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Abstract This paper considers the microbial batch culture process for producing 1,3-
propanediol (1,3-PD) via glycerol fermentation. Our goal was to design an optimal
control scheme for this process, with the aim of balancing two (perhaps competing)
objectives: (i) the process should yield a sufficiently high concentration of 1,3-PD at
the terminal time and (ii) the process should be robust with respect to changes in vari-
ous uncertain system parameters. Accordingly, we pose an optimal control problem, in
which both process yield and process sensitivity are considered in the objective func-
tion. The control variables in this problem are the terminal time of the batch culture
process and the initial concentrations of biomass and glycerol in the batch reactor. By
performing a time-scaling transformation and introducing an auxiliary dynamic sys-
tem to calculate process sensitivity, we obtain an equivalent optimal control problem
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in standard form.We then develop a particle swarm optimization algorithm for solving
this equivalent problem. Finally, we explore the trade-off between process efficiency
and process robustness via numerical simulations.

Keywords Nonlinear dynamic system · Microbial batch culture · Robust control ·
System sensitivity

Mathematics Subject Classification 34H05 · 49M25 · 49M37 · 93C41

1 Introduction

1,3-Propanediol (1,3-PD) is an important chemical product with numerous applica-
tions in cosmetics, adhesives, lubricants, and medicines. In particular, 1,3-PD has
been used as a monomer to synthesize a new type of polyester called polytrimethylene
terepthalate [1]. At present, there are two methods for producing 1,3-PD: chemi-
cal synthesis and microbial conversion. Microbial conversion, in which a substrate
such as glycerol is converted to 1,3-PD via fermentation, is now attracting signifi-
cant interest because it is relatively easy to implement and does not generate toxic
byproducts. However, when compared with traditional chemical synthesis methods,
microbial conversion usually yields a lower 1,3-PD concentration. Therefore, opti-
mization techniques are urgently needed to improve the productivity of the microbial
conversion process and thus make it competitive with chemical synthesis.

There are three common methods of microbial fermentation: batch culture, con-
tinuous culture, and fed-batch culture. In batch culture, the bacteria and substrate are
added to the bioreactor at the beginning of the process, and nothing is added during the
process. In continuous culture, fresh medium flows into the fermentor continuously to
replenish consumed substrate. Fed-batch culture is a mixture of the batch and contin-
uous cultures: the time horizon is divided into periods, and the fermentation process
switches between a continuous phase (in which substrate is added continuously to
the reactor) and a batch phase (in which no substrate is added to the reactor). In this
paper, we focus on the batch culture process with glycerol as the substrate. Previous
research indicates that this batch culture process is highly promising for producing
commercially viable 1,3-PD of high concentration [2–6].

The microbial conversion process for synthesizing 1,3-PD has been studied since
the 1980s [7]. An experimental investigation into the multiple inhibitions of the fer-
mentation process is given in [8], and studies based on metabolic flux and metabolic
pathway analysis are given in [9–13]. Mathematical models of the microbial conver-
sion process, together with various process control strategies, have been considered
in [14–20]. However, these references do not take parameter uncertainty into account.
Parameter uncertainty is a key issue in practice because it is difficult (if not impossible)
to determine the exact values of many parameters in the dynamic equations describing
microbial conversion. Thus, in this paper, we consider the robust control of the micro-
bial batch culture process in the presence of parameter uncertainties. The problem is
to design a control scheme that maximizes the yield of 1,3-PD at the terminal time,
and also minimizes the process sensitivity with respect to parameter uncertainties.
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Sensitivity analysis deals with the influence that uncertain factors (e.g., random
noise) exert on system performance. In the microbial batch culture process, the control
variables are the concentrations of biomass and glycerol in the batch reactor at the
initial time, as well as the terminal time of the process. The dynamic model contains 9
uncertain model parameters, and the influence that these parameters exert on the final
1,3-PDyield needs to beminimized. Thus, inspired by thework in [21–26],we propose
an optimal control formulation that incorporates a non-standard sensitivity term to
measure the sensitivity of the 1,3-PD yield with respect to the uncertain parameters.
The trade-off in the objective function between process sensitivity and process yield
is governed by a non-negative weight factor. When the weight factor is small, the
objective function favors maximizing yield over minimizing sensitivity; when the
weight factor is large, minimizing sensitivity is the priority.

This paper is organized as follows. In Sect. 2, we introduce a nonlinear dynamic
model with uncertain parameters to describe the microbial batch culture process. In
Sect. 3, we formulate an optimal control problem that balances the competing objec-
tives of high 1,3-PD yield and low process sensitivity. Because our objective function
contains a non-standard sensitivity term, the optimal control problem cannot be solved
using conventional techniques. Thus, we develop a computational method for evalu-
ating the process sensitivity term in Sect. 4, and then subsequently use this method
to obtain an equivalent optimal control problem in standard form. We then develop
a particle swarm optimization method in Sect. 5 for solving the equivalent problem.
Finally, numerical results are reported in Sect. 6.

2 Dynamic Model

The dynamic model of the batch culture process is based on the following assumptions
[27,28].

Assumption 2.1 Nothing is added to, or removed from, the batch reactor during the
batch culture process.

Assumption 2.2 The solution in the reactor is sufficiently well mixed so that the
concentrations of reactants are uniform.

Under the above Assumptions 2.1 and 2.2, the mass balance relationships for bio-
mass, substrate, and products in the microbial batch culture can be expressed as the
following nonlinear dynamic system:

ẋ1(t) = μ(t)x1(t)
ẋ2(t) = −q2(t)x1(t)
ẋi (t) = qi (t)x1(t), i = 3, 4, 5

⎫
⎬

⎭
t ∈ [0, t f ], (1)

and

xi (0) = x0i , i = 1, 2, 3, 4, 5, (2)
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where t denotes process time (in hours); t f denotes the terminal time of the process;
xi (t), i = 1, 2, 3, 4, 5, are, respectively, the concentrations (in mmol L−1) of biomass,
glycerol, 1,3-PD, acetate and ethanol at time t in the reactor; and x0i , i = 1, 2, 3, 4, 5,
are, respectively, the initial concentrations of biomass, glycerol, 1,3-PD, acetate, and
ethanol. Furthermore, μ is the specific growth rate of cells (in h−1), q2 is the specific
consumption rate of substrate (in h−1), and qi , i = 3, 4, 5, are the specific formation
rates of products (in h−1). These quantities can be expressed by the following equations
[27]:

μ(t) := μm
x2(t)

x2(t) + k2

5∏

i=2

(

1 − xi (t)

x∗
i

)

, (3)

q2(t) := m2 + μ(t)

Y2
, (4)

qi (t) := mi + Yiμ(t), i = 3, 4, 5, (5)

where μm is the maximum specific growth rate (in h−1); k2 is the Monod saturation
constant for substrate (in mmol L−1); x∗

i , i = 2, 3, 4, 5, are, respectively, the critical
concentrations of glycerol, 1,3-PD, acetate, and ethanol required for cell growth; mi ,
i = 2, 3, 4, 5, are, respectively, the maintenance terms of substrate consumption and
product formation (in mmol g−1 h−1) under substrate-limited conditions; Y2 is the
maximum growth yield (in mmol g−1); and Yi , i = 3, 4, 5, are the maximum product
yields (in mmol g−1). The values of μm and x∗

i , i = 2, 3, 4, 5, are well defined [6]:

μm = 0.67, x∗
2 = 2039, x∗

3 = 939.5, x∗
4 = 1026, x∗

5 = 360.9.

However, the values of the other model parameters are uncertain and difficult to deter-
mine exactly. We collect the uncertain parameters into a vector σ :

σ :=
[
k2,m2,m3,m4,m5,Y2,Y3,Y4,Y5

]
∈ R

9. (6)

Methods for estimating the values of these uncertain parameters using experimental
data are given in [18,19,29–32]. The following estimates are used in [6]:

σ0 =
[
50,−2.2,−2.69,−0.97, 5.26, 0.0082, 67.69, 33.07, 11.66

]
∈ R

9. (7)

We will use these estimates as nominal parameter values in this paper.
The initial concentrations of 1,3-PD, acetate, and ethanol in the dynamic model

(1)–(2) are given:
x03 = 0.01, x04 = 0.01, x05 = 0.01. (8)

The initial concentrations of biomass and glycerol, on the other hand, are control
variables to be optimized. Our aim was to choose these control variables in such a way
that the sensitivity of the microbial process with respect to changes in the nominal
parameter values (7) is minimized.
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3 Optimal Control Versus Robust Control: A Trade-off

The control variables in the microbial fermentation process (1)–(2) are the initial
concentrations of biomass and glycerol and the terminal time of the process. Let
xi (·|x01, x02, t f , σ ), i = 1, 2, 3, 4, 5, denote the solution of (1)–(2) corresponding to
the control variables x01, x02, and t f and the parameter vector σ ∈ R

9.
Suppose thatwe are given a nominal parameter vectorσ ∈ R

9. The control objective
in microbial fermentation was to maximize the yield of 1,3-PD. Thus, we want to
choose the control variables x01, x02, and t f to maximize the following objective
function:

G(x01, x02, t f |σ) := x3(t f |x01, x02, t f , σ )

t f
, (9)

which is proportional to the final 1,3-PD yield.
The control variables are subject to the following bound constraints:

0.01 ≤ x01 ≤ 1, 200 ≤ x02 ≤ 1700, 2 ≤ t f ≤ 10. (10)

The problem of maximizing 1,3-PD yield can be formulated as follows.
Problem P Given the nominal parameter vector σ ∈ R

9, choose the initial con-
centration of biomass x01, the initial concentration of glycerol x02, and the process
terminal time t f to maximize (9) subject to the bound constraints (10).

In Problem P, the optimal control variables are determined under the assumption
that the nominal parameter estimates are exact. However, this is usually not the case in
practice; the nominal estimates are only approximations of the true model parameters.
Thus, inspired by the work in [21–26], we consider the following measure of system
sensitivity with respect to the uncertain model parameters:

[
∂G(x01, x02, t f |σ)

∂σ

][
∂G(x01, x02, t f |σ)

∂σ

]T

. (11)

Clearly, (11) measures the rate at which the process yield changes in response to small
changes in the model parameters. Thus, a low value for system sensitivity indicates
that the system is robust. We now propose the following modified objective function
that incorporates our desire to maximize (9) and minimize (11):

Jα(x01, x02, t f |σ) : = G(x01, x02, t f |σ) − α

[
∂G(x01, x02, t f |σ)

∂σ

]

[
∂G(x01, x02, t f |σ)

∂σ

]T

, (12)

where α ≥ 0 is a weight factor selected by the system operator.
Our new optimal control problem is stated below.
Problem Pα Given the nominal parameter vector σ ∈ R

9, choose the initial con-
centration of biomass x01, the initial concentration of glycerol x02, and the process
terminal time t f to maximize (12) subject to the bound constraints (10).
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4 Problem Transformation

4.1 Time-Scaling Transformation

Problem Pα exhibits two non-standard aspects: (i) the terminal time is free instead
of fixed and (ii) the objective function contains a non-standard sensitivity term. To
circumvent the first difficulty, we treat t f as an optimization variable and apply the
transformation t = t f τ , where τ ∈ [0, 1] is a new time variable. Then the original
dynamic system (1) can be converted into an equivalent form as follows:

˙̃x1(τ ) = t f μ̃(τ )x̃1(τ )
˙̃x2(τ ) = −t f q̃2(τ )x̃1(τ )
˙̃xi (τ ) = t f q̃i (τ )x̃1(τ ), i = 3, 4, 5

⎫
⎬

⎭
τ ∈ [0, 1], (13)

where

x̃i (τ ) := xi (t f τ), i = 1, 2, 3, 4, 5, (14)

μ̃(τ ) := μ(t f τ), (15)

q̃i (τ ) := qi (t f τ), i = 2, 3, 4, 5. (16)

The initial conditions (2) stay the same:

x̃i (0) = x0i , i = 1, 2, 3, 4, 5, (17)

where x03, x04, x05 are given by (8), and x01 and x02 are control variables. Under the
time-scaling transformation t = t f τ , the objective function (9) becomes:

G̃(x01, x02, t f |σ) := x̃3(1|x01, x02, t f , σ )

t f
. (18)

Furthermore, the modified objective function in Problem Pα becomes:

J̃α(x01, x02, t f |σ) : = G̃(x01, x02, t f |σ) − α

[
∂G̃(x01, x02, t f |σ)

∂σ

]

[
∂G̃(x01, x02, t f |σ)

∂σ

]T

. (19)

It follows that Problem Pα is equivalent to the following optimal control problem with
fixed terminal time.

ProblemP̃α . Given the nominal parameter vector σ ∈ R
9, choose the initial con-

centration of biomass x01, the initial concentration of glycerol x02, and the process
terminal time t f to maximize (19) subject to the bound constraints (10).

In Problem P̃α , the trade-off between process yield and process sensitivity can be
adjusted through the weight α. When α = 0, the sensitivity term in J̃α disappears, and
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Problem P̃α involves maximizing process yield without regard for process robustness.
In this case, Problem P̃α is a standard optimal control problem and can be solved using
conventional optimal control methods. However, when α > 0, conventional optimal
control methods are not applicable because the objective function (19) contains a non-
standard sensitivity term. In the next subsection, we introduce an auxiliary dynamic
system to compute the sensitivity term.

4.2 Computing System Sensitivity

Denote

σ := [σ1, σ2, . . . , σ9]T = [k2,m2,m3,m4,m5,Y2,Y3,Y4,Y5]T.

Thus, σ1 corresponds to k2, σ2 corresponds tom2, and so on. For each k = 1, 2, . . . , 9,
consider the following auxiliary dynamic system:

˙̃
ψk
1 (τ ) = t f μ̃(τ )ψ̃k

1 (τ ) + t f
∂μ̃(τ )

∂σk
x̃1(τ ) +

5∑

j=2

t f
∂μ̃(τ )

∂x j
x̃1(τ )ψ̃k

j (τ )

˙̃
ψk
2 (τ ) = −t f q̃2(τ )ψ̃k

1 (τ ) − t f
∂q̃2(τ )

∂σk
x̃1(τ ) −

5∑

j=2

t f
∂q̃2(τ )

∂x j
x̃1(τ )ψ̃k

j (τ )

˙̃
ψk
i (τ ) = t f q̃i (τ )ψ̃k

1 (τ ) + t f
∂q̃i (τ )

∂σk
x̃1(τ ) +

5∑

j=2

t f
∂q̃i (τ )

∂x j
x̃1(τ )ψ̃k

j (τ ), i = 3, 4, 5

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

τ ∈ [0, 1], (20)

with the initial conditions

ψ̃k
i (0) = 0, i = 1, 2, 3, 4, 5, (21)

where ∂μ̃/∂σk , ∂μ̃/∂x j , ∂q̃i/∂σk , ∂q̃i/∂x j are defined in the obviousmanner (explicit
formulas for these derivatives are given in the appendix). Let ψ̃k

i (·|x01, x02, t f , σ ),
i = 1, 2, 3, 4, 5, denote the solution of (20)–(21) corresponding to the control variables
x01, x02, and t f and the nominal parameter vector σ ∈ R

9.
The following important result shows that the solution of the auxiliary system

(20)–(21) gives the sensitivity of the state with respect to the model parameters.

Theorem 4.1 Let x01, x02, t f , and σ be fixed. Furthermore, assume that there exists
an open neighborhood containing σ , and a corresponding constant L1 > 0, such that
for all σ ′ in the neighborhood,

∣
∣x̃i (τ |x01, x02, t f , σ ′)

∣
∣ ≤ L1, τ ∈ [0, 1], i = 1, 2, 3, 4, 5.

Then for each k = 1, 2, . . . , 9,

∂ x̃i (τ |x01, x02, t f , σ )

∂σk
= ψ̃k

i (τ |x01, x02, t f , σ ), τ ∈ [0, 1], i = 1, 2, 3, 4, 5.
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Proof Let k ∈ {1, . . . , 9} be arbitrary but fixed. Furthermore, let ek denotes the kth
unit basis vector in R

9, and let g denotes the right-hand side of the dynamic system
(13):

g(x̃(τ ), σ )

:=
[
t f μ̃(τ )x̃1(τ ),−t f q̃2(τ )x̃1(τ ), t f q̃3(τ )x̃1(τ ), t f q̃4(τ )x̃1(τ ), t f q̃5(τ )x̃1(τ )

]T
,

where

x̃(τ ) :=
[
x̃1(τ ), x̃2(τ ), x̃3(τ ), x̃4(τ ), x̃5(τ )

]T
.

To prove the theorem, we need to show that

lim
δ→0

x̃δ(τ ) − x̃0(τ )

δ
= ψ̃k(τ ), τ ∈ [0, 1], (22)

where ψ̃k(·) denotes the vector-valued solution of (20) and (21) with respect to x01,
x02, t f , and σ , and x̃δ(·) denotes the vector-valued solution of (13) and (17) with
respect to x01, x02, t f , and σ + δek . That is,

x̃δ
i (·) = x̃i (·|x01, x02, t f , σ + δek), i = 1, 2, 3, 4, 5. (23)

We will prove equation (22) in four steps.
Step 1 Preliminaries
For each real number δ ∈ R, define a corresponding function vδ : [0, 1] → R

5 as
follows:

vδ(τ ) := x̃δ(τ ) − x̃0(τ ), τ ∈ [0, 1].

Thus, using the definition of g,

vδ(τ ) =
∫ τ

0
g(x̃δ(s), σ + δek)ds −

∫ τ

0
g(x̃0(s), σ )ds, τ ∈ [0, 1].

Since x̃δ and x̃0 are continuous, vδ is also continuous. It follows from the mean value
theorem that, for all τ ∈ [0, 1],

vδ(τ ) =
∫ τ

0

∫ 1

0

{∂g(x0(s) + ηvδ(s), σ + ηδek)

∂x
vδ(s)

+δ
∂g(x0(s) + ηvδ(s), σ + ηδek)

∂σk

}
dηds, (24)
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where

∂g(x̃(τ ), σ )

∂x1
=

[
t f μ̃(τ ),−t f q̃2(τ ), t f q̃3(τ ), t f q̃4(τ ), t f q̃5(τ )

]T
,

∂g(x̃(τ ), σ )

∂xi
=

[
t f x̃1(τ )

∂μ̃(τ )

∂xi
,−t f x̃1(τ )

∂ q̃2(τ )

∂xi
, t f x̃1(τ )

∂ q̃3(τ )

∂xi
,

t f x̃1(τ )
∂ q̃4(τ )

∂xi
, t f x̃1(τ )

∂q̃5(τ )

∂xi

]T
, i �= 1,

∂g(x̃(τ ), σ )

∂σk
=

[
t f x̃1(τ )

∂μ̃(τ )

∂σk
,−t f x̃1(τ )

∂ q̃2(τ )

∂σk
, t f x̃1(τ )

∂ q̃3(τ )

∂σk
,

t f x̃1(τ )
∂ q̃4(τ )

∂σk
, t f x̃1(τ )

∂q̃5(τ )

∂σk

]T
.

According to the theorem hypothesis, there exists an open bounded neighborhood of
0, denoted by 	, such that for all δ ∈ 	,

xδ(τ ) ∈ B5(
√
5L1), τ ∈ [0, 1],

where B5(
√
5L1) denotes the closed ball in R5 of radius

√
5L1 centered at the origin.

Since B5(
√
5L1) is convex, for each δ ∈ 	, we have

x0(τ ) + ηvδ(τ ) ∈ B5(
√
5L1), τ ∈ [0, 1], η ∈ [0, 1]. (25)

Furthermore, it is obvious that there exists a constant L2 > 0 such that for each δ ∈ 	,

σ + ηδek ∈ B9(L2), η ∈ [0, 1], (26)

where B9(L2) denotes the closed ball in R9 of radius L2 centered at the origin.
Clearly, from (25) and (26) and the definitions of ∂μ̃/∂σk , ∂μ̃/∂xi , ∂ q̃i/∂σk ,

∂q̃i/∂x j in the Appendix, there exists a real number L3 > 0 such that for each
δ ∈ 	,

∣
∣
∣
∣
∂g(x0(τ ) + ηvδ(τ ), σ + ηδek)

∂σk

∣
∣
∣
∣
5

≤ L3, τ ∈ [0, 1], η ∈ [0, 1],

and

∣
∣
∣
∣
∂g(x0(τ ) + ηvδ(τ ), σ + ηδek)

∂x

∣
∣
∣
∣
5×5

≤ L3, τ ∈ [0, 1], η ∈ [0, 1],

where | · |5 denotes the Euclidean norm in R
5 and | · |5×5 denotes the corresponding

induced matrix norm in R
5×5.

Step 2 The function vδ is of order δ
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Let δ ∈ 	 be arbitrary. Taking the norm of both sides of (24) and applying the
definition of L3 give

|vδ(τ )|5 ≤ L3|δ| +
∫ τ

0
L3|vδ(s)|5ds, τ ∈ [0, 1].

Thus, applying Gronwall’s Lemma gives

|vδ(τ )|5 ≤ L3 exp (L3)|δ|, τ ∈ [0, 1]. (27)

Since δ ∈ 	 was selected arbitrarily, this inequality holds whenever the magnitude of
δ is sufficiently small. Thus, the function vδ is of order δ, as required.

Step 3 Definition and limiting behavior of ρ1
For each δ ∈ 	, define two corresponding functions λ1,δ : [0, 1] → R

5 and
λ2,δ : [0, 1] → R

5 as follows:

λ1,δ(τ ):=
∫ 1

0

{∂g(x0(τ ) + ηvδ(τ ), σ+ηδek)

∂x
−∂g(x0(τ ), σ )

∂x

}
vδ(τ )dη, τ ∈ [0, 1],

and

λ2,δ(τ ) :=
∫ 1

0
δ
{∂g(x0(τ ) + ηvδ(τ ), σ + ηδek)

∂σk
− ∂g(x0(τ ), σ )

∂σk

}
dη, τ ∈ [0, 1].

Furthermore, define another function ρ1 : 	 \ {0} → R as follows:

ρ1(δ) := |δ|−1
∫ 1

0

{∣
∣λ1,δ(τ )

∣
∣
5 + ∣

∣λ2,δ(τ )
∣
∣
5

}
dτ, δ ∈ 	 \ {0}.

Now, clearly:

• x0(τ ) + ηvδ(τ ) → x0(τ ) as δ → 0, uniformly with respect to τ ∈ [0, 1] and
η ∈ [0, 1];

• σ + ηδek → σ as δ → 0, uniformly with respect to η ∈ [0, 1].
Moreover, since these convergences take place inside the balls B5(

√
5L1) and B9(L2),

respectively, and ∂g/∂σk and ∂g/∂x are uniformly continuous on the compact set
B5(

√
5L1) × B9(L2),

∂g(x0(τ ) + ηvδ(τ ), σ + ηδek)

∂x
→ ∂g(x0(τ ), σ )

∂x
, as δ → 0,

and

∂g(x0(τ ) + ηvδ(τ ), σ + ηδek)

∂σk
→ ∂g(x0(τ ), σ )

∂σk
, as δ → 0,
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uniformly with respect to τ ∈ [0, 1] and η ∈ [0, 1]. These results, together with
inequality (27), imply that δ−1λ1,δ → 0 and δ−1λ2,δ → 0 uniformly on [0, 1] as
δ → 0. Consequently,

lim
δ→0

ρ1(δ) = 0. (28)

Step 4 Comparing δ−1vδ with ψ̃k(·|x01, x02, t f , σ )

Now, we use the results proved in the previous steps to establish (22). First, let
δ ∈ 	 be arbitrary but fixed. Using (24), we have

vδ(τ ) =
∫ τ

0

{
λ1,δ(s) + λ2,δ(s)

}
ds +

∫ τ

0

∂g(x0(s), σ )

∂x
vδ(s)ds

+
∫ τ

0
δ
∂g(x0(s), σ )

∂σk
ds. (29)

Furthermore, using the definition of g, the vector-valued solution of the auxiliary
system (20)–(21) is

ψ̃k(τ ) =
∫ τ

0

∂g(x0(s), σ )

∂x
ψ̃k(s)ds +

∫ τ

0

∂g(x0(s), σ )

∂σk
ds. (30)

Multiplying (29) by δ−1 and then subtracting (30) give

δ−1vδ(τ ) − ψ̃k(τ ) = δ−1
∫ τ

0

{
λ1,δ(s) + λ2,δ(s)

}
ds

+
∫ τ

0

∂g(x0(s), σ )

∂x

{
δ−1vδ(s) − ψ̃k(s)

}
ds.

Therefore,

∣
∣δ−1vδ(τ ) − ψ̃k(τ )

∣
∣
5 ≤ ρ1(δ) +

∫ τ

0
L3

∣
∣δ−1vδ(s) − ψ̃k(s)

∣
∣
5ds, τ ∈ [0, 1].

By Gronwall’s Lemma,

∣
∣δ−1vδ(τ ) − ψ̃k(τ )

∣
∣
5 ≤ ρ1(δ) exp (L3), τ ∈ [0, 1].

Since δ ∈ 	 was selected arbitrarily, we can take the limit as δ → 0 in the above
inequality and apply (28) to establish

lim
δ→0

δ−1vδ(τ ) = ψ̃k(τ ), τ ∈ [0, 1],

which proves equation (22), as required. 
�
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According to Theorem 4.1, the state is differentiable with respect to the uncertain
parameter vector σ . Moreover, the partial derivative of the state with respect to σ

satisfies the auxiliary system (20)–(21). We now use this result to derive a formula for
the system sensitivity in Problem P̃α .

Theorem 4.2 Let x01, x02, t f , and σ be fixed. Furthermore, as in Theorem 4.1, assume
that there exists an open neighborhood containing σ and a corresponding constant
L1 > 0, such that for all σ ′ in the neighborhood,

∣
∣x̃i (τ |x01, x02, t f , σ ′)

∣
∣ ≤ L1, τ ∈ [0, 1], i = 1, 2, 3, 4, 5.

Then

[∂G̃(x01, x02, t f |σ)

∂σ

][∂G̃(x01, x02, t f |σ)

∂σ

]T =
9∑

k=1

[ ψ̃k
3 (1|x01, x02, t f , σ )

t f

]2
.

Proof By Theorem 4.1,

∂ x̃i (1|x01, x02, t f , σ )

∂σk
= ψ̃k

i (1|x01, x02, t f , σ ), i = 1, 2, 3, 4, 5, k = 1, 2, . . . , 9.

Thus, differentiating G̃(x01, x02, t f |σ) with respect to σk yields

∂G̃(x01, x02, t f |σ)

∂σk
= ∂

∂σk

{ x̃3(1|x01, x02, t f , σ )

t f

}

= 1

t f

∂ x̃3(1|x01, x02, t f , σ )

∂σk
= ψ̃k

3 (1|x01, x02, t f , σ )

t f
, k = 1, . . . , 9.

Consequently,

[∂G̃(x01, x02, t f |σ)

∂σ

][∂G̃(x01, x02, t f |σ)

∂σ

]T =
9∑

k=1

[∂G̃(x01, x02, t f |σ)

∂σk

]2

=
9∑

k=1

ψ̃k
3 (1|x01, x02, t f , σ )2

t2f
,

as required. 
�

Theorem 4.2 shows that the system sensitivity can be computed by solving the
auxiliary system (20)–(21). We will now use this result to convert Problem P̃α into a
Mayer optimal control problem in which the objective only depends on the final state
reached by the system.
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4.3 Transformation into Mayer Form

By combining the state and auxiliary systems, we obtain the following expanded
system of ordinary differential equations:

˙̃x1(τ ) = t f μ̃(τ )x̃1(τ )
˙̃x2(τ ) = −t f q̃2(τ )x̃1(τ )
˙̃xi (τ ) = t f q̃i (τ )x̃1(τ ), i = 3, 4, 5

˙̃
ψk
1 (τ ) = t f μ̃(τ )ψ̃k

1 (τ ) + t f
∂μ̃(τ )

∂σk
x̃1(τ ) +

5∑

j=2

t f
∂μ̃(τ )

∂x j
x̃1(τ )ψ̃k

j (τ )

˙̃
ψk
2 (τ ) = −t f q̃2(τ )ψ̃k

1 (τ ) − t f
∂q̃2(τ )

∂σk
x̃1(τ ) −

5∑

j=2

t f
∂q̃2(τ )

∂x j
x̃1(τ )ψ̃k

j (τ )

˙̃
ψk
i (τ ) = t f q̃i (τ )ψ̃k

1 (τ ) + t f
∂q̃i (τ )

∂σk
x̃1(τ ) +

5∑

j=2

t f
∂q̃i (τ )

∂x j
x̃1(τ )ψ̃k

j (τ ), i = 3, 4, 5

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

τ ∈ [0, 1], (31)

where k = 1, 2, . . . , 9, and μ̃ and q̃i are definedby (15)–(16),with the initial conditions

x̃i (0) = x0i , ψ̃k
i (0) = 0, i = 1, 2, 3, 4, 5. (32)

According to Theorem 4.2, the objective function (19) can be expressed as follows:

J̃α(x01, x02, t f |σ) = x̃3(1|x01, x02, t f , σ )

t f
− α

9∑

k=1

{ ψ̃k
3 (1|x01, x02, t f , σ )

t f

}2
. (33)

This equation expresses J̃α(x01, x02, t f |σ) in Mayer form as a function of the solution
of the expanded system (31)–(32) at the terminal time. Thus, Problem P̃α is equivalent
to the following optimal control problem in Mayer form.

Problem Q̃α . Given the nominal parameter vector σ ∈ R
9, choose the initial

concentration of biomass x01, the initial concentration of glycerol x02, and the process
terminal time t f to maximize (33) subject to the bound constraints (10).

In the next section, we introduce a particle swarm optimization algorithm to solve
Problem Q̃α .

5 Particle Swarm Optimization Algorithm

Because of the complex nonlinear differential equations constituting the expanded
system (31)–(32), Problem Q̃α is a non-convex dynamic optimization problem. Thus,
when applied to Problem Q̃α , gradient-based optimization algorithms will likely get
trapped at a local solution. To overcome this difficulty, we introduce a particle swarm
optimization (PSO) algorithm, similar to those described in [33–35], to solve Prob-
lem Q̃α . The main idea of the PSO algorithm is to construct a “swarm” of particles in
the feasible space defined by the box constraints (10). As the algorithm progresses, the
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particles in the swarm update their positions according to local and global information.
Previous studies [36] have demonstrated that the standard PSO algorithm converges
quickly in the initial stages, but slows rapidly when approaching the optimal solution.
Therefore, improved PSO algorithms were subsequently proposed in the literature
[36,37]. These improved PSO algorithms tend to avoid local optimal solutions and
thus premature convergence, by significantly enhancing the information communica-
tion in the evolutionary process. In this paper, we adapt the algorithm in [37] to solve
Problem Q̃α .

The parameters in the PSO algorithm are defined below.

• N is the total number of particles in the swarm.
• l is an integer for testing convergence (if the optimal objective value has not
changed after l iterations, then we terminate the algorithm).

• c1 and c2 are the cognitive and social scaling parameters.
• wmin and wmax are the minimum and maximum inertia weights.
• Vmin and Vmax are vectors containing the minimum and maximum particle veloc-
ities.

• Kmin and Kmax are the minimum and maximum number of iterations.
• d1 and d2 are control factors.
• τ is the convergence tolerance.

The following variables in the PSO algorithm are updated as the algorithm proceeds.

• w is the inertia weight.
• k is the iteration index.
• J̃ n∗

α is the best objective value found by the nth individual particle.
• (xn∗

01 , xn∗
02 , tn∗

f ) is the best control strategy found by the nth individual particle.

• J̃ ∗
α is the best objective value found by any member of the swarm.

• (x∗
01, x

∗
02, t

∗
f ) is the best control strategy found by any member of the swarm.

• J̃ ∗,k
α is the value of J̃ ∗

α at the end of the kth iteration.

The detailed steps of the PSO algorithm are described below.

PSO Algorithm

Step 1 Initialize the parameters N , l, c1, c2, d1, d2, τ , wmin, wmax, Vmin, Vmax,
Kmin, Kmax.
Step 2 Initialize the variables,

1 → k, −∞ → J̃ n∗
α , −∞ → J̃ ∗

α , −∞ → J̃ ∗,k
α .

Step 3 According to the uniform distribution, randomly generate the positions of
N particles in the rectangular region defined by constraints (10), and randomly
generate the particle velocities in the rectangular region defined by Vmin and Vmax.
Let (xn01, x

n
02, t

n
f ) denotes the position of the nth particle, and let (vn1 , v

n
2 , v

n
3 )

denotes the velocity of the nth particle.
Step 4 For each n = 1, . . . , N , solve the expanded dynamic system (31)–(32) and
calculate the corresponding objective value J̃α(xn01, x

n
02, t

n
f |σ) according to (33).

123



356 J Optim Theory Appl (2015) 167:342–362

Step 5 If J̃α(xn01, x
n
02, t

n
f |σ) > J̃ n∗

α , then set J̃α(xn01, x
n
02, t

n
f |σ) → J̃ n∗

α , and
(xn01, x

n
02, t

n
f ) → (xn∗

01 , xn∗
02 , tn∗

f ).

Step 6 If J̃α(xn01, x
n
02, t

n
f |σ) > J̃ ∗

α , then set J̃α(xn01, x
n
02, t

n
f |σ) → J̃ ∗

α , and
(xn01, x

n
02, t

n
f ) → (x∗

01, x
∗
02, t

∗
f ).

Step 7 Set J̃ ∗
α → J̃ ∗,k

α .
Step 8 If k ≥ Kmax, or k > Kmin and | J̃ ∗,k

α − J̃ ∗,k−l
α |≤ τ , then stop. Otherwise

go to Step 9.
Step 9 Update the inertia term according to the following formula:

(wmax − wmin − d1) exp
{ 1

Kmax + d2(k − 1)

}
→ w.

Step 10 For each n = 1, 2, . . . , N , compute:

v̂n1 = wvn1 + c1r
′
1(x

n∗
01 − xn01) + c2r

′′
1 (x∗

01 − xn01),

v̂n2 = wvn2 + c1r
′
2(x

n∗
02 − xn02) + c2r

′′
2 (x∗

02 − xn02),

v̂n3 = wvn3 + c1r
′
3(t

n∗
f − tnf ) + c2r

′′
3 (t∗f − tnf ),

where r ′
j ∈ (0, 1) and r ′′

j ∈ (0, 1), j = 1, 2, 3, are random numbers.
Step 11 For each n = 1, 2, . . . , N , update the velocity of the nth particle according
to the following formula:

vnj ←

⎧
⎪⎨

⎪⎩

V j
min, if v̂nj < V j

min,

v̂nj , if v̂nj ∈ [V j
min, V

j
max],

V j
max, if v̂nj > V j

max,

where V j
min and V j

max denote the j th components of Vmin and Vmax, respectively.
Step 12 For each n = 1, 2, . . . , N , compute:

x̂n01 = xn01 + vn1 , x̂n02 = xn02 + vn2 , t̂ nf = tnf + vn3 .

Step 13 For each n = 1, 2, . . . , N , update the position of the nth particle according
to the following formula:

xn01 ←
⎧
⎨

⎩

0.01, if x̂n01 < 0.01,
x̂n01, if x̂n01 ∈ [0.01, 1],
1, if x̂n01 > 1,

xn02 ←
⎧
⎨

⎩

200, if x̂n02 < 200,
x̂n02, if x̂n02 ∈ [200, 1700],
1700, if x̂n02 > 1700,

tnf ←
⎧
⎨

⎩

2, if t̂ nf < 2,
t̂ nf , if t̂ nf ∈ [2, 10],
10, if t̂ nf > 10.

Step 14 Set k + 1 → k and return to Step 4.
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Table 1 Numerical results from the PSO algorithm: (x∗
01, x

∗
02, t

∗
f ) is the optimal control strategy, and G̃

and J̃α are the corresponding objective values for Problems P and Q̃α , respectively

α x∗
01 x∗

02 t∗f G̃ Sensitivity J̃α

0 1 573.55 4.66 51.91 4.74 × 105 51.91

1 × 10−10 1 573.55 4.66 51.91 4.74 × 105 51.91

1 × 10−9 1 573.60 4.66 51.91 4.73 × 105 51.91

1 × 10−8 1 574.03 4.66 51.91 4.58 × 105 51.90

1 × 10−7 1 577.69 4.65 51.90 3.48 × 105 51.87

1 × 10−6 1 593.62 4.63 51.80 8.69 × 104 51.72

1 × 10−5 1 611.97 4.64 51.60 3.40 × 103 51.57

1 × 10−4 1 616.89 4.65 51.54 5.15 × 102 51.53

1 × 10−3 1 617.38 4.65 51.53 8.03 51.52

1 × 10−2 1 616.55 4.64 51.53 7.56 51.45

1 × 10−1 1 608.49 4.55 51.52 7.33 50.78

1 1 533.76 3.73 50.61 5.54 45.07

6 Numerical Results

For the parameters in the PSO algorithm, we choose the following values:

Vmax = (0.2, 300.0, 1.6)T, Vmin = −Vmax,

N = 100, Kmin = 100, Kmax = 2000, l = 50,

c1 = c2 = 2.0, wmin = 0.4, wmax = 0.7, d1 = 0.2, d2 = 0.7, τ = 1 × 10−8.

Using the PSO algorithm (implemented within FORTRAN), we solved Problem Q̃α

for various values of α. The optimal control variables and optimal objective values
generated by the PSO algorithm are listed in Table 1. The results in Table 1 show
that, as the weight α increases, the system sensitivity with respect to the uncertain
parameters in σ decreases substantially, with little change to the optimal 1,3-PD yield.
This suggests that the optimal control strategies for α > 0 are far more robust than
the optimal control strategy for α = 0. The optimal state trajectories corresponding
to the solutions in Table 1 are shown in Fig. 1. Note that our FORTRAN program for
implementing PSO uses the 6th Runge–Kutta method to solve the expanded system
(31)–(32).

To investigate the robustness properties of the solutions in Table 1, we randomly
perturbed the parameter vector σ and calculated the corresponding 1,3-PD yield (as
measured by G̃) for each optimal control strategy in Table 1. It turns out that the 6th
component of σ , i.e., Y2, is the most critical parameter in terms of process sensitivity:
∂G̃/∂σ6 = ∂G̃/∂Y2 is the dominant term in the sensitivity values in Table 1. Accord-
ingly, in our simulations, we generated the perturbed parameter vectors as follows:
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Fig. 1 Optimal state trajectories for α = 0, α = 1 × 10−5, and α = 1

for each k �= 6, we perturbed σk by 1 % (in the negative direction); for k = 6, we
perturbed σ6 by a random percentage from the intervals

(0, 5 %), (5 %, 10 %), . . . , (45 %, 50 %),

where the upper limit of each interval is referred to as the “disturbance percentage”.
For each disturbance percentage (5 %, 10 %, . . . , 50 %), we generated 1,000 random
parameter vectors according to the above procedure and calculated the corresponding
value of G̃ under the optimal control strategies for α = 0 and α = 1. Our results are
shown as box plots in Fig. 2. Note that, as expected, the results for α = 1 show far
less variation in the 1,3-PD yield than the results for α = 0. Thus, the optimal control
strategy for α = 1 gives more robust performance, at minimal cost to the final 1,3-PD
yield.

For our next set of simulations, we varied the disturbance percentage from 0.1 %
to 50 % in increments of 0.1 %. For each disturbance percentage, a single perturbed
parameter vector was generated as follows: σ6 was perturbed by the given disturbance
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Fig. 2 The final yield of 1,3-PD (measured by G̃) for 1,000 randomly perturbed parameter vectors
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Fig. 3 The final yield of 1,3-PD (measured by G̃) under the optimal control schemes for α = 0 and α = 1
and perturbed parameter vectors
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percentage (in the negative direction), and the other parameters were perturbed by
1 % (in the negative direction). For each perturbed parameter vector, the value of G̃
under the optimal control schemes for α = 0 and α = 1 was computed. The results
are plotted in Fig. 3. Again, as expected, α = 1 gives more robust results than α = 0,
especially for large values of the disturbance percentage.

7 Conclusions

This paper introduces a nonlinear dynamic system with uncertain parameters to
describe the batch fermentation process for producing 1,3-PD. To maximize the pro-
ductivity of the process, we propose an optimization model in which the objective
function measures the final yield of 1,3-PD. In practice, the model parameters in the
dynamicmodel are not knownexactly and thus need to be estimated. There is inevitably
an error between the estimated values and the true values. Thus, in this paper, we aug-
mented the optimization model by including a non-standard sensitivity term, which
penalizes deviations in the 1,3-PD yield with respect to parameter changes. A com-
putational method, based on the time-scaling transformation, sensitivity analysis, and
particle swarm optimization, was developed for solving the non-standard optimiza-
tion model. The numerical results in Sect. 6 show that the method is successful at the
producing robust control strategies that achieve good performance while ensuring that
sensitivity with respect to parameter changes is below acceptable levels. Future work
will involve investigating the theoretical properties of the cost function (33) to develop
tailored optimization procedures. This has the potential to accelerate numerical con-
vergence.
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Appendix

The explicit formulas for the derivatives of μ̃ in (20)–(21) are given below.

∂μ̃(τ )

∂σ1
= −μm

x̃2(τ )

(x̃2(τ ) + k2)2

5∏

i=2

(
1 − x̃i (τ )

x∗
i

)
,

∂μ̃(τ )

∂σk
= 0, k = 2, 3, . . . , 9,

∂μ̃(τ )

∂x1
= 0,

∂μ̃(τ )

∂x2
= μm

[
k2

(x̃2(τ ) + k2)2

(

1 − x̃2(τ )

x∗
2

)

− x̃2(τ )

x∗
2 (x̃2(τ ) + k2)

]

5∏

i=3

(
1 − x̃i (τ )

x∗
i

)
,

∂μ̃(τ )

∂x j
= −μm

x̃2(τ )

x∗
j (x̃2(τ ) + k2)

5∏

i=2,i �= j

(
1 − x̃i (τ )

x∗
i

)
, j = 3, 4, 5.
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The explicit formulas for the derivatives of q̃2 in (20)–(21) are given below.

∂q̃2(τ )

∂σ1
= 1

Y2

∂μ̃(τ )

∂σ1
,

∂q̃2(τ )

∂σ2
= 1,

∂q̃2(τ )

∂σ6
= − μ̃(τ )

Y 2
2

,
∂ q̃2(τ )

∂σk
= 0,

k = 3, 4, 5, 7, 8, 9,

∂q̃2(τ )

∂x1
= 0,

∂q̃2(τ )

∂x2
= 1

Y2

∂μ̃(τ )

∂x2
,

∂q̃2(τ )

∂x j
= 1

Y2

∂μ̃(τ )

∂x j
, j = 3, 4, 5.

The explicit formulas for the derivatives of q̃i , i = 3, 4, 5, in (20)–(21) are given
below.

∂q̃i (τ )

∂σk
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yi
∂μ̃(τ )

∂σ1
, if k = 1,

1, if σk = mi ,

μ̃(τ ), if σk = Yi ,
0, otherwise,

∂q̃i (τ )

∂x1
= 0,

∂q̃i (τ )

∂x2
= Yi

∂μ̃(τ )

∂x2
,

∂q̃i (τ )

∂x j
= Yi

∂μ̃(τ )

∂x j
, j = 3, 4, 5.
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