.g., Theorem 11.6 in [25]) and the definition of a strictly
supporting hyperplane.

Lemma 6.1 Assume the set �d to be convex. Let �L = R
nL ,�F = R

nF and let
αL ∈ AL be any affine function through

(
ud

L,ud
F

)
such that αL ∩ �d = {(

ud
L,ud

F

)}
.

Then αL lies on a supporting hyperplane to �d at
(
ud

L,ud
F

)
.

Lemma 6.2 Let �d be defined through (6). A supporting hyperplane ��d

(
ud

L,ud
F

)
exists at

(
ud

L,ud
F

)
if and only if

(
ud

L,ud
F

)
/∈ int(conv(�d)). Further, for an exposed

point
(
ud

L,ud
F

)
of conv(�d), ��d

(
ud

L,ud
F

) ∩ �d = {(
ud

L,ud
F

)}
.

Proof By definition of a convex hull, a supporting hyperplane ��d

(
ud

L,ud
F

)
exists

if and only if there exists a supporting hyperplane �conv(�d)

(
ud

L,ud
F

)
to conv(�d) at(

ud
L,ud

F

)
. Further, a supporting hyperplane to conv(�d) exists at

(
ud

L,ud
F

)
if and only

if
(
ud

L,ud
F

)
is a boundary point of conv(�d) and thus also of �d ([25], Theorem 11.6).

Clearly, an exposed of conv(�d) is such a boundary point. For the intersection of
��d

(
ud

L,ud
F

)
with �d solely to occur in the point

(
ud

L,ud
F

)
, it is required that

(
ud

L,ud
F

)
is an exposed point of conv(�d). (Note that it is therefore sufficient for conv(�d) to
be locally strictly convex at

(
ud

L,ud
F

)
.) ��

Lemma 6.3 Assume there exists a strictly supporting hyperplane

�conv(�d)

(
ud

L,ud
F

)
: �conv(�d)

(
ud

L,ud
F

)
∩ �d =

{(
ud

L,ud
F

)}
,

with �d according to (6). Then an affine function α
�conv(�d)

(
ud

L,ud
F

)
L ∈ AL coincides

with �conv(�d)

(
ud

L,ud
F

)
if and only if uL is scalar (nL = 1).

Proof The dimension of a hyperplane ��d , (nL + nF) − 1, equals the number of
independent variables of an affine leader function αL ∈ AL, with �F ⊆ R

nF only in
case uL is scalar. If there exists a strictly supporting hyperplane �conv(�d)

(
ud

L,ud
F

)
, it

follows that this plane coincides with α
�conv(�d)

(
ud

L,ud
F

)
L . ��
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27. Başar, T., Olsder, G.: Dynamic Noncooperative Game Theory. Classics in Applied Mathematics, 2nd

edn. SIAM, Philadelphia, PA (1999)
28. Åström, K., Wittenmark, B.: Computer-Controlled Systems: Theory and Applications, 3rd edn. Prentice

Hall, Upper Saddle River, NJ (1997)
29. Franklin, G., Powell, J., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 6th edn. Prentice-

Hall, Upper Saddle River, NJ (2010)
30. Hasselblatt, B., Katok, A.: A First Course in Dynamics. Cambridge University Press, Cambridge, UK

(2003)
31. Gellert, W., Gottwald, S., Hellwich, M., Kästner, H., Künstner, H.E.: VNR Concise Encyclopedia of

Mathematics, 2nd edn. Van Nostrand Reinhold, New York, NY (1989)

123



374 J Optim Theory Appl (2016) 168:348–374

32. Motzkin, T., Raiffa, H., Thompson, G., Thrall, R.: The double description method. In: Kuhn, H., Tucker,
A. (eds.) Contributions to the Theory of Games. Annals of Mathematics Studies, vol. 28, pp. 51–73.
Princeton University Press, Princeton, NJ (1953)

33. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester, UK (1986)
34. Golub, G., Van Loan, C.: Matrix Computations, 2nd edn. The John Hopkins University Press, Baltimore,

MD (1989)
35. Barber, C., Dobkin, D., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math.

Softw. 22(4), 469–483 (1996)
36. Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. Comput. J.

3(3), 175–184 (1960)
37. De Jong, K.: An analysis of the behavior of a glass of genetic adaptive systems. PhD dissertation,

University of Michigan (1975)
38. Boyd, S., Vandenberge, L.: Convex Optimization. Cambridge University Press, Cambridge, UK (2004)
39. Groot, N., De Schutter, B., Hellendoorn, H.: On systematic computation of optimal nonlinear solutions

for the reverse Stackelberg game. IEEE Trans. Syst. Man Cybern. Syst. 44(10), 1315–1327 (2014)

123


	Optimal Affine Leader Functions in Reverse Stackelberg Games
	Existence Conditions and Characterization
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Reverse Stackelberg Game
	2.1.1 Computational Complexity
	2.1.2 Affine Incentive Compatibility

	2.2 Notation
	2.3 Assumptions

	3 Existence Conditions
	4 Characterization of an Optimal Affine Leader Function
	4.1 Under Differentiability Assumptions
	4.2 The General Case
	4.2.1 Computation and Complexity


	5 Constrained Decision Spaces
	6 Conclusions
	Acknowledgments
	Appendix
	References





