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1 Introduction

Semidefinite optimization (SDO) problems are convex optimization problems over the
intersection of an affine set and the cone of positive semidefinite matrices. For years,
SDO has been one of the most active research areas in mathematical programming.
Particularly, many interior-point methods (IPMs) for linear optimization (LO) are
successfully extended to SDO [1–6], due to their polynomial complexity and practical
efficiency. Some popular software packages for SDO are developed based on IPMs,
such as SDPHA [7], SeDuMi [8], and SDPT3 [9]. For an overview of these results we
refer to [10] and within references.

One may distinguish different IPMs, according to whether they are feasible IPMs or
infeasible IPMs. Feasible IPMs start with a strictly feasible symmetric positive definite
matrix and maintain feasibility during the solution process. However, obtaining such
a point is usually as difficult as solving the underlying problem itself. The general
method to overcome this problem is to use the homogeneous embedding model for
SDO by De Klerk [10], and independently also by Luo et al. [2]. The homogeneous
embedding method has been implemented in the well-known solvers SDPHA [7]
and SeDuMi [8]. Infeasible IPMs for SDO start with an arbitrary positive definite
matrix, and feasibility is researched as optimality is approached. Kojima et al. [1] and
Potra and Sheng [4] independently analyzed infeasible IPMs for SDO and derived
the best known iteration bound under some mild assumptions. The performance of
the existing infeasible IPMs highly depends on the choice of the starting point. The
well-known solver SDPT3 [9] employs an infeasible primal-dual predictor-corrector
path-following method.

The primal-dual full Newton-step feasible IPM for LO was first analyzed by Roos
et al. in [11] and was later extended to infeasible version by Roos [12]. The obtained
iteration bounds for both feasible and infeasible versions of the algorithm match the
best known ones for these types of algorithms. Both versions of the IPMs were extended
by De Klerk [10] and Mansouri and Roos [13] to SDO by using full Nesterov–Todd
(NT) direction as a search direction, respectively. Darvay [14] proposed a new full
Newton-step feasible IPM for LO. The search direction of his algorithm is introduced
by an algebraic equivalent transformation (form) of the nonlinear equations, which
define the central path. He also derived the same iteration bound as the one in [11].
Later on, Wang and Bai [15,16] extended Darvay’s algorithm for LO to second-order
cone optimization (SOCO) and SDO. However, the above-mentioned full step IPMs
are essentially small-update methods, which enjoy the best known worst-case iteration
bound, but they may not be efficient from a practical point of view. The motivation for
the use of full steps is that, though such methods are less greedy, the best complexity
results for IPMs are obtained for such methods.

In [11], Roos et al. also presented an improved convergence analysis of full Newton-
step feasible IPM with a sharper quadratic convergence result for LO. Later on, Gu
et al. [17] proposed an improved version of full Newton-step infeasible IPM for LO,
where the convergence analysis of the algorithm was simplified. They derived a slightly
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better iteration bound than the one obtained for such method in [12]. An interesting
question here is whether or not we can directly extend both versions of the improved
full Newton-step IPMs for LO to SDO. As we will see later, this extension is by no
means obvious or expected. Some other related full step IPMs can be refer to [18–25].

The purpose of the paper is to propose an improved convergence analysis of full NT-
step IPMs for SDO, which is the generalization of full Newton-step feasible IPM and
infeasible IPM for LO analyzed in [11,17], and full NT-step feasible IPM and infeasible
IPM for SDO analyzed in [10,13], respectively. Our convergence analysis is slightly
different from the ones considered in [10,13]. Here, we establish a sharper quadratic
convergence result, which leads to a slightly wider neighborhood for the iterates in
the feasible algorithm and for the feasibility steps in the infeasible algorithm. Both
versions of the full NT-step IPMs are established the currently best known iteration
bounds.

This paper is organized as follows. In Sect. 2, we recall and develop some important
results on matrices from linear algebra that relate to SDO. The full NT-step feasible
IPM and the full NT-step infeasible IPM for SDO are presented in Sects. 3 and 4,
respectively. Finally, some conclusions and topics for further research are made in
Sect. 5.

2 Preliminaries

Some notations are used throughout the paper. IRm×n and Cm×n denote the space
of all real and complex m × n matrices, respectively. ‖ · ‖ and ‖ · ‖∞ denote the
Frobenius norm and the infinity norm for matrices, respectively. Sn , Sn+, and Sn++
denote the cone of symmetric, symmetric positive semidefinite and symmetric positive
definite real n × n matrices, respectively. E denotes n × n identity matrix. A � B
(A � B) means that A − B is positive semidefinite (positive definite). The matrix
inner product is defined by 〈A, B〉 := A · B = Tr(AT B). For any V ∈ Sn, we
denote by λ(V ) the vector of eigenvalues of V arranged in non-increasing order, that
is, λ1(V ) ≥ λ2(V ) ≥ · · · ≥ λn(V ). λmax(V ) and λmin(V ) denote the largest and
the smallest eigenvalue of the matrix V , respectively. For any matrix M , we denote
by σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) the singular values of M . Especially if M is
symmetric, then one has σi (M) := |λi (M)|, i = 1, 2, . . . , n.

First, we recall three well-known inequalities on the singular values of the matrices
from [26].

Lemma 2.1 ( Theorem 3.3.13 in [26]) Let A ∈ IRn×n. Then

n∑

i=1

|λi (A)| ≤
n∑

i=1

σi (A).

Lemma 2.2 (Theorem 3.3.14 in [26]) Let A, B ∈ IRn×n. Then

n∑

i=1

σi (AB) ≤
n∑

i=1

σi (A)σi (B).
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Lemma 2.3 (Corollary 3.4.3 in [26]) Let A, B ∈ IRn×n. Then

n∑

i=1

σi (A + B) ≤
n∑

i=1

σi (A) +
n∑

i=1

σi (B).

Lemma 2.4 Let A, B ∈ Sn. Then

−1

2
‖A − B‖2 E � AB + B A � 1

2
‖A + B‖2 E .

Proof We have

AB + B A = 1

2

(
(A + B)2 − (A − B)2

)
.

Note that (A + B)2 and (A − B)2 are positive semidefinite matrices. This implies

−1

2
(A − B)2 � AB + B A � 1

2
(A + B)2.

Since A + B and A − B are symmetric matrices, and

X � |λmax(X)|E = σmax(X)E � ‖X‖E,

for any symmetric matrix X ∈ Sn , and ‖X2‖ ≤ ‖X‖2, we obtain

−1

2
‖A − B‖2 E � AB + B A � 1

2
‖A + B‖2 E .

This completes the proof of the lemma. �
Lemma 2.5 Let A, B ∈ Sn. Then

n∑

i=1

∣∣∣∣λi

(
AB + B A

2

)∣∣∣∣ ≤ 1

2
(‖A‖2 + ‖B‖2).

Proof We have

n∑

i=1

∣∣∣∣λi

(
AB + B A

2

)∣∣∣∣ ≤ 1

2

n∑

i=1

σi (AB + B A) ≤ 1

2

n∑

i=1

(σi (AB) + σi (B A))

≤
n∑

i=1

σi (A)σi (B) ≤ 1

2

n∑

i=1

(σ 2
i (A) + σ 2

i (B))

= 1

2
(‖A‖2 + ‖B‖2).
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The first inequality follows from Lemma 2.1, the second inequality follows from
Lemma 2.3, the third line follows from Lemma 2.2, while the last line follows from
the fact that 2ab ≤ a2 + b2 for any a, b ∈ IR. This completes the proof of the lemma.

�
Lemma 2.6 (Lemma C.6 in [11]) Let γ be a vector in IRp such that γ > −e and
eTγ = σ . Then, if either γ ≥ 0 or γ ≤ 0,

p∑

i=1

−γi

1 + γi
≤ −σ

1 + σ
,

equality holds if and only if at most one of the coordinates of γ is nonzero.

Lemma 2.7 Let A, B ∈ Sn such that 〈A, B〉 = 0 and ‖A + B‖ = 2a with a < 1.
Then

〈
E,

(
E + AB + B A

2

)−1

− E

〉
≤ 2a4

1 − a4 .

Proof Since 〈A, B〉 = 0, it follows that

‖A + B‖ = ‖A − B‖ = 2a < 2.

From Lemma 2.4, we have

−E � −1

4
‖A − B‖2 E � AB + B A

2
� 1

4
‖A + B‖2 E � E .

Hence, putting M := AB+B A
2 , we have 〈E, M〉 = 0 and −E ≺ M ≺ E . Now let

I+(M) := {i : λi (M) > 0} and I−(M) := {i : λi (M) < 0}

be two index sets. Then

∑

i∈I+(M)

λi (M) = −
∑

i∈I−(M)

λi (M).

Let σ denote this common value. Using Lemma 2.6 twice, with respectively γi =
λi (M) for i ∈ I+(M) and γi = λi (M) for i ∈ I−(M), we have

〈
E,

(
E + AB + B A

2

)−1

− E

〉
= 〈E, (E + M)−1 − E〉 = Tr((E + M)−1 − E)

=
n∑

i=1

(
1

1 + λi (M)
− 1

)
=

n∑

i=1

−λi (M)

1 + λi (M)
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=
∑

i∈I+(M)

−λi (M)

1 + λi (M)
+

∑

i∈I−(M)

−λi (M)

1 + λi (M)

≤ −σ

1 + σ
+ σ

1 − σ
= 2σ 2

1 − σ 2 .

Note that the last expression is monotonically increasing in σ . Hence, we may replace
it by an upper bound, which can be obtained, by Lemma 2.5, as follows:

σ = 1

2

n∑

i=1

|λi (M)| = 1

2

n∑

i=1

∣∣∣∣λi

(
AB + B A

2

)∣∣∣∣ ≤ 1

4
(‖A‖2 + ‖B‖2)

= 1

4
‖A + B‖2 = a2.

Substitution of this bound for σ yields

〈
E,

(
E + AB + B A

2

)−1

− E

〉
≤ 2a4

1 − a4 .

This completes the proof of the lemma. �
Recall that, if A ∈ IRm×n and B ∈ IRn×m , then

Tr(AB) =
m∑

i=1

(AB)i i =
m∑

i=1

n∑

j=1

Ai j B ji =
n∑

j=1

m∑

i=1

B ji Ai j

=
n∑

j=1

(B A) j j = Tr(B A). (1)

Furthermore, we know that

Tr(BT B) =
m∑

i=1

n∑

j=1

B2
j i ≥ 0. (2)

Particularly, if B ∈ IRn×n is skew-symmetric, then

Tr(B2) = −Tr(BT B) ≤ 0. (3)

Lemma 2.8 Let A ∈ Sn, and let B ∈ IRn×n be skew-symmetric. Then

‖A + B‖2 ≥ ‖A‖2.

Proof It follows from (1), (2) and (3) that

‖A + B‖2 = Tr
(
(A + B)T (A + B)

)
= Tr ((A − B)(A + B))
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= Tr
(

A2 + AB − B A + B2
)

= Tr
(

A2 − B2
)

= Tr(A2) − Tr(B2) ≥ Tr(A2) = ‖A‖2.

This completes the proof of the lemma. �
Lemma 2.9 (Lemma A.1 in [10]) Let A ∈ Sn++, and let B ∈ IRn×n be skew-symmetric.
If λi (A + B) ∈ IR (i = 1, . . . , n), then

0 < λmin(A) ≤ λmin(A + B) ≤ λmax(A + B) ≤ λmax(A).

In what follows, we directly cite the following result without its proof, which enables
us to prove Lemma 2.11.

Lemma 2.10 (Corollary 3.1 in [28]) Let M, N ∈ Cn×n be a Hermitian matrix and a
skew-Hermitian matrix (i.e., N∗ = −N, where N∗ denotes the conjugate transpose
of N), respectively. If M + N � 0, then

Tr(((M + N )∗(M + N ))−r ) ≤ Tr(M−2r ), ∀r > 0.

As a consequence of Lemma 2.10 with r = 1/2, we can easily verify the following
result.

Lemma 2.11 Let A ∈ Sn++, and let B ∈ IRn×n be skew-symmetric. Then

‖(A + B)−
1
2 ‖2 ≤ ‖(A)−

1
2 ‖2.

3 Full NT-step Feasible IPM

3.1 The SDO Problems

In this paper, we consider the primal problem of SDO in the standard form

(SDOP) min {C · X : Ai · X = bi , i = 1, 2, . . . , m, X � 0} ,

and its dual problem

(SDOD) max

{
bT y :

m∑

i=1

yi Ai + S = C, S � 0

}
.

Here, each Ai ∈ Sn , b ∈ IRm , and C ∈ Sn . Throughout the paper, we assume that
the matrices Ai are linearly independent. Many researchers have studied SDO and
achieved plentiful and beautiful results. For an overview of these results, we refer to
the subject monograph [10] and references within.
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3.2 The Central Path

In this section, we assume that both (SDOP) and (SDOD) satisfy the interior-point
condition (IPC), i.e., there exists (X0, y0, S0) such that

Ai · X0 = bi , i = 1, . . . , m, X0 � 0,

m∑

i=1

y0
i Ai + S0 = C0, S0 � 0.

The Karush–Kuhn–Tucker (KKT) conditions for (SDOP) and (SDOD) are equivalent
to the following system

Ai · X = bi , i = 1, . . . , m, X � 0,

m∑

i=1

yi Ai + S = C, S � 0, X S = 0. (4)

The standard approach is to replace the third equation in (4), i.e., the so-called
complementarity condition for (SDOP) and (SDOD), by the parameterized equation
X S = μE with μ > 0. This yields

Ai · X =bi , i = 1, . . . , m, X � 0,

m∑

i=1

yi Ai + S =C, S � 0, X S = μE . (5)

Under the assumption that (SDOP) and (SDOD) satisfy the IPC (this can be achieved
via the so-called self-dual embedding technique, which was first introduced for LO in
[27,29] and later on generalized for SDO by Klerk in [10]), the system (5) has a unique
solution, denoted by (X (μ), y(μ), S(μ)). We call X (μ) the μ-center of (SDOP) and
(y(μ), S(μ)) the μ-center of (SDOD). The set of μ-centers (with μ running through
positive real numbers) gives a homotopy path, which is called the central path of
(SDOP) and (SDOD). If μ → 0, then the limit of the central path exists, and since the
limit points satisfy the complementarity condition, i.e., X S = 0, it naturally yields an
optimal solution for (SDOP) and (SDOD) [10].

3.3 The Classic NT Search Direction

Now, we consider the symmetrization operator

HP (M) := 1

2
(P M P−1 + (P M P−1)T), ∀M ∈ IRn×n,

introduced by Zhang [5]. It is well known that

HP (M) = μE ⇔ M = μE,

for any nonsingular matrix P , any matrix M with real spectrum and any μ ∈ IR. For
any given nonsingular matrix P , the system (5) is equivalent to
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Ai · X = bi , i = 1, . . . , m, X � 0,

m∑

i=1

yi Ai + S = C, S � 0, HP (X S) = μE .

(6)

Applying Newton method to the system (6), this yields

Ai · �X = bi − Ai · X, i = 1, . . . , m,
m∑

i=1

�yi Ai + �S = C −
n∑

i=1

yi Ai − S, (7)

HP (X�S + �X S) = μE − HP (X S).

The search direction obtained through the system (7) is called the Monteiro–
Zhang (MZ) unified direction. Different choices of the matrix P result in different
search directions (see, e.g., [5,10]). In this paper, we consider the so-called NT-
symmetrization scheme, from which the NT search direction [30,31] is derived. Let

P := X
1
2 (X

1
2 SX

1
2 )−

1
2 X

1
2 = S− 1

2 (S
1
2 X S

1
2 )

1
2 S− 1

2 ,

and D = P
1
2 . The matrix D can be used to rescale X and S to the same matrix V ,

defined by

V := 1√
μ

D−1 X D−1 = 1√
μ

DSD. (8)

Let us further define

Āi := 1√
μ

D Ai D, i =1, . . . , m, DX := 1√
μ

D−1�X D−1, and DS := 1√
μ

D�SD.

(9)

From (8) and (9), after some elementary reductions, we have

Āi · DX = 1√
μ

(bi − Ai · X), i = 1, . . . , m,

m∑

i=1

�yi Āi + DS = 1√
μ

D(C −
m∑

i=1

yi Ai − S)D, (10)

DX + DS = V −1 − V .

The scaled NT search direction (DX ,�y, DS) is computed by solving (10) so that
�X and �S are obtained through (9).

If X is primal feasible and (y, S) are dual feasible, then bi − Ai · X = 0 with
i = 1, . . . , m and C − ∑m

i=1 yi Ai − S = 0, whence the system (10) reduces to
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Full NT-Step Feasible IPM

Input:

An accuracy parameter ε > 0;

a fixed barrier update parameter θ, 0 < θ < 1, (default τ = 1/
√

2n);

a threshold parameter τ > 0, (default τ = 1/ 4√2);

a strictly feasible pair (X0, y0, S0) and μ0 such that Tr(X0S0) = nμ0 and

δ(X0, S0; μ0) ≤ τ .
begin

X := X0; y := y0; S := S0; μ := μ0;

while Tr(XS) ≥ ε do

begin
update (X, y, S) := (X, y, S) + (ΔX, Δy, ΔS);

μ := (1 − θ)μ.
end

end

Fig. 1 Full NT-step feasible IPM

Āi · DX = 0, i = 1, . . . , m,

m∑

i=1

�yi Āi + DS = 0, DX + DS = V −1 − V, (11)

which gives the usual scaled NT search direction for feasible primal-dual IPMs.
If (X, y, S) �= (X (μ), y(μ), S(μ)), then (�X,�y,�S) is nonzero. The new iterate

is obtained by taking a full NT-step as follows:

X+ := X + �X, y+ := y + �y, and S+ := S + �S. (12)

3.4 The Generic Full NT-step Feasible IPM

The generic full NT-step feasible IPM for SDO is now presented in Fig. 1.

3.5 Analysis of the Full NT-step Feasible IPM

3.5.1 Feasibility of the Full NT-step

For the analysis of the algorithm, we define a norm-based proximity measure as fol-
lows:
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δ(X, S;μ) := δ(V ) := 1

2
‖V −1 − V ‖. (13)

Furthermore, we can conclude that

δ(V ) = 0 ⇔ DX = DS = 0 ⇔ V = E ⇔ X S = μE .

Hence, the value of δ(V ) can be considered as a measure for the distance between the
given tripe (X, y, S) and the corresponding μ-center (X (μ), y(μ), S(μ)).

The following lemma shows the strict feasibility of the full NT-step under the
condition δ(X, S;μ) < 1.

Lemma 3.1 (Lemma 7.1 in [10]) Let δ := δ(X, S;μ) < 1. Then, the full NT-step is
strictly feasible.

The following lemma shows that, after a full NT-step, the duality gap assumes the
same value as at the μ-centers, namely nμ.

Lemma 3.2 (Corollary 7.1 in [10]) After a full NT-step, the duality gap is given by

Tr(X+S+) = nμ.

3.5.2 Local Quadratic Convergence to the Central Path

It follows from (12) and (9) that

X+ = √
μD(V + DX )D, and S+ = √

μD−1(V + DS)D−1. (14)

Therefore

X+S+ = μD(V + DX )(V + DS)D−1. (15)

From (15), (14) and Lemma 3.1, after some elementary reductions, we can conclude
that

X+S+ ∼ μ(V + DX )(V + DS) = μ(E + DX S + M) � 0, (16)

where

DX S := 1

2
(DX DS + DS DX )

and

M := 1

2
(DX DS − DS DX ) + 1

2
(DX V + V DS − V DX − DS V ).

are symmetric and skew-symmetric, respectively.
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It is important to investigate the effect on δ(X, S;μ) of a full NT-step to the target
point (X (μ), y(μ), S(μ)). For this purpose, De Klerk [10] extended Theorem II.50
of [11] for LO to the SDO case. This result plays an important role in the analysis of
full NT-step infeasible IPM for SDO in [13].

Lemma 3.3 (Lemma 7.4, Corollary 7.2 in [10]) Let δ := δ(X, S;μ) < 1. Then

δ(X+, S+;μ) ≤ δ2
√

2(1 − δ2)
.

Furthermore, if δ ≤ 1/
√

2, then the full NT-step is strictly feasible and δ(X+, S+;μ) ≤
δ2, which shows the quadratical convergence of the full NT-step.

In what follows, we give a sharper quadratic convergence result than the above one
used in [13], which provides a slightly wider neighborhood for the feasibility step of
our algorithm.

Theorem 3.1 Let δ := δ(X, S;μ) < 1. Then

δ(X+, S+;μ) ≤ δ2
√

2(1 − δ4)
.

Proof Let U := (E + DX S + M). It follows from (16) and (8) that

‖U
1
2 ‖2 = ‖V +‖2 = 1

μ
Tr(X+S+) = n.

Furthermore, since M is a skew-symmetric matrix, we can conclude that, by Lemma
2.11,

‖U− 1
2 ‖2 = ‖(E + DX S + M)−

1
2 ‖2 ≤ ‖(E + DX S)−

1
2 ‖2.

Now we may write

4δ(X+, S+;μ)2 = ‖(V +)−1 − V +‖2 = ‖U− 1
2 − U

1
2 ‖2

= ‖U− 1
2 ‖2 − n ≤ 〈E, (E + DX S)−1 − E〉.

Application of Lemma 2.7 to the last expression (with A = DX and B = DS) yields

4δ(X+, S+;μ)2 ≤
〈

E,

(
E + DX DS + DS DX

2

)−1

− E

〉
≤ 2δ4

1 − δ4 ,

since ‖DX + DS‖ = 2δ, with δ < 1. This completes the proof of the theorem. �
The following corollary shows the quadratic convergence of the full NT-step to the

target μ-center in the wider neighborhood, determined by 1/
4
√

2 as opposed to 1/
√

2
in [10].
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Corollary 3.1 Let δ := δ(X, S;μ) ≤ 1/
4
√

2. Then the full NT-step is strictly feasible
and δ(X+, S+;μ) ≤ δ2.

3.5.3 Updating the Barrier Parameter μ

In the following theorem, we investigate the effect on the proximity measure of a full
NT-step followed by an update of the barrier parameter μ.

Theorem 3.2 (Lemma 7.5 in [10]) Let δ := δ(X, S;μ) < 1 and μ+ = (1− θ)μ with
0 < θ < 1. Then

δ(X, S;μ+)2 = (1 − θ)δ2 + nθ2

4(1 − θ)
.

Corollary 3.2 Let δ := δ(X, S;μ) ≤ 1/
4
√

2 and θ = 1/
√

2n with n ≥ 2. Then

δ(X+, S+;μ+) ≤ 1/
4
√

2.

Proof From Corollary 3.1 and the fact that δ ≤ 1/
4
√

2, we have

δ(X+, S+;μ) ≤ δ2 ≤ 1/
√

2.

Then, after the barrier parameter is updated to μ+ = (1 − θ)μ, with θ = 1/
√

2n,
Theorem 3.2 yields the following upper bound for δ(X+, S+;μ+)2:

δ(X+, S+;μ+)2 ≤ (1 − θ)δ(X+, S+;μ)2 + nθ2

4(1 − θ)

≤ 1 − θ

2
+ 1

8(1 − θ)
≤ max

{
5

8
,

1

2

}
= 5

8
.

The last inequality holds due to its left hand-side is a convex function of θ , whose
values are 5/8 and 1/2 in θ = 0 and θ = 1/2. Since θ ∈ [0, 1/2], the left hand-side
does not exceed 5/8. Note that 5/8 < 1/

√
2. Hence, we have

δ(X+, S+;μ+) < 1/
4
√

2.

The conclusion of the corollary follows. �

3.5.4 Iteration Bound

Similar to the proof of Lemma 4.7 in [15], we can easily verify the validity of the
following lemma.

Lemma 3.4 Let X0 and S0 be strictly feasible and such that Tr(X0S0) = nμ0 and
δ(X0, S0;μ0) ≤ 1/

4
√

2. Moreover, let Xk and Sk be the matrices obtained after k
iterations. Then, the inequality Tr(Xk Sk) ≤ ε is satisfied for
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k ≥ 1

θ
log

nμ0

ε
.

As a consequence of Lemma 3.4, we have the main result for the full NT-step
feasible IPM.

Theorem 3.3 Let τ = 1/
4
√

2 and θ = 1/
√

2n. Then, the algorithm in Fig. 1 requires
at most

√
2n log

nμ0

ε

iterations to generate a primal-dual pair (X, S) satisfying Tr(X S) ≤ ε.

4 Full NT-step Infeasible IPM

4.1 The Perturbed Problems

We assumed that (SDOP) and (SDOD) have an optimal solution (X∗, y∗, S∗) with
vanishing duality gap, i.e., Tr(X∗S∗) = 0. As it is common for feasible IPMs, we
start the algorithm with choosing arbitrarily X0, S0 ∈ Sn++ and μ0 > 0 such that

X0 = ζ E, y0 = 0, S0 = ζ E, and μ0 = ζ 2, (17)

where ζ is a (positive) number such that X∗ + S∗ � ζ E . The initial values of the
primal and dual residuals are denoted as r0

p and R0
d , respectively. So, we have

(
r0

p

)

i
:= bi − ζ Ai · E, i = 1, . . . , m, and R0

d := C −
m∑

i=1

yi Ai − ζ E .

For any ν with 0 < ν ≤ 1, we consider the perturbed problem

(SDOPν) min
{(

C−νR0
d

)
· X : bi − Ai · X =ν

(
r0

p

)

i
, i =1, 2, . . . , m, X � 0

}
,

and its dual problem

(SDODν) max

{
m∑

i=1

yi

(
bi − ν

(
r0

p

)

i

)
: C −

m∑

i=1

yi Ai − S = νR0
d , S � 0

}
.

Theorem 4.1 (Lemma 4.11 in [13]) The original problems (SDOP) and (SDOD) are
feasible, iff for each ν satisfying 0 < ν ≤ 1, the perturbed problems (SDOPν) and
(SDODν) satisfy the IPC.

Let (SDOP) and (SDOD) be feasible and 0 < ν ≤ 1. Then, Theorem 4.1 implies
that the central path of the perturbed problems exists. This means that the system
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bi − Ai · X =ν(r0
p)i , i = 1, . . . , m, C −

m∑

i=1

yi Ai − S = νR0
d , X S = μE (18)

has a unique solution, for every μ > 0, denoted by (X (μ, ν), y(μ, ν), S(μ, ν)), which
are the μ-centers of the perturbed problems (SDOPν) and (SDODν). In the sequel, we
will always have μ = vζ 2.

4.2 An Iteration of Infeasible IPM

As we established above, if ν = 1 and μ = μ0, then X = X0 is the μ-center of the
perturbed problem (SDOP1) and (y, S) = (y0, S0) the μ0-center of (SDOD1). These
are our initial iterates.

Suppose that, for some ν ∈]0, 1] we have X and (y, S) are feasible for the perturbed
problems (SDOPν) and (SDODν)., and such that Tr(X S) = nμ and δ(X, S;μ) ≤ τ ,
where τ > 0 is a small threshold parameter. Obviously, this condition is certainly
satisfied at the start of the first iteration due to, the fact that Tr(X0S0) = nμ and
δ(X0, S0;μ0) = 0.

Every (main) iteration consists of a feasibility step and a few centering steps.
The feasibility step serves to get iterates (X f , y f , S f ) that are strictly feasible for
(SDOPν+) and (SDODν+), and such that δ(X f , S f ;μ+) ≤ 1/

4
√

2. In other words,
(X f , y f , S f ) belongs to the quadratic convergence neighborhood with respect to the
μ+-center of (SDOPν+) and (SDODν+). Hence, because the full NT-step is quadrat-
ically convergent in that region, a few centering steps, starting from (X f , y f , S f )

and targeting at the μ+-center of (SDOPν+) and (SDODν+) will generate the
iterate (X+, y+, S+), that is feasible for (SDOPν+) and (SDODν+) and satisfies
Tr(X+, S+) = nμ+ with μ+ = ν+ζ 2 and δ(X+, S+;μ+) ≤ τ . This process is
repeated until the duality gap and the norms of residual vectors are less than some
prescribed accuracy parameter ε.

4.3 The Generic Full NT-step Infeasible IPM

The generic full NT-step infeasible IPM for SDO is presented in Fig. 2.

4.4 Analysis of Full NT-step Infeasible IPM

In the feasibility step, we scale the search direction (� f X,� f S), just as we did in
the feasible case (9), by defining

D f
X := 1√

μ
D−1� f X D−1, and D f

S := 1√
μ

D� f SD. (19)

For finding iterates that are feasible for (SDOPν ) and (SDODν), we need displacements
(� f X,� f y,� f S) such that

X f := X + � f X, y f := y + � f y, and S f := S + � f S (20)
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Full NT-Step Infeasible IPM

Input:

An accuracy parameter ε > 0;

a fixed barrier update parameter θ, 0 < θ < 1, (default τ = 1/(4n));

a threshold parameter τ > 0, (default τ = 1/16);

an initialization parameter ζ > 0.
begin

X0 := ζE; y0 := 0; S0 := ζE; μ0 := ζ2; ν0 := 1;

while max{Tr(X0S0), r0
p , R0

d ε do

begin
feasibility step:

(X, y, S) := (X, y, S) + (Δf X, Δfy, ΔfS);

update of μ and ν:

μ := (1 − θ)μ; ν := (1 − θ)ν;

centering steps:

while δ(X, S; μ) ≥ τ do

begin

(X, y, S) := (X, y, S) + (ΔX, Δy, ΔS);

end
end

end

Fig. 2 Full NT-step infeasible IPM

are feasible for (SDOPν) and (SDODν). This hold only if the scale search directions
D f

X and �
f
y , D f

S satisfy

Āi · D f X = 1√
μ

θν
(

r0
b

)

i
, i = 1, . . . , m,

m∑

i=1

� f yi Āi + D f S = 1√
μ

θνDR0
d D, (21)

D f
X + D f

S = (1 − θ)V −1 − V .
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We can easily verify that, after the feasibility step, the iterates (X f , y f , S f ) satisfy
the first two equations of the system (18), with ν replaced by ν+. The hard part in the
analysis will be to guarantee that X f , S f ∈ Sn++ and to guarantee that the new iterates
satisfy δ(X f , S f ;μ+) ≤ τ .

It follows from (20) and (19) that

X f = √
μD

(
V + D f

X

)
D, and S f = √

μD−1
(

V + D f
S

)
D−1.

As the discussion in the feasible IPM, we can conclude that

X f S f ∼ μ
(
(1 − θ)E + D f

X S + M f
)
,

where

D f
X S := 1

2

(
D f

X D f
S + D f

S D f
X

)

and

M f := 1

2

(
D f

X D f
S − D f

S D f
X

)
+ 1

2

(
D f

X V + V D f
S − V D f

X − D f
S V

)

are symmetric and skew-symmetric, respectively.
The following lemma provides the sufficient condition of the strict feasibility of

the new iterate (X f , y f , S f ).

Lemma 4.1 (Corollary 5.5 in [13]) The iterates
(
X f , y f , S f

)
are strictly feasible if

∥∥∥D f
X S

∥∥∥∞ < 1 − θ.

Recall from the definition (13) that

δ
(

X f , S f ;μ+)
:= δ

(
V f

)
:= 1

2

∥∥∥
(

V f
)−1 − V f

∥∥∥, (22)

where

V f := 1√
μ

D−1 X f D−1 = 1√
μ

DS f D.

Assuming
∥∥D f

X S

∥∥∞ < 1 − θ , which guarantees strict feasibility of the iterates(
X f , y f , S f

)
, we can derive an upper bound for δ

(
V f

)
as follows (see Lemma 4.8

in [21]):

4δ
(

V f
)2 ≤

∥∥∥ D f
X S

1−θ

∥∥∥
2

1 −
∥∥∥λ(D f

X S)

1−θ

∥∥∥∞

≤
1
4

( ‖D f
X ‖2+‖D f

S ‖2

1−θ

)2

1 − 1
2

‖D f
X ‖2+‖D f

S ‖2

1−θ

. (23)
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We want to choose θ , 0 < θ < 1, as large as possible, and such that (X f , y f , S f )

lies in the quadratic convergence neighborhood with respect to the μ+-center of the
perturbed problems, i.e., δ(V f ) ≤ 1/

4
√

2. From (23), after some elementary calcula-
tions, we can conclude that this hold only if

‖D f
X‖2 + ‖D f

S ‖2

1 − θ
≤ 2

√
2
(√

1 + √
2 − 1

)
≤ 1.5664. (24)

Let L := {ξ ∈ Sn : D Ai D · ξ = 0, i = 1, . . . , m} and L⊥ be the orthogonal
complement of L. The following lemma provides an upper bound for ‖D f

X ‖2+‖D f
S ‖2.

Lemma 4.2 (Lemma 4.9 [21]) Let Q be the (unique) matrix in the intersection of the
affine spaces D f

X + L and D f
S + L⊥. Then

∥∥D f
X

∥∥2 + ∥∥D f
S

∥∥2 ≤ ∥∥Q
∥∥2 +

(
‖Q‖ +

√
4(1 − θ)2δ2 + nθ2

)2
.

Combining the results of Lemmas 5.12–5.14 and 5.16 in [13] and Lemma II.60 in
[11], we have the following lemma, which provides an upper bound for ‖Q‖.

Lemma 4.3 Let ρ(δ) = δ + √
1 + δ2. Then

‖Q‖ ≤ nθρ(δ)(1 + ρ2(δ)).

At this stage we choose

τ = 1/16. (25)

Since δ ≤ τ = 1/16 and ρ(δ) is monotonically increasing in δ, we have, by Lemma
4.3,

‖Q‖ ≤ nθρ(δ)(1 + ρ2(δ)) ≤ nθρ(1/16)(1 + ρ2(1/16)) ≤ 2.2706nθ. (26)

It follows from Lemma 4.2 that

∥∥D f
X

∥∥2 + ∥∥D f
S

∥∥2 ≤ (2.2706nθ)2 +
(

2.2706nθ +
√

4(1 − θ)2δ2 + nθ2
)2

. (27)

We have proved that δ
(
V f

) ≤ 1/
4
√

2 certainly holds if the inequality (24) is satis-
fied. Then by (27), inequality (24) holds if

(2.2706nθ)2 +
(

2.2706nθ +
√

4(1 − θ)2δ2 + nθ2
)2 ≤ 1.5664(1 − θ). (28)

One may easily verify that, if

θ = 1/(4n), (29)

then the above inequality (28) is satisfied.
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By Corollary 3.1, the required number of centering steps can easily be obtained.
Indeed, assuming δ = δ(X f , S f ;μ+) ≤ 1/

4
√

2, after k centering steps we will have
iterates (X+, y+, S+), that are still strictly feasible for (SDO Pν+) and (SDO Dν+)

and that satisfy

δ(X+, S+;μ+) ≤ (
1/

4
√

2
)2k ≤ τ.

From this, we can easily verify that δ(X+, S+;μ+) ≤ τ with τ = 1/16 holds after at
most

2 + �log2(log2(1/τ))� = 2 + �log2(log2 16)� = 4

centering steps; then suffice to get iterate (X+, y+, S+) that satisfies δ(X+, S+;μ+) ≤
τ again. So, each main iteration consists of at most five the so-called inner iterations.
In each main iteration, both the duality gap and the norms of the residual vectors are
reduced by the factor (1 − θ). Hence, using Tr(X0S0) = nζ 2, the total number of
main iterations is bounded above by

1

θ
log

max{nζ 2, ‖r0
p‖, ‖R0

d‖}
ε

.

It follows from (29) and the fact that at most five inner iterations per main iteration
are needed. The main result of this paper is stated in the following theorem.

Theorem 4.2 Let (SDOP) and (SDOD) have an optimal solution (X∗, y∗, S∗) such
that Tr(X∗S∗) = 0 and X∗ + S∗ � ζ E for some ζ > 0. The algorithm in Fig. 2
requires at most

20n log
max{nζ 2, ‖r0

p‖, ‖R0
d‖}

ε

inner iterations to generate an ε-solution of (SDOP) and (SDOD).

Remark 4.1 During the course of the algorithm, if at some main iteration, the proximity
measure δ after the feasibility step exceeds 1/

4
√

2, then it tells us that the above
assumption does not hold. It may happen that the value of ζ has been chosen too
small. In this case, one might run the algorithm once more with a larger value of ζ . If
this does not help, then eventually one should realize that (SDOP) and/or (SDOD) do
not have optimal solutions at all, or they have optimal solutions with positive duality
gap.

5 Conclusions

In this paper, we established a sharper quadratic convergence result for full NT-step
feasible IPM for SDO, which leads to a slightly wider neighborhood for the iterates
in the feasible algorithm and for the feasibility steps in the infeasible algorithm. This
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result enables us to propose an improved complexity analysis of full NT-step feasible
and infeasible IPMs for SDO.

The paper generalizes results obtained in two papers, [17] where Gu et al. consider
full Newton-step infeasible IPMs for LO, which is a generalization of full Newton-step
feasible IPM for LO by Roos et al. in [11], and [13] where Mansouri et al. consider
the same type of IPMs for SDO. It turns out that the iterations bounds are the same as
for the LO cases [11,17]. Although expected, these results were not obvious and, at
certain steps of the analysis, they were not trivial and/or straightforward generalization
of the LO case. In order to overcome the difficulty some new results had to be used
including Lemmas 2.5 and 2.7. Nevertheless, both versions of the full NT step IPMs
are derived the currently best known iteration bounds.

Future research could be done on the generalization of infeasible IPM for SO
[18,24]. Another topic for further research is the use of adaptive steps, as described in
[11]. This will not improve the theoretical complexity, but it will enhance significantly
the practical performance of the algorithm.
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