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Abstract In this paper we present nonlinear incentive strategies that can be applied
to a class of differential games that are frequently used in the literature, in particular,
in environmental economics literature. We consider a class of nonlinear incentive
functions that depend on the control variables of both players and on the current value
of the state variable. The strategies are constructed to allow some flexibility in the
sense that, unlike the common literature on the subject, the optimal state path evolves
close to the cooperative trajectory. As a consequence of this flexibility, the incentive
equilibrium is credible in a larger region than the one associated with the usual linear
incentive strategies.

Keywords Differential games - Cooperation - Incentive equilibria - Credibility -
Environmental economics
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1 Introduction

An important issue in cooperative games is to address the question of whether coor-
dinated outcomes can be sustained (enforced) over time, and this is the central point
of this paper. We shall show that the sustainability over time of an agreement reached
at the starting date of the game can indeed be achieved. As pointed out by Haurie [1],
the initial sharing rule agreed upon may become individually irrational in the course
of the game, implying that the agreement would be broken at an intermediate instant
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of time. In other words, the agreed solution does not satisfy individual rationality if
one player stands to receive a lower payoff in the coordinated solution than what he
would get in a noncooperative solution. If this is the case, the player will find it optimal
to deviate, he may have an incentive to cheat on the agreement, that is, to choose a
different course of action than that prescribed by the agreement.

Two different approaches have been proposed in the literature to ensure the sus-
tainability over time of coordinated outcomes. The first proposes the design of a
cooperative solution or an agreement which is time-consistent or agreeable. In this sit-
uation, the coordinated payoffs-to-go are greater than the noncooperative ones, along
the cooperative state trajectory (time-consistency) or along any state trajectory (agree-
ability). See, for example, [2—6] for the analysis of time-consistent agreements, and
[7-10] for agreeable agreements.

The second approach proposes to design a self-enforceable agreement which is
in effect an equilibrium. In this case, each player will find it individually rational
to stick to his part in the agreed solution. The problem is already solved when the
efficient solution is in itself an equilibrium, as in [11-13]. Usually this coincidence is
absent, and two different options have been proposed in the literature to embody the
cooperative solution with an equilibrium property.

The firstis to use trigger strategies (see, for example, [14—16]). In the 1980s [14,15],
among others, showed how the use of control-dependent memory strategies permits
the inclusion of a threat in a cooperative strategy, which leads to a class of accept-
able equilibria in dynamic games. These strategies are based on past actions, and
they include a threat to punish, credibly and effectively, any player who cheats on
the agreement. Within the limits of differential games theory, this approach presents
technical problems, because trigger strategies are in general discontinuous and need
the introduction of memory strategies for the players. These strategies are based on
all past information of the game evolution to the current time and, as a consequence,
they are nonMarkovian.

The second option to implement cooperative solutions by means of noncooperative
play is through incentive strategies, establishing the efficient solution as an incentive
equilibrium. The key to this result is to design the incentive in such a way that a
coordinated outcome becomes a Nash equilibrium. These strategies have been intro-
duced in the two-player dynamic games literature by Ehtamo and Hidmildinen in a
series of papers [17-20]. The idea is to find strategies for both players such that when
one player implements, or is believed to implement his strategy, no temptation exists
for the other player to cheat or to break the agreement in the course of the game.
Incentive strategies are functions which depend on the possible deviation of the other
player with respect to the agreed solution. These strategies recommend that each
player implements his part of the coordinated solution whenever the other player is
doing so. These strategies are relatively easy to construct, but the difficulty of their use
arises when studying their credibility. The equilibrium strategies are credible when it
would be more beneficial for each player to follow his equilibrium strategy rather than
his cooperative action, in case the opponent deviates from his cooperative action. This
credibility property establishes that there will not be any temptation for unilateral devi-
ation from the agreed decision. The credibility of incentive strategies is the topic of this

paper.
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The starting point of this paper is the main result in [21,22], where the credibility
of the incentive equilibrium strategies is characterized for the class of linear-state
and linear-quadratic differential games. This result can be summarized as follows:
linear incentive strategies are credible, i.e. the players do believe that the announced
strategies will be followed, when deviations are not too large.

This result inspires the main research questions of this paper. Does flexibility facil-
itate sustainability of cooperation over time? Does the use of more flexible incentive
strategies help in ensuring the credibility of the incentive strategies defined to sus-
tain the coordinated outcome? The focus of this follow-up paper is to show that the
definition of more flexible nonlinear incentive equilibrium strategies for two-player
differential games helps to guarantee the sustainability of the agreement over time.
The aim of the study is to check if the definition of less restricted incentive strate-
gies in terms of the permitted deviation from the coordinated solution facilitates
the credibility and implementation of these strategies. To this end, we consider a
class of incentive strategies that are defined as nonlinear functions of the control
variables of both players and the current value of the state variable. Note that in
our paper instead of considering only decision-dependent equilibrium strategies as is
commonly done in the literature, we also consider state-dependent equilibrium strate-
gies.!

Let us recall that in the previous literature on incentive strategies, these strategies
are constructed in such a way that the incentive equilibrium is the cooperative solu-
tion. Importantly, the idea of this paper is to relax this, in some sense, demanding
requirement and look for an incentive strategy equilibrium such that, first, the corre-
sponding optimal state trajectory is close enough but not necessarily identical to the
optimal cooperative trajectory; and second, in the long run, the steady state of the state
variable is close to the steady state of the state variable under the cooperative mode
of play. It is worth noting that the incentive strategies defined in this paper have the
following, nice, property: the strategy for one player only calls for a reaction when the
control level for the other player is “not close enough” to his cooperative action. Two
different realizations for measuring the “distance” from the coordinated action are
proposed. The first concerns the distance in the long run as measured by the distance
from the steady-state level of the state variable. The second refers to the distance along
the whole optimal trajectory measured by the distance from the optimal cooperative
time path.

In both cases we show that it is possible to choose the incentive strategy functions in
such a manner that the optimal state path evolves arbitrarily close to the corresponding
cooperative state trajectory.

We illustrate the use of these strategies in a well-known example taken from envi-
ronmental economics—a transboundary pollution differential game [24]. We present
some clues for the mathematical analysis. Numerical experiments are presented to
illustrate the results. Essentially, the numerical algorithm solves an approximate time-

! Ehtamo and Himiilidinen [19, p. 674] already pointed out the interest of considering state-dependent
equilibrium strategies instead of decision-dependent equilibrium strategies. Jgrgensen and Zaccour [23,
p. 818] stated that in the incentive equilibrium the application of state-dependent strategies may be more
complicated and may be a promising area for future research.
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discrete dynamic game. The dynamic programming equations are solved by a spline
collocation method.

The rest of the paper is organized as follows. In Sect. 2 we briefly review some
related works on incentive equilibrium strategies. In Sect. 3 we briefly recall the main
ingredients of a linear-quadratic differential game, and in particular, the formulation of
a well-known transboundary pollution differential game and its cooperative solution,
the feedback noncooperative Nash strategies, as well as the steady-state pollution
stocks under cooperative and noncooperative modes of play. In Sect. 4, we define
two types of incentive strategies and equilibrium, the so-called stationary incentive
and path-dependent incentive. In Sect. 5, we analyse the credibility of these incentive
strategies. Sect. 6 concludes. The Appendix contains the numerical algorithm used
throughout the paper.

2 Background

The use of incentive strategies has proved to be successful in analysing how a desired
coordinated strategy can be implemented in different areas like marketing [23,25-
27], environmental economics [21,22,28,29], and others [30]. In these papers different
types of incentive strategies are used to achieve the cooperative outcome as an incentive
equilibrium. In all the cases, the strategies are assumed to be linear, continuous in the
information and decision-dependent in the sense that each player makes his current
decision contingent upon the current decision of the other player. All these papers
have solvable game structures, specifically all belong to the class of linear-state or
linear-quadratic differential games. Furthermore, the credibility property has only
been studied in [21-23,29].

As already pointed out in [19], the credibility property is usually difficult to study
analytically, and one has to focus on numerical studies. In [19], the authors perform
numerical experiments, adopting piecewise constant functions to describe the players’
possible deviations. In that paper the credibility property was studied numerically in the
context of a continuous time whaling model. In [20], the analysis for the corresponding
discrete-time model is presented. In this discrete-time setting the authors derive the
credibility property analytically. In both papers the authors prove that credibility can
be obtained for sufficiently small values of the deviation from cooperation.

This last result agrees with the findings in [23], where no closed form results for
the credibility problem are derived in the general case, but some insights are obtained
in a simplified model. Credibility is assured only against deviations of the following
type: a player cheats on the agreement by making a lower effort than the desired rate
during some initial period of time.

In [29], in the context of a two-period overlapping generations model in discrete
time, the authors show that the decoupled linear incentive strategies considered may
not be credible for some parameter values, while for some sets of parameters they
would be effective to implement the desired cooperative outcome.

In [21,22], the credibility of the incentive equilibrium strategies for the class of
linear-state and linear-quadratic differential games is characterized. In each of these
papers a general condition for credibility is derived, and its use is illustrated in two
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examples. In [21], sufficient conditions which ensure the existence of neighbourhoods
in which the incentive strategies are credible are provided. In both examples the pro-
posed linear incentive strategies are not always credible. In particular, and in line
with other studies, linear incentive strategies are credible if the deviation from the
cooperative solution is less than a fixed quantity. Alternative ad-hoc nonlinear credi-
ble strategies are provided (a hyperbola for the environmental economics game and a
parabola for the knowledge accumulation game), suggesting that we should not stick
only to linear incentive strategies even in a simple class of differential games such as
the linear-state one. In [22] in order to preserve the linear-quadratic structure of the
game, the analysis is restricted to linear incentive strategies and, additionally, if one
player deviates from the cooperative solution, it is assumed that he will use a control,
which is assumed to be linear. In other words, the analysis focuses on the fulfilment of
inequalities ensuring that the linear incentive strategies are credible when linear devi-
ations are considered. Under these hypotheses, it is not possible to characterize the
feasible sets which ensure credibility of the incentive strategies analytically, showing
that obtaining credibility, even for linear incentive strategies, is tedious. In [22], the
authors use numerical simulations and conclude that only small deviations from the
cooperative levels lead to credible strategies. As far as the credibility property is con-
cerned, the results of all these papers can be summarized as follows: linear incentive
strategies are credible, i.e. the players do believe that the announced strategies will be
followed, when deviations are not too large.

This result inspires the main research question of the present paper. Does the use
of more flexible incentive strategies help in ensuring the credibility of the incentive
strategies defined to sustain the coordinated outcome?

3 A Linear-Quadratic Differential Game

We consider a general infinite horizon two-player linear-quadratic differential game.
Player i’s objective is to maximize

o0

Wi(uy, uz, xo) :=/fi(x,u1,uz)e_”’ dr, i=1,2, (D
0

st x = g(x,uy,up), x(0) = xop, 2

where f; is a general quadratic function of its arguments satisfying standard concavity
assumptions, and g is a linear (affine) function of its arguments, see [16] for details.
Parameter p is a positive constant discount rate. Although the setting is more general,
it is assumed that the state x and control variables, u;, i = 1, 2, are scalar functions
of time ¢. To simplify the notation, we will drop the explicit dependence on the time
variable when no confusion can arise.

Let %; denote the set of admissible controls for Player i. In this paper, we restrict
ourselves to Markovian strategies [16], so, %; is defined as the set of measurable
functions u; = u;(x, t) defined in R x [0, +o00[ with values in some subset of the set
of real numbers, U; C R, such that for all u; € %, i = 1, 2, the differential Eq. (2)
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withu; = u;(x,t),i = 1, 2, possesses a unique absolute continuous solution defined
in [ty, +oo[ for all fp > 0 and xg € R. Let % := % x Y.

From now on, the state variable is the (unique) solution of the ordinary differ-
ential Eq. (2) given the pair of admissible controls u1 and u,. As problem (1)—(2) is
autonomous, we assume, unless explicitly stated otherwise that the players use station-
ary Markovian strategies u; = u; (x). For notation simplicity, we will use W; (u1, u3)
instead of W;(u1, us, xo), dropping the dependence on the initial condition when no
confusion can arise.

The cooperative solution denoted by u® = (uf, u5) is obtained as the result of the
joint optimization problem

o0
max (W) + Ws) = max/ (file, ur, up) + fo(x,ur, ur)) e P dt
uew uew

0

subject to dynamics (2). Here, and in the rest of the paper, we have used the notation
u to represent a pair u = (uy, up) € % = U x .

The cooperative strategies can be explicitly computed. As is well known, the coop-
erative feedback optimal controls are given by affine function of the state variable of
the form uf (x) = ajx +b7,i = 1, 2, where the coefficients a; and b are characterized
in [22]. Note that such coefficients are not relevant for our analysis, so they will be
not presented here. We denote by x¢(¢) the optimal cooperative trajectory that is the
unique solution of (2) when u; = ul?(x), i=1,2.

In the noncooperative case, a Markov-perfect Nash equilibrium (MPNE) [16],
uN e w,uN = (ull\l, ulz\l), can be obtained as a pair of linear strategies, u?f(x) =
ale + b?I ,i = 1,2. The Nash equilibrium, «", is defined by the following pair of
inequalities:

Wil ud) > Wiuy, ud), Yur € %, Wal, ud) = Waul, u2), Yus € %.

In some models the coefficients alN and blN can be explicitly computed, see [22] for
example. We denote by xN(¢) the solution of (2) when the Markov-perfect Nash
strategies are used.

We assume that, as is the case in the majority of models used in practice, both x¢(t)
and xN(r) converge to a steady state denoted by x$, and xg , respectively.

Although the concepts and techniques presented here can be applied to the general
case with obvious modifications, for simplicity of presentation we focus, from now on,
on a particular linear—quadratic model borrowed from the environmental economics
literature. This particularization will allow us to compare our results with the previous
literature on the subject.

Let us consider two players (countries, regions,. ..) who wish to coordinate their
pollution strategies in order to maximize their joint payoff. The control variables,
denoted by u;(¢), i = 1,2, are the emissions of the two players (countries) at time
t > 0. The state variable, denoted by x (), represents the stock of pollution, which we

@ Springer



J Optim Theory Appl (2015) 165:657-677 663

assume follows the dynamics defined by the ordinary differential equation
X =g(x,ur, uz) == Pur +uz) — ax. 3)

In the model, 8 > 0 is a scale parameter, and @ > 0 denotes the natural absorption
rate. The objective of player i is defined by functional (1) with

file,ui,uj) = u; (Ai - luz) - lwixz, “4)
2 2
where A; and ¢; are positive parameters. We suppose, as is commonly done for the
model at hand, that U; = [0, +oo[, i = 1,2, although other restrictions are also
advisable.

Particular cases of our specification are analysed in [24,31]. Both models are com-
pletely symmetric (A; = A, ¢; = ¢ for all players). In [24], an n-country model is
studied, whereas [31] concentrates on a two-region differential game.

In this particular model both cooperative and Markov-perfect noncooperative feed-
back linear strategies can be explicitly computed, see [22]. In [22], it is proved that
X5, < xé\i, so that, the noncooperative game gives a greater long-term stock of pollution
than the one under cooperation.

As is well known in the related literature, the noncooperative mode of play leads to
an overpolluted environment in the long run. However, the environmentally preferred
coordinated solution is not an equilibrium, and the players have an incentive to deviate
from the prescribed paths. The main aim of this paper is to design an incentive strategy
such that the players (countries) will not move away significantly from their part of
the coordinated solution. As a result, in the particular model at hand, the optimal time
path of the stock of pollution will be close to the cooperative trajectory and the steady
state of the stock of pollution will be near the steady state of the stock of pollution
under the cooperative setting.

4 Incentive Equilibria

We start this section with the definition of incentive equilibria. The set I'; of admissible
incentive strategies for Player i is defined as the set of piecewise smooth functions v;,
definedin U; xU; xR with values in U;, such that, forall vy = v (x,1) € %,k = 1,2,
the function defined by W; (x, t) = ¥; (v; (x, 1), v;(x, 1), x, 1), satisfies W; € %;. For
notation simplicity, in what follows we drop the explicit dependence of /; on the time
variable t when no confusion can arise.

Definition 4.1 A pair ¥1(vi, v2, x), ¥2(vi, v2,x) with ¢; € I;, i = 1,2, is an
incentive equilibrium at (u}, u3) € % = % x %% iff forall uy € % and uy € %,

Wiul, u3) > Wiuy, Yo (uy, u3, %)), Waui,u3) > Wo(y (ul, uz, X), u2),
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where & and ¥ satisfy £ = B(u1 + Y2 (uy, u3, ) — of, and X = B(Y1 (u}, uz, ¥) +
uz) — ax, respectively, with X(0) = x(0) = xo. Furthermore, u} = v (u], u3, x*),
uy = Yo (uyj, u3, x*), where x* = B(uf + u3) — ax™, with x*(0) = xo.

An incentive equilibrium is thus characterized by the following pair of optimal
control problems:

o
1 1
(s ) — . g ) 22 ) ot
”r’_neaq)ji Wl(ul,uj) —/(u, (A, 2141) 2<p,x )e de,
0

stexX = Bui +vju, ujf,x)) —ax, x(0) = xo, 5)

with u? = argmax,; W;(u;, u’]’f), i,j = 1,2, i # j. The equilibrium condition
wj = Yi(uj, uj, x*), i, j =1,2,i # j, has to be satisfied.

Remark 4.1 Some authors have argued that the observations of the current actions of
the other player may only be available after a time lag. Thus, the implicit assumption
of instantaneous observability in Definition 4.1 should be understood as a mathemat-
ical abstraction. It is possible to introduce a time lag in the observations of actions
as, for example, in [18,19]. However, in [19] the authors argue that when the delay
is small, its effect can be neglected in theoretical considerations. At the end of the
paper, the authors consider the construction of incentive strategies by introducing a
constant time lag. They show that when the lag is small, the payoffs and the incentive
strategies in their model are very similar (they are the same to an accuracy of four dig-
its) for both specifications (without and with time delay). However, this point could
be an interesting question for future research in the context of nonlinear incentive
strategies.’

Remark 4.2 Linear incentive strategies are a particular case of Definition 4.1. In [17]
(see also [21,22,28]), the incentive strategy is defined as an affine function with the
following form,

Vi(uiuj, x) =) =uG+Dju —uj), i,j=12,1i%#], (6)

with D, j = 1,2, denoting an appropriate non-zero constant.

In this case, the incentive equilibrium is the pair (7, u3) = (uf, u$), that is, the
incentive equilibrium is exactly the cooperative solution and, consequently, for all
t >0, x*(t) = x°(t), and xJ, = x5, where x; denotes the steady state of the system
when the incentive strategies are used.

The main idea of this paper is to relax this somehow exigent result, looking instead
foranincentive strategy equilibrium (17, u3) such that, first, the corresponding optimal
state trajectory x*(¢) is close enough but not exactly equal to the cooperative trajectory
x€(t); and second, in the long run the steady state of the stock of pollution satisfies
x8 < x¥% < xN, with xZ close to x& and lower than the long-run value under the
noncooperative setting, xg

2 We thank an anonymous reviewer for bringing this point to our attention.
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In the rest of this section we present two different realizations of this idea.

4.1 Stationary Incentive

In the first realization, that we call stationary incentive, we choose the incentive func-
tions ¥, j = 1,2, in Definition 4.1 of the form

V(i uj, x) = WS+ Dj(u; —ui))¢(x —xg, &) +uj(1—dx —xg, ), (7)
where ¢ > 0 is a small positive parameter, and ¢ (x, ¢) is a smooth function satisfying
¢(x,e) =0, ifx <e;, ¢x,e)=1, ifx > 2e¢. ®)

The superscript s is used to denote “stationary” incentive scenario.

Remark 4.3 Note that, with the previous definition, if the state trajectory x(¢) is far
from the steady-state value of the stock of pollution under cooperation, then the linear
incentive strategy (6) is activated by forcing the players’ choices in such a way that the
game state path returns close to the cooperative long-term state, xg,. When the state
path x(¢) is close enough to xg, (as measured by parameter ¢) the nonlinear stationary
incentive (7) gives freedom to the players who are not restricted to use any type of
incentive. That is, in this case, the players are allowed to choose any time path.

Note also that the incentive strategy is implemented only if, at some point, the
trajectory x(¢) is above xg, so only deviations of the cooperative outcome by one
player leading to a more polluted environment imply an immediate response by the
other player.

The same technique can be applied, with obvious modifications, in different models
if the incentive is implemented for deviations below and/or above the desired outcome.

The incentive equilibrium functions 1/;15. ,j = 1,2, do not depend explicitly on time.
Therefore, in this case, problem (5) is autonomous. The value function V(x), for
Player i, i = 1, 2 satisfies the system of Hamilton—Jacobi—Bellman equations

d
pVix) = max [fi(x, wi, u) + aV,-S(X)g?(x, Ui, u}fs)] ; ©
where the function f; has been defined in (4), and

g ui uj) = Blui + Y5 uj,x) —ax, i,j=12,1i#]. (10)

The optimal policies u;®, i = 1, 2, are defined by

d
u?®(x) = arg max [fi(x, ui, uy) + a‘/,-s(x)gis(x, wi, up) g, Jj#FI

ujelUj
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4.2 Path-dependent Incentive

In the second realization, the pair of incentive functions ¥;, j = 1,2, is allowed
to depend on ¢ through the cooperative state trajectory x(¢); hence the name path-
dependent incentive strategies. More precisely, we define for i, j = 1,2,i # j and
t >0,

Vit i ug,x, 1) = WS+Dj(ui—ui))p(x—x(1), &) +u;(1-¢(x—x°(1), £)), (11)

where x€(¢) is the cooperative state trajectory, and ¢ is the cutoff function defined
in (8). Superscript ns is used to denote “non-stationary” as opposite to stationary
incentive scenario.

Remark 4.4 Note that, with the choice (11), the players implement the linear incentive
strategies when the state trajectory is far from the cooperative trajectory, x°(¢). The
difference with the stationary incentive (7) presented in Sect. 4.1, is that there the
players were forced to be not far from the stationary steady state of the cooperative
game, x§, whereas now, when the path-dependent incentive (11) is used, they are
forced to be close to the whole trajectory of the cooperative game, x€(t).

In the case of a time-dependent incentive, the problem is nonautonomous and, in
consequence, the value function Vins(t, x), for Player i = 1, 2, satisfies the system of
time-dependent Hamilton—Jacobi—Bellman equations

0 d
- EVJ‘S(L x)+pV=(, X)=;,n€aa [fi(x, ui, ujf“s)+£V,-“S(t, )" (v, up, u™, t)] :
(12)
where, fi,i = 1,2 is defined in (4) and
g uiuj, 1) = Blui + 9 (i uj,x, 1) —ax, i=12,i#] (13)

with w}‘s defined in (11).
Equation (12) is supplemented with the boundary condition

lim VG, x) = V), (14)

which is a natural boundary condition, taking into account that lim,_, o x°(¢) = xg.
The optimal policies u;"(¢, x), i = 1,2 are defined by

d
u;™(t, x) = arg ma%( [ﬁ(x, u;, ujfns) + avins(t, X8 (x, uj, ujfns, t)] . J #EIL

ujelj

4.3 Computing Nonlinear Incentive Strategies

The analysis of the nonlinear incentive strategies presented in the previous subsections
requires numerical methods. In this section, we present some results obtained with the
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Control Trajectories State Trajectories
0.4 0.4
0.35 | o3t
0.3 _‘ 0.3
0.25 0.25
02} 0.2
015t 015}
0.05 Qb‘“‘“ I Y _“"i__ _________________________
0o 05 1 15 2“—“2._5““3 Oo‘ 05 1 15 2 25 3
Time Time

Fig. 1 Optimal control (left) and state (right) trajectories. Initial condition xog = 0. Discontinuous (purple)
line cooperative game. Dotted (red) line noncooperative game, linear MPNE. Solid (black) line stationary
incentive equilibrium. Dash-dotted (blue) line path-dependent incentive equilibrium

numerical method described in the Appendix. Let us analyse a symmetric example.
Similar qualitative results were found in all the numerical experiments carried out.
We present here only the results for the following particular values of the parameters:
Al = Ay =05 ¢ = =1,0a =02,8 =1, p = 0.1. The threshold ¢ in the
definition of the cutoff function ¢ in (8) defining the nonlinear incentive was set to
& = 0.025. The parameter D; in (7) and (11) was setto D; = 1, j = 1, 2 as in [22].
In this first experiment, the initial condition was set to xo = 0.

In Fig. 1, we have represented the optimal control time paths and optimal state
trajectories for four different modes of play. Discontinuous (purple) lines represent
the cooperative control (left) and state (right) optimal trajectories; dotted (red) lines
are the optimal trajectories corresponding to the noncooperative MPNE under linear
strategies. The optimal trajectories for the stationary and path-dependent incentive
equilibrium strategies are represented using solid (black) line and dash-dotted (blue)
lines, respectively.

As we can see in Fig. 1(left), the emission of pollutants when the incentive equi-
librium strategies are implemented is higher than in both the cooperative and nonco-
operative games for a short period of time. This has the effect of rapidly adjusting the
trajectory to the specific target of the corresponding incentive strategy. In both cases,
stationary and time-dependent incentive equilibrium, the long-term steady state, xJ,
is within a distance of 2¢ to the steady state of the pollution stock of the coopera-
tive game, see the right part of Fig. 1. In the case of the path-dependent incentive,
after a short period of adjustment, the whole trajectory is within a distance of 2¢ of
the cooperative trajectory. In Fig. 1(right) we can see that the cooperative and path-
dependent incentive state trajectories are, after the adjustment period, parallel. The
distance between cooperative and path-dependent trajectories can be controlled by
means of parameter ¢ in (8).

Furthermore, the stationary and path-dependent incentive trajectories are very close
in the long term. In fact, by construction, they provide the same steady state of the
pollution stock, xJ,. We remark that the steady state of pollution stock can be made
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Stationary Feedbacks
0.4 . :

035}
0.3
0.25
02f
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-0.1

0.3 0.4 0.5
State

Fig. 2 Stationary feedbacks. Discontinuous (purple) line cooperative feedback. Dotted (red) line MPNE.
Solid (black) line stationary incentive equilibrium feedback

arbitrarily close to the Pareto efficient pollution stock by choosing a smaller value of
parameter €. One feature that is worth noting is that, in the long run, the emission
levels are very close, in both cases (stationary and time-dependent incentive), to the
Pareto efficient emission level (Fig. 1).

In Fig. 2 we represent the symmetric stationary incentive optimal feedback law
together with the optimal feedback laws for the cooperative and noncooperative cases.
The cooperative feedback u = u7(x), i = 1,2 is represented with a dashed (purple)
line, the linear feedback Nash equilibrium u = uy(x), i = 1,2 with a dotted (red)
line, and the stationary incentive equilibrium u = u;“(x), i = 1, 2, with a solid (black)
line. The dash-dotted light-grey line represents the line of possible steady states for
the dynamics (3) with symmetric strategies. That is the line defined by the equation
2Bu — ax = 0. We have not included the natural restriction # > 0 in this picture in
order to facilitate its comprehension. In the picture, we can observe the role played by
parameter ¢: it marks the point at which the emissions should start to decline towards
its stationary level. With a smaller value of ¢ the emissions should start their fall earlier
in order to have a steady state closer to the cooperative steady state.

In the rest of this section we present the results obtained when the initial condition
is set to xg = 0.25, so the initial state is larger than the cooperative steady state, xg,
and lower than the noncooperative steady state, xl\i In Fig. 3 we have represented the
optimal control (left) and state (right) paths. We have used the same colour and type
of line code than before: discontinuous purple line for the results of the cooperative
game, dotted red line for noncooperative case and solid black line for the stationary
incentive results. In this particular case, the stationary and path-dependent incentives
coincide. We can observe in Fig. 3 that, in a first period of time, the optimal controls,
in both the cooperative and incentive equilibrium cases, are null, forcing the stock of
pollution to decrease, see the right-hand picture in Fig. 3. In consequence, cooperative
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Control Trajectories State Trajectories
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Fig. 3 Optimal control (left) and state (right) trajectories. Initial condition xg = 0.25. Discontinuous
(purple) line cooperative game. Dotted (red) line noncooperative game, linear MPNE. Solid (black) line
stationary incentive equilibrium. Dash-dotted (blue) line path-dependent incentive equilibrium

and incentive equilibrium state trajectories coincide in this initial period of time. After
this period, the incentive equilibrium control path rapidly adjusts to its stationary level,
driving the stock of pollution near the incentive equilibrium stationary state xJ. We
remark that |x}, — x&| &~ 2¢ so that, the difference can be made as small as needed by
choosing ¢ appropriately. In the noncooperative game, the optimal emissions trajectory
is positive and decreases towards its stationary level. As can be appreciated in Fig. 3,
the stock of pollution increases steadily towards xY, the stationary steady state of the

SS?
noncooperative game, which is much larger than both xg and x;.

5 Credibility

We start this section with a definition of credible incentive that is an extension of
that applicable only to the case of linear incentive strategies, given in [21-23,29].
As indicated in the introduction, the credibility of the incentive strategies means,
essentially, that if Player j deviates unilaterally from his incentive equilibrium action,
uj = u;‘ (x), then it will be more beneficial for Player i to follow the incentive strategy,
rather than to stick to u; = u7 (x). This credibility property establishes that there will
not be any temptation for unilateral deviation from the pair u; = uj x),j=1,2.

Definition 5.1 A pair of incentive equilibrium strategies v¥r{ (vy, v2, x), ¥2(vy, v2, X),

withy; € T';,i = 1,2, is credible in a set Uy x Uy C 24 x % iff given u; € U and
uy € Uy there exist i1 € % and 11, € % such that

Wi (i, uz, X), uz) = Wiut, uz), Walui, Yo (uy, iz, X)) > Waluy, u3), (15)

where £ and ¥ satisfy £ = B(Y1 (i1, ua, £)+u2)—af and X = B(ur+ya(uy, iz, X)) —
ax, respectively, with x(0) = x(0) = xo.
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Credibility Region for Player 1. Symmetric case
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Fig. 4 Region of credibility. Symmetric case. Parameter values as in Sect. 4.3

A sufficient, although obviously not necessary, condition for credibility is that for
alluy € Uy and up € Uy

Wi (u], uz, %), uz2) = Wiuy, uz); Walur, Yo(ui, us, X)) = Walur, u3),

where X and X are defined as in Definition 5.1, with 1| = u} and it = u3.

Remark 5.1 Note that, in the case of linear incentive strategies, ¥, is given by (6).
Then, Definition 5.1 reduces to W; (i (u;),u;) > Wi(u?,uj), Vu; € U; with
*

uj = uf, for i = 1,2, which is the credibility definition proposed in the literature

(see, for example, [21-23,29]).

In what follows, we restrict ourselves to the stationary incentive defined in (7).
Definition 5.1 requires conditions (15) to be checked in some subset of admissible
controls Uy x Uy C % x . In order to be able to analyse the credibility properties
of the nonlinear incentive strategies we assume that the set of possible deviations is
restricted to Uy = Uy = {u(x) = ax + b,a < 0, b > 0}. This is enough to illustrate
the credibility properties of the proposed incentive strategies and allows us to compare
with the linear incentive strategies studied in [22].

In Fig. 4 we have represented the region of credibility for deviations of Player 2
in the symmetric scenario studied in Sect. 4.3. We have checked condition (15) for
deviation of Player 2 in the set U with —2 < a < 0,0 < b < 1. This set contains
both the cooperative control u; and the linear MPNE uf‘l We have represented with
light-grey colour the region C of parameter values where, if u2(x) = ax + b with
(a,b) € C,

Wi (u7, uz, x), uz) > Wi(uj, uz).
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Fig.5 Optimal control (left) and state (right) trajectories. Initial condition xog = 0. Discontinuous (purple)
line cooperative game. Dotted (red) line noncooperative game linear MPNE. Solid (black) line stationary
incentive equilibrium. Dash-dotted (blue) line path-dependent incentive equilibrium

That is, C is the region of credibility for Player 1 against deviation of Player 2. The
regions D represented in a darker grey colour in Fig. 4, correspond to the set of
parameter values where the following two conditions are satisfied simultaneously

Wi (u], uz, ), uz) < Wiuj,uz) and Wo(uj,uz) < Wa(uj, u3).

Thatis, D is aregion where the incentive equilibrium strategy is not credible following
Definition 5.1, but it is irrational that Player 2 implements a strategy that would provide
him a smaller payoff than that associated with the incentive strategy. Finally, the darkest
region E is the non-credible region. For a deviation of Player 2 in E, we have

Wi (uy, ua, £), u2) < Wiuj, up) and Wo(uf, uz) > Wa(uj, u3).

We can clearly see in Fig. 4 that, apart from the very small region E, the incentive
strategy is credible for affine deviations from the incentive equilibrium that provide a
greater payoff to the deviating player. Furthermore, the incentive strategy also has the
following interesting property

Wao(Yr1(u], uz, X), uz) < Wa(uj,u3), Vus € Us.

This last inequality means that the incentive strategy works also as a trigger strategy
(see, for example, [14—16]), against possible deviation of Player 2 in the set Us.

In Fig. 5, we can observe, with more detail, the mechanism through which the
incentive defined by (7) is able to annihilate the possible advantage of a deviating
player. In Fig. 5 we have represented the control (left) and state (right) trajectories
when one of the players, for example Player 2, plays his part of the linear MPNE
strategy up = u?, instead of the incentive equilibrium, whereas the other player, say
Player 1, plays 1 = 1//(u’1“, ulz\l, X), where x is the solution of Eq. (2) with this choice
of u and u;. We have used a dotted-dashed (blue) line to represent the state trajectory
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Credibility Region for Player Credibility Region for Player
1. Non Symmetric case. . 2. Non Symmetric case

-15

Fig. 6 Credibility region for Player 1 (left) and Player 2 (right). Nonsymmetric case. A1 = 1.01, Ay =
1.00. Regions E, D and E are defined as in Fig. 4

in Fig. 5 (right). The control trajectories for Player 1 and Player 2 are represented, on
the left part of Fig. 5, using dotted-dashed and dashed (blue) lines, respectively. For
reference, we have also depicted the trajectories when both players apply the strate-
gies given by the incentive equilibrium (u7, u3) (represented using solid (black) line),
the trajectories when both players play the Nash equilibrium (uIl\I, ulz‘l) (represented
using dotted (red) line) and the trajectories when both players apply the coopera-
tive solution (uﬁ, u%) (represented using discontinuous (purple) line). We can observe
that when the stock of pollution (state variable) lies below the threshold (xg, + €)
which defines the incentive (see formulas (7) and (8)), Player 1 emits pollutants at
rate u; = u’i‘, regardless of the deviation of Player 2. However, when, as a conse-
quence of the strategy, ur, = uIZ‘I, implemented by Player 2, the stock of pollution
(state of the system) separates from the threshold allowed, Player 1 changes smoothly
but rapidly, to the rate of emission given by his part of the linear MPNE strategy,
up = ull\] neutralizing the advantage obtained by Player 2 when it separates from the
incentive equilibrium. In this way, the final outcome of the game is that both play-
ers play a la Nash and, of course, the stock of pollution, eventually, approximates to
N,

To finish this section we compare the nonlinear incentive proposed in the present
paper with the linear incentive used in the same model in [22]. We repeat the experiment
using the same value of the parameters used in [22]. Specifically, A} = 1.01, Ay = 1.0,
v1=¢px=1,a=02,8=1, p=0.1and xg = 0.05. We have represented in Fig. 6
the regions of credibility for Player 1 against deviations of Player 2 on the left of
the picture and the region of credibility for Player 2 against deviations of Player 1
on the right of the picture. We have used the same colour codes as in Fig. 4. We can
see, that, in both cases, the region of credibility attained with the nonlinear incentive
contains and is considerably greater than that reported for the linear incentive in [22].
In fact, —0.85 < a; < —0.7,0.15 < b; < 0.2 for deviation of Player 1 of the form
u1 = ajx + by (compared with the right part of Fig. 6) and —0.9 < a» < —0.7,
0.15 < by < 0.2 for deviation of Player 2 of the form u, = ayx + by (compared with
the left part of Fig. 6). However, in the case of the paper [22], the final outcome was
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exactly the cooperative Pareto efficient solution, whereas in our case, this goal is, by
construction, only approximately attained.

This comparison allows us to positively answer the main research question of this
paper. We can conclude that the introduction of flexibility can be a useful device to
facilitate the sustainability of cooperation over time.

6 Conclusions

The previous literature on dynamic games has shown that incentive strategies could be
an interesting device for sustaining cooperation over time of a cooperative agreement,
if they happen to be credible. In this paper, we have proposed a class of nonlinear incen-
tive strategies that lead to an optimal state path that remains close to the cooperative
state trajectory. These nonlinear incentive strategies, defined as a nonlinear function of
the control variables of both players and the current values of the state variable, act as
trigger strategies discouraging the player to separate from the incentive equilibrium,
and, finally, from the cooperative solution. Furthermore, these nonlinear incentive
strategies enlarge the credibility region. This is an interesting feature that, we think,
merits exploration in more detail. The characterization of credible incentive strate-
gies defined by means of more general nonlinear functions is another future research
project that could be of interest, if the aim is to extend the results of this paper to more
general economic or environmental models. Finally, appropriate numerical methods
are needed to design and analyse more realistic differential game models. This will be
the subject of future research.
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Appendix: The Numerical Method

We discretize problem (5), with the incentive functions v;, i = 1, 2, defined in (7), by
considering a time-discrete problem. To this end, let 4 > 0 be a positive parameter.
We introduce the time steps #, = nh, with n € N a positive integer. We will use the
notation i; to represent a sequence of real numbers {u; ,}7° , with u; , € U; for all
n € N. The set of such sequences is represented by % ;.

We consider the time discrete, infinite horizon, pair of problems

o0
o 1 1
max Wi (i, i) = > 8N [u (Ai — —u,-,n) - —cp,»x,%], (16)
12;601/; n=1 2 2

S Xn1 = X A (Bin + U5 Wi, 075, X)) — axy),

where x is the initial condition in (5), 6 = 1 — ph and where superscript & is used
to denote s or ns depending on the particular realization at hand. For simplicity, we
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have omitted the time variable in v/}'°. It is assumed that the equilibrium condition

W = s x, =12, 120,
is satisfied. We are using the notation IZ?S = arg maxy, Wy (i;, ﬁjs), i=1,2.

Let us observe that the discrete problem (16) corresponds to a discretization of the
functional in (5) by means of the rectangle rule with a forward Euler discretization of
the dynamics in (5).

The discrete optimal incentive equilibrium trajectory starting in x; = x¢ is com-
puted with the sequence

X =+ h(B], ) —ax), n 0. (17)
In the case of the stationary incentive, the (time discrete) value function for problem
(16) is defined by the system of Bellman equations

V}f’i(x) = max {hf,- (x, u;, u}ﬁs) + SV;J (x + hg?(x, u;, uij)>} , (18)

ujel;

where i, j = 1,2,i # j. The optimal feedback is defined as

uS(x) = arg max {hf,-(x, ui, ) +8Vy (x + hgi (x, u;, ujﬁS))} i

u; el;

and f;(x, u;, u’]’fs) and g7 (x, u;, u}‘fs) are given by (4) and (10).

The solution of the system of Eq. (18) is approximated using a collocation method
based on shape preserving piecewise cubic Hermite interpolation introduced in [32,
33]. More precisely, let us introduce a grid of points 0 = zg < z1 < --- <z = X for
some fixed X > O that is big enough. We define Ay = zx41 — zx. The approximation
V;f’M’i to Vhs’l., can be written for x € [zk, zk+1] as

X — Tk

() + e () = Desw ()

V;!M!,-(x) = Fd
k k Ag

X_Zk)

+ Diy1 Ax ¥ ( .

where ®(z) = 3z2 — 223 and W(z) = z° — z%. Note that the coefficients Fj and Dy,
are defined as F, = V/iM,,'(Zk) and Dy, = %V;’M’i(z;{), k=0,1,..., M. The values
of the slopes Dy are chosen as in [33]. This choice guarantees that VhS’ M.i (x) is locally
monotone if the data Fj are locally monotone (see [32,33]). The interpolant fo’ M.i (x)
possesses continuous first-order derivatives in [0, z37]. The second derivative is not
necessarily continuous.

The piecewise cubic approximation V;' ,  (x) is computed by a fixed-point iteration
solving, for r > 0,

Vi@ = max {nfi G d D) + 8V (4 hgd G D)) (9)

ujelj
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and

1 s, s
l[r]:_ I = arg max {hfi(zk, ui, u%) + SV,EJ[&]J (zk + hg(zk, ui, u%))}
uj i

The iteration is initialized with some given V;’I[S]i(zk) and ul[olg, i = 1,2,
k=0,..., M, and stopped when

max [Vt @) — Vil o] < TOL,

where TOL is a prescribed tolerance. Once the convergence criterion is satisfied, the
functions Vhs’ M= hs 1[\7:1] are the desired approximations to the value functions, V;*.
The approximated optimal policies are defined as the monotone piecewise cubic Her-
mite interpolant u* uyy ; such that u 7 i@ = u[rkﬂ] i=1,2,k=0, 1 , M. Finally,
the approximate optlmal trajectory is computed from (17) with u}5 = ujy; ; (x;).

The time-dependent problem (5) with incentive (11) is dlscretlzed along the same
lines. We introduce a fictitious big enough time horizon 7 = ty = Nh > 0. The
time-discrete, time-dependent value function is defined as the solution of the system
of Bellman equations

Vit e, x) = max {nfi ey up, ) + 8V (inox -+ hg o ) ) |

ui €l
(20)
where functions f; and g are given by (4) and (13).
Equation (20) is supplemented with the artificial boundary condition Vﬁ‘sl (ty, x) =
V;‘i(x), i = 1,2, which is an obvious approximation to (14). The system (20) is
numerically solved backward in time by

Viiw,i(ta—1, Xi) = max {hfi(xkv Ui Ui )

ujelU;

+8Vi i (tn,xk + hg" (o, uis uiy ks tn))} . @D

where, fori, j = 1,2,i # j,

i = arg max {hﬁ(xk, ui w5 SV (t,,, x4 g™ (e, WS t,,))} .

ujel;

The notation Vﬁ’SM ; (tn, X) Tepresents, as before the monotone piecewise cubic Her-
mite interpolant defined by the values V, h M ity x1), 0 < k < M. The backward
iteration is initialized using the boundary condition V;EQM,,-(IN’ Xp) = Vh, i (k)
0<k=M.

The approximated optimal policy attime #,,, 1 < n < N, is defined as the monotone
piecewise cubic Hermite interpolant of the values u} i ¢ and it is denoted by u*“s (x).

Then, the optimal trajectory can be computed from (17) with uily = ujr (). System
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(21) is solved by a fixed-point iteration similar to that in (19). In this last computation
a filtering process is applied to eliminate possible spurious oscillations.
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