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Abstract We introduce a new flexible inexact-restoration algorithm for constrained
optimization problems. In inexact-restoration methods, each iteration has two phases.
The first phase aims at improving feasibility and the second phase aims to minimize
a suitable objective function. In the second phase, we also impose bounded deterio-
ration of the feasibility, obtained in the first phase. Here, we combine the basic ideas
of the Fischer-Friedlander approach for inexact-restoration with the use of approxi-
mations of the Lagrange multipliers. We present a new option to obtain a range of
search directions in the optimization phase, and we employ the sharp Lagrangian as
merit function. Furthermore, we introduce a flexible way to handle sufficient decrease
requirements and an efficient way to deal with the penalty parameter. Global con-
vergence of the new inexact-restoration method to KKT points is proved under weak
constraint qualifications.
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1 Introduction

Practical methods for solving nonlinearly constrained optimization problems are itera-
tive. Given an iterate, one tries to find a better approximation to the solution taking into
account feasibility and optimality criteria. Several traditional nonlinear programming
methods preserve feasibility of all the iterates, so that the improvement criterion relies
only on objective function values [1–9]. These methods are very effective in many
cases, but they tend to be slow in the presence of constraints with high curvature.
Modern inexact-restoration (I-R) methods, on the other hand, admit infeasibility of
iterates and employ inexact nonspecific restoration procedures, which may be adapted
to different classes of problems. See [10–23].

The common features of the I-R methods mentioned above are the following:

– Given the current iterate, a sufficiently more feasible point (inexactly restored
point) is computed by any arbitrary method. This is the Feasibility Phase of the
I-R iteration.

– At the Optimality Phase of the I-R iteration, one minimizes (approximately) a
suitable objective function (the Lagrangian or some approximation) for obtaining a
trial point. The trial point is compared with the current iterate in terms of feasibility
and optimality (using merit functions as in [10,11,19], or filters, as in [12,18]). If
the trial point is acceptable, we define it as the new iterate. Otherwise, we find a
new trial point “closer” to the inexactly restored point. The fact that the new trial
point should be “closer” to the inexactly restored point, instead of closer to the
current iterate, is crucial in the philosophy of I-R methods, because ultimately the
inexactly restored point is considered to be better than the current iterate.

The first I-R methods [10,11] motivated the introduction of a sequential optimal-
ity condition called AGP (approximate gradient projection) [24]. For several years,
it was thought that AGP was equivalent to the approximate KKT condition (AKKT)
implicitly used to define stopping criteria in nonlinear programming algorithms. Sur-
prisingly, it was recently shown [25] that AGP is stronger than AKKT; moreover,
one of the AGP variations, called linear AGP (L-AGP), is stronger than AGP. These
theoretical facts support one of the decisions taken in our I-R method: When linear
constraints are present in the problem, feasibility with respect to these constraints
should be satisfied at all the iterations.

Fischer and Friedlander [19] introduced a new line search by means of which an
I-R method exhibits interesting global convergence properties. The resulting approach
turns out to be simpler than more classical approaches based on trust regions or filters.
The main convergence result of [19] states that under proper assumptions, the search
direction, used at the optimality phase, tends to zero. This result complements the
suggestion of Gomes-Ruggiero, Martínez and Santos [17] who claim that by means
of the spectral gradient choice [26–30] of the first optimality-phase trial point, I-R
turns out to be the natural generalization to nonconvex and constrained optimization
of the spectral projected gradient (SPG) method [31–33], which is currently used for
large-scale convex and constrained minimization.

In [17], spectral gradient tangent directions and the trust-region globalization
approach of [10] were invoked for proving convergence. With the aim of getting
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closer to quadratic convergence [13], we use here a search direction that comes from
solving a strictly convex Newton-related quadratic minimization problem. The result-
ing method is the natural generalization of the variable metric method [34] for non-
linear programming in the same sense that the method [17] is a generalization of
SPG.

In this work, we introduce an improved line search I-R algorithm based on
the Fischer–Friedlander approach. The proposed method is more flexible than the
approaches in [10,11,19], when dealing with sufficient decrease. Several typical I-
R algorithmic requirements are relaxed and, therefore, larger steps are more likely
to be accepted by the algorithm. We also employ approximations of Lagrange mul-
tipliers in the merit function in order to add relevant information when solving the
problem. An optimization procedure for general constrained optimization problems is
introduced.

This paper is organized as follows. In Sect. 2, we introduce the new I-R method and
we prove that it is well defined. In Sect. 3, we state the assumptions that will allow
us to prove convergence starting from arbitrary initial points, and we prove feasibility
and optimality of the limit points. The plausibility of the assumptions used to prove
convergence is discussed in Sect. 4. Conclusions are given in Sect. 5.

2 Basic Method

In this section, we consider the constrained optimization problem in the form:

min f (x) s.t. h(x) = 0, x ∈ �, (1)

where � ⊂ R
n is a polytope, f : R

n → R, h : R
n → R

m and both f and h are
smooth. Every smooth, finite dimensional, and constrained optimization problem may
be written in the form (1) using slack variables, if necessary.

For all x ∈ � and λ ∈ R
m , we define the Lagrangian L(x, λ) by

L(x, λ) := f (x)+
m∑

i=1

λi hi (x).

Given a penalty parameter θ ∈ [0, 1], we consider, for all x ∈ �, λ ∈ R
m , the

following merit function that consists of a convex combination of the Lagrangian
function and the infeasibility measure:

�(x, λ, θ) := θ L(x, λ)+ (1− θ)‖h(x)‖. (2)

Note that, when θ = 1, the merit function coincides with the Lagrangian function
and, when θ = 0, it coincides with the infeasibility measure. In these cases, we are
neglecting either the objective function or the feasibility at the point x . In our method
θ is always smaller than one, and we will prove that it is also bounded away from zero.
In this paper, the symbol ‖ · ‖ denotes the Euclidean norm, although many times it can
be replaced by an arbitrary norm.
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The merit function (2) is essentially the sharp Lagrangian defined in [35] and
employed in [36–38], in the context of nonsmooth optimization, and in [11] in the I-R
framework.

Algorithm 2.1 below is a flexible form of the I-R method with the line search
procedure of [19]. One improvement here with respect to [19] is that we are able to use
Lagrange multipliers in the algorithm (thus employing (2)) preserving convergence.
Moreover, sufficient descent requirements are relaxed so that acceptance of “Pure
Newtonian” steps will be more frequent.

Algorithm 2.1 Flexible inexact-restoration with sharp Lagrangian.

Step 0 Initialization
As initial approximation we choose, arbitrarily, x0 ∈ � and λ0 ∈ R

m . We initialize
θ−1 ∈ ]0, 1[ and k ← 0.

Step 1 Restoration step
If ‖h(xk)‖ = 0, define yk+1 := xk . Otherwise, try to compute yk+1 ∈ � such that

‖h(yk+1)‖ < ‖h(xk)‖. (3)

If this is not possible, we say that Step 1 is deemed unsuccessful and the algorithm
stops.

Step 2 Estimation of Lagrange Multipliers
Compute λk+1 ∈ R

m . (Practical effective ways for this choice will be given later.)

Step 3 Descent direction
Compute dk ∈ R

n such that yk+1 + dk ∈ �,

∇L
(
yk+1, λk+1)T

dk < 0, if dk �= 0, (4)

and, for some ck > 0 and all small enough t > 0:

‖h(
yk+1 + tdk)‖ ≤ ‖h(

yk+1)‖ + ckt2‖dk‖2. (5)

Step 4 Globalization

Step 4.1 Sufficient decrease parameters
If ‖h(xk)‖ = ‖h(

yk+1
)‖ = 0, take rk ∈ ]0, 1[. Else, define rk �= 0 such that

rk ∈
[‖h(

yk+1
)‖

‖h(xk)‖ , 1

[
. (6)

Set
sk ∈ [0, rk[. (7)

Step 4.2 Penalty parameter computation
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Compute θk as the supremum of the values of θ ∈ [0, θk−1] such that

�
(
yk+1, λk+1, θ

) ≤ �
(
xk, λk, θ

)+ 1− sk

2

(‖h(
yk+1)‖ − ‖h(xk)‖). (8)

Step 4.3 Line search

If ‖dk‖ = 0 we define tk := 1.
Otherwise, by means of some backtracking procedure, compute tk ∈ [0, 1] such

that
L
(
yk+1 + tkdk, λk+1) < L

(
yk+1, λk+1) (9)

and

�
(
yk+1 + tkdk, λk+1, θk

) ≤ �
(
xk, λk, θk

)+ 1− rk

2

(‖h(
yk+1)‖ − ‖h(xk)‖). (10)

Moreover, the backtracking procedure should be such that either tk = 1 or there
exists t̄k ∈ [tk, 10tk] such that

L
(
yk+1 + t̄kdk, λk+1) ≥ L

(
yk+1, λk+1) (11)

or

�
(
yk+1 + t̄kdk, λk+1, θk

)
> �

(
xk, λk, θk

)+ 1− rk

2

(‖h(
yk+1)‖ − ‖h(xk)‖). (12)

Step 4.4 Iteration update

Set
xk+1 = yk+1 + tkdk, (13)

update k ← k + 1 and go to Step 1.
We have defined Algorithm 2.1 without an explicit stopping criterion, which, of

course, is necessary in practical implementations. This means that, in principle, the
algorithm generates an infinite sequence whose theoretical properties are proved in
Sects. 2 and 3. In Sect. 5, we define suitable criteria for stopping the execution of the
algorithm.

Algorithm 2.1 is a simple inexact-restoration algorithm, where even the condition
of dk being in the tangent subspace is relaxed. However, it is interesting to show that
this simplified method is well defined in the sense that an iteration can be completed if
the inexactly restored point yk+1 can be computed at every iteration. In the following
theorem, we do not make use of Lipschitz conditions at all, neither on the objective
function, nor on the constraints.

Theorem 2.1 For all xk ∈ �, if the point yk+1 at Step 1 of Algorithm 2.1 is successfully
computed, then the iterate xk+1 is well defined.

Proof By the hypothesis, we have that Step 1 is well defined. Steps 2 and 3 can be
completed observing that λk+1 = 0 ∈ R

m and dk = 0 ∈ R
n are always acceptable.
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Although these options will not be our choice, this ensures that both steps are well
defined. We will show now that the other computations required in the iteration are
possible, whenever ‖h(

yk+1
)‖ < ‖h(xk)‖ or yk+1 = xk .

Computation of θk : If yk+1 = xk , we have that ‖h(
yk+1

)‖ = ‖h(xk)‖ = 0 and,
thus, L

(
xk, λ

) = L
(
yk+1, μ

)
for all λ,μ ∈ R

m . This means that (8) is obvious for all
θ and so θk = θk−1.

If yk+1 �= xk , by (3), we have that ‖h(yk+1)‖ < ‖h(xk)‖ and, since 0 ≤ sk < 1,

‖h(
yk+1)‖ − ‖h(xk)‖ <

1− sk

2

(‖h(yk+1)‖ − ‖h(xk)‖).

Therefore, for small enough θ , we have that

‖h(yk+1)‖ − ‖h(xk)‖ ≤ θ

1− θ

[
L(xk, λk)− L(yk+1, λk+1)

]

+ 1− sk

2(1− θ)

(‖h(yk+1)‖ − ‖h(xk)‖).

This implies that, for small enough θ > 0, (8) takes place. By direct calculations,
we note that the parameter θk can be computed in the following way: If (8) is verified
with θ = θk−1, then take θk = θk−1. Otherwise, we compute

θk = (1+ sk)
(‖h(xk)‖ − ‖h(yk+1)‖)

2
[
L(yk+1, λk+1)− L(xk, λk)+ ‖h(xk)‖ − ‖h(yk+1)‖] . (14)

Computation of tk : We only need to consider the case in which ‖dk‖ �= 0.
By (4), we have that (9) necessarily holds for small enough t . Let us prove now that

(10) also holds for small t .
Assume first that yk+1 = xk , then, ‖h(yk+1)‖ = ‖h(xk)‖ = 0 and

L(xk, λ) = f (xk) for all λ ∈ R
m . Thus

�
(
xk, λk, θk

)+ 1− rk

2

(‖h(yk+1)‖ − ‖h(
xk)‖) = θk L

(
xk, λk) = θk f

(
yk+1), (15)

and, by (5),
‖h(

yk+1 + tdk)‖ ≤ ckt2‖dk‖2. (16)

Now, by (4), for small enough t , we have that

L
(
yk+1 + tdk, λk+1) ≤ L

(
yk+1, λk+1)+ t

2
∇L

(
yk+1, λk+1)T

dk

= f
(
yk+1)+ t

2
∇L

(
yk+1, λk+1)T

dk (17)

and
θk

2
∇L

(
xk, λk+1)T

dk + (
1− θk

)
ckt‖dk‖2 < 0. (18)
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By (15), (16), (17), and (18), for small enough t , we have that

�
(
yk+1 + tdk, λk+1, θk

) = θk L
(
yk+1 + tdk, λk+1)+ (1− θk) ‖h

(
yk+1 + tdk)‖

≤ θk
(

f (yk+1)+ t

2
∇L

(
yk+1, λk+1)T

dk)+(1−θk)ckt2‖dk‖2

≤ �
(
xk, λk, θk

)+ 1− rk

2

(‖h(
yk+1)‖ − ‖h(

xk)‖).

So we conclude that (10) holds for small enough t when yk+1 = xk .
Now, let us show that tk is well defined in the case that ‖h(yk+1)‖ < ‖h(xk)‖. In

this case, by (7), we have that

1− sk

2

(‖h(yk+1)‖ − ‖h(xk)‖) <
1− rk

2

(‖h(yk+1)‖ − ‖h(xk)‖). (19)

By (8) and (19),

�
(
yk+1, λk+1, θk

)
< �

(
xk, λk, θk

)+ 1− rk

2

(‖h(yk+1)‖ − ‖h(xk)‖).

By continuity,

�
(
yk+1 + tdk, λk+1, θk

) ≤ �
(
xk, λk, θk

)+ 1− rk

2

(‖h(yk+1)‖ − ‖h(xk)‖)

for small enough t . This ensures that tk can be computed in a finite time by means of
a backtracking procedure. This completes the proof.

Observe that (10) is easier to be fulfilled, if rk is chosen to be close to 1 in (6).
This means that the chances of accepting large steps tk increase if we choose rk ≈ 1.
Moreover, the gap in (19) is larger as sk is closer to zero, which also favors the
acceptance of large steps. On the other hand, θk , the weight of the Lagrangian in the
merit function, is larger as sk is closer to rk . Since the direction dk is a descent direction
for the Lagrangian, it is natural that large values of θk increase the chances to accept
large steps. We believe that the best choice of sk strongly depends on the nonlinearity
of the constraints in (1). For simplicity in our implementation, we decide to take the
largest gap in (19) setting sk = 0 for all k. This flexible way of handling sufficient
decrease allows the algorithm to take larger steps than the ones in [19], where rk and
sk are equal and fixed for every k.

Theorem 2.1 showed that, for well-definedness, the following conditions are essen-
tial: (a) simple descent of ‖h(yk+1)‖ with respect to ‖h(xk)‖; (b) the direction
dk should be quasi-tangent (5); and (c) dk must be a descent direction for the
Lagrangian L .
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3 Assumptions and Global Convergence

The global convergence proof for Algorithm 2.1 requires a problem assumption (3.1)
and several algorithmic assumptions (3.2–3.6).

Assumption 3.1 The problem should be such that Lipschitz conditions hold both on
the gradients of f and h. Namely, there exists η > 0 such that, for all x, y ∈ �,

‖∇ f (y)−∇ f (x)‖ ≤ η‖y − x‖ and ‖∇h(y)−∇h(x)‖ ≤ η‖y − x‖. (20)

The algorithmic assumptions involve conditions that should be satisfied by the
different steps of the algorithm in order to guarantee global convergence. For the
introduction of these assumptions, we will denote the Euclidean projection of x on
a non-empty, closed, and convex set � by P�(x) and {xk}, {yk}, {λk} will be the
sequences generated by Algorithm 2.1. Note that these sequences have infinitely many
terms, except in the case when the restoration step fails and (3) cannot be obtained for
some k.

Assumption 3.2 For all k ∈ N, Step 1 of the Algorithm is successful and there exists
r ∈ [0, 1] and β > 0 such that

rk ≤ r (21)

and
L
(
yk+1, λk+1)− L

(
xk, λk) ≤ β‖h(xk)‖. (22)

Conditions (21) and (22) involve the restoration step. Condition (21) states that
sufficient uniform feasibility improvement should be obtained by the restoration pro-
cedure. In most I-R implementations, r is an algorithmic parameter and the algorithm
stops declaring “restoration failure” if the restoration procedure fails to satisfy (21)
after reasonable computer time. Here we adopt the practical point of view that even
conservative algorithmic parameters r (say r = 0.99) could be excessively strict at
some iterations of the algorithm, which, however, could converge smoothly under
single descent requirements such as (3). On the other hand, the requirement (21) for
some unknown value of r is usually satisfied under regularity assumptions on the con-
straints. Since yk+1 = xk if ‖h(xk)‖ = 0, and rk is defined as in (6) if yk+1 �= xk ,
condition (21) implies that

‖h(yk+1)‖ − ‖h(xk)‖ ≤ rk‖h(xk)‖ − ‖h(xk)‖ ≤ −(1− r)‖h(xk)‖. (23)

Condition (22) requires that the deterioration of the Lagrangian at (yk+1, λk+1)

should be smaller than a multiple of the infeasibility ‖h(xk)‖. If the Lagrange mul-
tipliers estimates are bounded, and under suitable Lipschitz assumptions, condition
(22) is implied by ‖yk+1− xk‖ = O(‖h(xk)‖). This means that the distance between
xk and the restored point yk+1 should be proportional to the infeasibility measure at
xk . Providing suitable safeguarding parameters β is even harder than in the case of
(21), because (22) is scale-dependent. In practical terms, Assumption 3.2 says that we
believe that the restoration algorithm employed is reasonable enough so that sufficient
improvement and bounded-distance requirements are automatically satisfied.
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Assumption 3.3 For all k ∈ N, we choose dk such that yk+1 + dk ∈ � and
∇h(yk+1)T dk = 0. Moreover, we assume that there exists σ > 0 such that

∇L
(
yk+1, λk+1)T

dk ≤ −σ‖dk‖2 (24)

and
σ‖Pk

(
yk+1 −∇L

(
yk+1, λk+1))− yk+1‖ ≤ ‖dk‖ (25)

for all k ∈ N, where Pk denotes the Euclidean projection on the polytope defined by
y ∈ � and ∇h(yk+1)T (y − yk+1) = 0. As we will see in Sect. 4, there is no loss of
generality in the use of the same σ in (24) and (25).

In practice, the direction dk will be obtained as the solution of the following prob-
lem:

min
1

2
dT Hkd +∇L

(
yk+1, λk+1)T

d (26)

s.t. ∇h
(
yk+1)T

d = 0, yk+1 + d ∈ �, (27)

where Hk is an approximation to the Hessian of the Lagrangian. Since � is a polytope,
we have that (26)–(27) is a quadratic programming problem. Note that solving (26)–
(27) is equivalent to minimize 1

2 dt Hkd +∇ f (yk+1)T d subject to (27).
Note that the requirement (24) is not necessarily satisfied by the solution of (26)–

(27), unless we impose some additional conditions on Hk . We will show in Sect. 4
that Assumption 3.3 holds if the eigenvalues of the matrix of Z T

k Hk Zk lie in a positive
interval [σmin, σmax], where the columns of Zk form an orthonormal basis of the null-
space of ∇h(yk+1)T . In implementations, we will define Hk as the Hessian of the
approximate Lagrangian, testing further the descent condition and switching to a safe
positive definite matrix, if necessary.

Assumption 3.4 There exists γ > 0 such that, for all k ∈ N,

L
(
yk+1 + tkdk, λk+1) ≤ L

(
yk+1, λk+1)− γ tk‖dk‖2. (28)

Note that (28) states that the Lagrangian, whose quadratic approximation is min-
imized at (26)–(27), should decrease along the direction dk . The sufficient decrease
condition, which depends on γ , holds for small enough tk under the choice (26)–(27)
with safeguards on the eigenvalues of H . As we saw in Theorem 2.1, condition (10)
also holds for small enough tk . Therefore, Assumption 3.4 suggests a safeguarding
backtracking procedure that aims to satisfy, simultaneously, (10) and (28).

Assumption 3.5 The Lagrange multiplier estimates {λk} lie in a compact set.

By Assumption 3.1, we have that ∇L(·, λ) : �→ R
n is Lipschitz continuous in �

for all fixed λ ∈ R
m . By Assumption 3.5, we can assume that the Lipschitz constant

for ∇L(·, λk) is the same for all k ∈ N. Without any loss of generality, we will also
denote by η this Lipschitz constant, that is, for all x, y ∈ � and k ∈ N,

‖∇L(y, λk)− ∇L(x, λk)‖ ≤ η‖y − x‖. (29)
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Assumption 3.6 The Lagrange multiplier estimates {λk} are such that

lim
k→∞ P�(yk − ∇ f (yk)−∇h(yk)λk+1)− yk = 0. (30)

As we will see in Sect. 4, this assumption can be fulfilled, if we take λk+1 as the
Lagrange multipliers associated with ∇h(yk) in the KKT conditions of the problem
(26)–(27).

In next lemma, we will prove that the sequence of the penalty parameters is bounded
away from zero. This means that the objective function always has a significant weight
in the merit criterion.

Lemma 3.1 Suppose that Assumption 3.2 holds. The sequence {θk} is non-increasing
and bounded away from zero.

Proof By direct calculations, (8) is equivalent to

θ
[
L
(
yk+1, λk+1)− L

(
xk, λk)+ ‖h(xk)‖ − ‖h(

yk+1)‖]

≤ (1+ sk)

2

(‖h(xk)‖ − ‖h(yk+1)‖). (31)

If
[
L
(
yk+1, λk+1

)− L
(
xk, λk

)+ ‖h(xk)‖ − ‖h(
yk+1

)‖] ≤ 0, then (31) holds for all
θ ≥ 0, thus θk = θk−1.

If [L(yk+1, λk+1)− L(xk, λk)+‖h(xk)‖−‖h(yk+1)‖] > 0, then yk+1 �= xk and,
consequently,

(1+ sk)
(‖h(xk)‖ − ‖h(yk+1)‖)

2
[
L(yk+1, λk+1)− L

(
xk, λk

)+ ‖h(xk)‖ − ‖h(
yk+1

)‖] > 0.

In this case, we have that

θk = min

{
θk−1,

(1+ sk)(‖h(xk)‖ − ‖h(yk+1)‖)
2
[
L
(
yk+1, λk+1

)− L
(
xk, λk

)+ ‖h(xk)‖ − ‖h(
yk+1

)‖]
}

. (32)

By the updating rule of the penalty parameter, we have that the sequence {θk} is
non-increasing. It remains to be proved that {θk} is bounded away from zero. For this
purpose, it is sufficient to show that θk is greater than a fixed positive number when
θk �= θk−1. In this case, we have

1

θk
= 2

[
L
(
yk+1, λk+1

)− L
(
xk, λk

)+ ‖h(xk)‖ − ‖h(
yk+1

)‖]

(1+ sk)
(‖h(xk

)‖ − ‖h(yk+1)‖)

= 2

1+ sk

[
L
(
yk+1, λk+1

)− L
(
xk, λk

)

‖h(xk)‖ − ‖h(yk+1)‖ + 1

]
.
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Thus, by Assumption 3.2, (7), and (23),

1

θk
≤ 2

[
β‖h(xk)‖

(1− r)‖h(xk)‖ + 1

]
= 2

[
β

1− r
+ 1

]
. (33)

This implies that the sequence {1/θk} is bounded. Therefore, the sequence {θk} is
non-increasing and bounded away from zero. 
�

The following lemma ensures that any limit point of the sequence generated by
Algorithm 2.1 is feasible.

Lemma 3.2 Suppose that Assumptions 3.2 and 3.5 hold. Then, the sum
∑∞

k=0 ‖h(xk)‖
is convergent.

Proof By condition (10) and Assumption 3.2, for all k ∈ N one has that

�
(
xk+1, λk+1, θk

) ≤ �
(
xk, λk, θk

)+ 1− r

2

(‖h(yk+1)‖ − ‖h(xk)‖).

Therefore, by (23),

�
(
xk+1, λk+1, θk

) ≤ �
(
xk, λk, θk

)− (1− r)2

2
‖h(xk)‖. (34)

Let us define ρk := (1 − θk)/θk for all k ∈ {−1, 0, 1, 2 . . .}. By Lemma 3.1, there
exists θ̄ > 0 such that θk ≥ θ̄ for all k ∈ N. This implies that ρk ≤ 1/θ̄ − 1 for all
k ∈ N. Since {ρk} is bounded and non-decreasing, it follows that

∞∑

k=0

(
ρk − ρk−1

) = lim
k→∞ ρk − ρ−1 <∞. (35)

By compactness, the sequence {‖h(xk)‖} is bounded. Therefore, by (35), there exists
c > 0 such that ∞∑

k=0

(ρk − ρk−1)‖h(xk)‖ ≤ c <∞. (36)

Now, by (34),

L
(
xk+1, λk+1)+ 1− θk

θk
‖h(xk+1)‖ ≤ L

(
xk, λk)+ 1− θk

θk
‖h(xk)‖

− (1− r)2

2θk
‖h(xk)‖.

Since 0 < θk < 1, we have that (1−r)2

2 <
(1−r)2

2θk
, so

L
(
xk+1, λk+1)+ ρk‖h

(
xk+1)‖ ≤ L

(
xk, λk)+ ρk‖h

(
xk)‖ − (1− r)2

2
‖h(xk)‖.
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Therefore, for all k ∈ N,

L
(
xk+1, λk+1)+ ρk‖h

(
xk+1)‖ ≤ L

(
xk, λk)+ ρk−1‖h

(
xk)‖

+(
ρk − ρk−1

)‖h(xk)‖ − (1− r)2

2
‖h(xk)‖.

Thus, for all k ∈ N, we have

L
(
xk+1, λk+1)+ρk‖h

(
xk+1)‖ ≤ L

(
x0, λ0)+ρ−1‖h

(
x0)‖+

k∑

j=0

(
ρ j − ρ j−1

)‖h(x j )‖

− (1− r)2

2

k∑

j=0

‖h(x j )‖.

Therefore, by (36),

L
(
xk+1, λk+1)+ ρk‖h

(
xk+1)‖ ≤ L

(
x0, λ0)+ ρ−1‖h

(
x0)‖

+ c − (1− r)2

2

k∑

j=0

‖h(x j )‖.

Thus,

(1− r)2

2

k∑

j=0

‖h(x j )‖ ≤ −[
L
(
xk+1, λk+1)+ ρk‖h

(
xk+1)‖]+ L

(
x0, λ0)

+ ρ−1‖h
(
x0)‖ + c.

Since the functions L and h are continuous, by Assumption 3.5 and the compactness
of �, we have that the sequences {L(xk, λk)} and {‖h(xk)‖} are bounded. Since {ρk}
is also bounded, it follows that the series

∑∞
k=0 ‖h(xk)‖ is convergent. 
�

The following lemma shows that, if the problem is sufficiently smooth, then the
direction on the tangent subspace ensures a uniform- bounded deterioration of the
feasibility. The lemma also guarantees that the step size will not tend to zero. This
means that Algorithm 2.1 will not produce excessively small steps.

Lemma 3.3 Suppose that Assumptions 3.1–3.3 and 3.5 hold. Define ck as in (5) and
tk as in Step 4.3 of Algorithm 2.1. Then, there exist c > 0 and t̄ > 0 such that ck > c
and tk ≥ t̄ for all k ∈ N.

Proof Given any continuously differentiable function F : Rn → R
p, by the Funda-

mental Theorem of Calculus, we have that

F(y + td) = F(y)+ t∇F(y)T d + t

1∫

0

(∇F(y + tξd)−∇F(y))T d dξ. (37)
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Applying (37) with F(y + td) = h(yk+1 + tdk), by Assumptions 3.1 and 3.2, the
triangle inequality, and the Cauchy-Schwarz inequality, we have that, for c = η

2 ,

‖h(
yk+1 + tdk)‖ ≤ ‖h(

yk+1)‖ + t

1∫

0

η‖yk+1 + tξdk − yk+1‖‖dk‖ dξ

≤ ‖h(
yk+1)‖ + ct2‖dk‖2. (38)

Thus (5) holds for ck = η
2 , independently of k and for all t ≥ 0.

Now, applying (37) with F(y + td) = L
(
yk+1 + tdk, λk

)
, by Assumptions 3.1,

3.2, 3.5, and (29),

L
(
yk+1 + tdk, λk+1)− L

(
yk+1, λk+1) = t∇L

(
yk+1, λk+1)T

dk

+ t

1∫

0

(
∇L

(
yk+1 + tξdk, λk+1)− ∇L

(
yk+1, λk+1)

)T

dk dξ

≤ −σ t‖dk‖2 + t

1∫

0

η‖yk+1 + tξdk − yk+1‖‖dk‖ dξ

≤ −
(

σ − ηt

2

)
t‖dk‖2.

Therefore, if γ1 ≤ σ
2 and τ = σ

2η
, we have that

L
(
yk+1 + tdk, λk+1) ≤ L

(
yk+1, λk+1)− γ1t‖dk‖2, (39)

for all t ≤ τ .
If ‖dk‖ �= 0, condition (39) ensures that (9) holds whenever tk ≤ τ . Let us prove

that we can also satisfy (10) for any tk in a specific interval. In fact, we will prove that

any tk ≤ min
{

θ̄γ1
c(1−θ̄ )

, τ
}

, where θ̄ is defined in Lemma 3.2, is acceptable in Step 4.3

of Algorithm 2.1. Since rk ≥ 0, by (8), (19), (38), (39), and Lemma 3.1, we have
that

�
(
yk+1 + tdk, λk+1, θk

)−�
(
xk, λk, θk

)

= �
(
yk+1 + tdk, λk+1, θk

)−�(yk+1, λk+1, θk)+�
(
yk+1, λk+1, θk

)

−�
(
xk, λk, θk

)

≤ θk

(
L
(
yk+1 + tdk, λk+1)− L

(
yk+1, λk+1))

+ (
1− θk

) (
‖h(

yk+1 + tdk)‖ − ‖h(
yk+1)‖

)
+ 1− sk

2

(‖h(yk+1)‖ − ‖h(xk)‖)

123



J Optim Theory Appl (2015) 165:188–208 201

≤ −θkγ1t‖dk‖2 + (1− θk)ct2‖dk‖2 + 1− rk

2

(‖h(yk+1)‖ − ‖h(xk)‖)

≤ −θ̄γ1t‖dk‖2 + (1− θ̄ )ct2‖dk‖2 + 1− rk

2

(‖h(yk+1)‖ − ‖h(xk)‖)

≤ (
(1− θ̄ )ct − θ̄γ1

)
t‖dk‖2 + 1− rk

2

(‖h(yk+1)‖ − ‖h(xk)‖)

≤ 1− rk

2

(‖h(yk+1)‖ − ‖h(
xk)‖).

Thus, due to the backtracking procedure, we have that tk ≥ t̄ := min
{

θ̄γ1
10c(1−θ̄ )

, τ
10 , 1

}

for all k ∈ N. 
�
Lemma 3.4 Suppose that Assumptions 3.1–3.5 hold. Then limk→∞ ‖dk‖ = 0.

Proof By Lemma 3.3, there exists t̄ > 0 such that tk ≥ t̄ for all k ∈ N. By (22) and
(28),

L
(
xk+1, λk+1)− L

(
xk, λk) = L

(
xk+1, λk+1)− L

(
yk+1, λk+1)

+ L
(
yk+1, λk+1)− L

(
xk, λk)

≤ −γ tk‖dk‖2 + β‖h(xk)‖ ≤ −γ t̄‖dk‖2 + β‖h(xk)‖.

By Lemma 3.2 there exists c such that
∑∞

k=0 ‖h(xk)‖ = c. Thus

L
(
xl+1, λl+1)− L

(
x0, λ0) =

l∑

k=0

(
L
(
xk+1, λk+1)− L

(
xk, λk)) ≤ −γ t̄

l∑

k=0

‖dk‖2

+ β

l∑

k=0

‖h(xk)‖ ≤ −γ t̄
l∑

k=0

‖dk‖2 + βc.

Since f and h are bounded below on �, and {λk+1} remains in a compact set, we
have that the series

∑∞
k=0 ‖dk‖2 is convergent, and thus, {‖dk‖} converges to zero. 
�

Next Lemma and its corollary are used to prove the optimality of every limit point
of the sequence generated by Algorithm 2.1.

Lemma 3.5 Consider Pk as in Assumption 3.3. Given yk+1 ∈ �, then

Pk
(
yk+1 −∇L

(
yk+1, λ

)) = Pk
(
yk+1 −∇L

(
yk+1, μ

))
,

for all λ, μ ∈ R
m.

Proof Defining Sk := {d : ∇h(yk+1)T d = 0}, we have that∇h(yk+1)(λ−μ) ∈ S⊥k .
Since ∇L

(
yk+1, λ

) = ∇L(yk+1, μ)+∇h
(
yk+1

)(
λ−μ

)
, the result follows from the

Projection Theorem (see [39], Proposition B.11, item (b), p 704). 
�
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Corollary 3.1 Let x∗ be a feasible point of (1) such that

lim
k→∞ yk+1 = x∗ and lim

k→∞ Pk(yk+1 − ∇L(yk+1, λk+1))− yk+1 = 0,

for some {yk+1} ⊂ � and {λk+1} ⊂ R
m. Then x∗ satisfies the L-AGP optimality

condition [25].

Proof By hypothesis, x∗ is feasible. Moreover, by Lemma 3.5,

limk→∞ Pk(yk+1− ∇ f (yk+1))− yk+1= limk→∞ Pk(yk+1 −∇L(yk+1, 0))− yk+1

= limk→∞ Pk(yk+1 −∇L(yk+1, λk+1))− yk+1 = 0.

Thus, x∗ satisfies the L-AGP optimality condition. 
�
Next lemma will be used to prove the convergence of the Lagrange multiplier

estimates {λk}.
Lemma 3.6 Let x∗ be a feasible point such that

lim
k→∞ yk = x∗ and lim

k→∞ P�(yk −∇L(yk, λk+1))− yk = 0,

for some {yk} ⊂ � and {λk+1} ⊂ R
m. Then, if x∗ satisfies the Mangasarian–Fromovitz

constraint qualification, we have that the KKT conditions hold in x∗. Moreover, all the
limit points of {λk+1} are Lagrange multipliers associated with the equality constraints
in x∗.

Proof Let zk := P�(yk −∇L(yk, λk+1)); hence limk→∞(zk − yk) = 0 and zk is the
solution of the problem:

min
1

2
‖z − (yk −∇L(yk, λk+1))‖2 s.t. z ∈ �.

Define � := {x ∈ R
n : Ax = b, x ≥ 0}. Then, for all k = 0, 1, 2, . . ., there exist

αk and βk such that
βk ≥ 0, (zk)T βk = 0, (40)

and
zk − yk +∇L(yk, λk+1)+ AT αk − βk = 0. (41)

Defining Mk := max{‖λk+1‖∞, ‖αk‖∞, ‖βk‖∞}, we have that {Mk} is
bounded. Otherwise, we could divide (41) by Mk and take the limit on a suitable
subsequence to obtain a contradiction with the Mangasarian-Fromovitz condition.

Since {Mk} is bounded, if λ∗ is a limit point of {λk+1}, there exists K ⊆ N such
that limk∈K λk+1 = λ∗, limk∈K αk = α∗, and limk∈K βk = β∗. Taking limits for
k ∈ K in (40) and (41), we verify that λ∗ is a Lagrange multiplier associated with the
constraints h(x) = 0 in x∗. 
�
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The following theorem summarizes the convergence properties of Algorithm 2.1
under Assumptions 3.1–3.6.

Theorem 3.1 Suppose that Assumptions 3.1–3.6 hold. Then

1. For all k ∈ N, xk is well defined.
2. There exists θ̄ > 0 such that θk ≥ θ̄ for all k ∈ N.
3. limk→∞ ‖h(xk)‖ = limk→∞ ‖h(yk)‖ = 0 and any cluster point of {xk} or
{yk} is feasible.

4. limk→∞ dk = 0.
5. limk→∞ ‖yk − xk‖ = 0.
6. The sequences {xk} and {yk} admit the same cluster points.
7. Limit points of {xk} satisfy the L-AGP optimality condition.
8. If a limit point x∗ satisfies the Constant Positive Generators (CPG) constraint

qualification [40], then the KKT conditions hold at x∗.
9. If a limit point x∗ satisfies the Mangasarian–Fromovitz constraint qualification,

then the sequence {λk} admits a limit point λ∗, which is a Lagrange multiplier
associated with ∇h(x∗).

Proof Well-definedness of xk has been proved in Theorem 2.1. The existence of θ̄

follows from Lemma 3.1.
By Lemma 3.2 and (3),

lim
k→∞‖h

(
yk+1)‖ ≤ lim

k→∞‖h
(
xk)‖ = 0,

and thus, by the continuity of h, any cluster point of {xk} or {yk} is feasible.
The fact that limk→∞ dk = 0 follows from Lemma 3.4.
By item 4 and the triangle inequality, we have that

lim
k→∞‖y

k+1 − xk+1‖ = lim
k→∞‖y

k+1 − (
yk+1 + tkdk)‖ ≤ lim

k→∞‖d
k‖ = 0.

By item 5 and the triangle inequality,

lim
k∈K⊆N

‖xk − z‖ = 0⇔ lim
k∈K⊆N

‖yk − z‖ = 0.

Thus, the sequences {xk} and {yk} admit the same cluster points.
Let x∗ be a limit point of {xk}, therefore, by item 6, there is K ⊆ N such that

limk∈K yk+1 = x∗. By Assumption 3.3 and item 4,

lim
k∈K
‖Pk

(
yk+1 −∇L

(
yk+1, λk+1))− yk+1‖ = 0.

By item 3, we have that x∗ is feasible. Thus we conclude, by Corollary 3.1, that x∗
satisfies the L-AGP optimality condition.

The statement 8 is a consequence of item 7 and the fact that sequential optimality
conditions such as L-AGP imply KKT under the CPG constraint qualification [25,40].
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Finally, suppose that limk∈K yk = x∗ and the Mangasarian–Fromovitz constraint
qualification holds in x∗. Since the sequence {λk+1} lies in a compact set, we have
that this sequence admits at least one limit point. Then, by Lemma 3.6, we conclude
that any limit point of {λk+1} with k ∈ K is a Lagrange Multiplier associated with
∇h(x∗). 
�

Remark 3.1 The CPG constraint qualification is weaker than CRSC [40],
(R)CPLD [41–43], (R)CRCQ [44], and Mangasarian–Fromovitz constraint qualifi-
cation.

4 Plausibility of Assumptions

One of our main assumptions is that, given an infeasible point xk , a less infeasible
point can always be computed at the Restoration phase. Clearly, this assumption is
not always true. For example, if the feasible set is empty and xk is a minimizer of the
infeasibility, then it would not be possible to be successful at the Restoration phase.

However, if a good algorithm is used at the Restoration phase, we judge that the
improvement in feasibility will be achieved, or the problem is probably infeasible.

Lipschitz conditions on the gradients of f and h, assumed in Assumption 3.1,
are standard in smooth optimization. Convexity conditions on the problem (26)–(27)
are also usual in quadratic programming analyses. After minimizing 1

2 dT Hk−1d +
∇ f (yk)T d subject to yk + d ∈ �, ∇h(yk)T d = 0, a natural way to estimate the
Lagrange multipliers is taking λk+1 as the Lagrange multipliers associated with the
constraints ∇h(yk)T d = 0. In this case, it is plausible to assume that λk+1 lies in a
compact set if the Mangasarian–Fromovitz constraint qualification holds at yk . Thus,
if the sequence {‖Hkdk‖} is uniformly bounded, we have that Assumption 3.5 holds
under the Mangasarian–Fromovitz constraint qualification on �. An easy alternative to
guarantee that Assumption 3.5 holds is to use safeguards on the Lagrange multipliers
in the implementation.

Assumption 3.2 asks for a sufficient improvement of feasibility with a bounded
deterioration in the Lagrangian. This assumption can be satisfied with a typical
Lipschitz hypothesis and regularity conditions on the feasible set. In Lemma 2
of [19], it is proved that if the Mangasarian Fromovitz-constraint qualification holds
at all points of �, then the closest feasible point to xk fulfills the bounded dete-
rioration for the objective function f , and so any rk > 0 is a possible choice
for all k. A practical restoration procedure is shown in Lemma 6.1 of [11], if
the Linear Independence constraint qualification holds on �. This result asserts
that, given r ∈ ]0, 1[, there is a neighborhood N of the feasible set such that,
if xk ∈ N , then the linearization of the constraints at xk , Tk := {y ∈ � :
h(xk) + ∇h(xk)T (y − xk) = 0}, is not empty, and denoting by yk+1 the point
of Tk closest to xk , we have that h(yk+1) ≤ rh(xk). Moreover, under Lipschitz con-
ditions, bounded deterioration for the objective function holds. In both restoration
procedures, if the Lagrange multipliers λk remain in a compact set (Assumption 3.5),
then the bounded deterioration also holds for the Lagrangian.
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The plausibility of Assumption 3.3 is strictly linked with our proposal in the present
paper of choosing dk as the solution of the quadratic programming problem:

min∇L
(
yk+1, λk+1)T

d + 1

2
dT Hkd s.t. yk+1 + d ∈ �, ∇h

(
yk+1)T

d = 0, (42)

where Hk is symmetric, Z T
k Hk Zk is positive definite, and the columns of Zk form an

orthonormal basis of the null-space of ∇h(yk+1)T . In addition, we assume that the
eigenvalues of Z T

k Hk Zk lie in a positive interval [σmin, σmax].
By selecting dk in this way, since d = 0 is feasible to (42), we have that

∇L
(
yk+1, λk+1)T

dk + 1

2
(dk)T Hkdk ≤ 0.

Therefore,

∇L
(
yk+1, λk+1)T

dk ≤ −σmin

2
‖dk‖2.

In order to prove condition (25), let us define

Dk := {d ∈ R
n : ∇h

(
yk+1)T

d = 0 and yk+1 + d ∈ �}. (43)

Since dk is the solution of the linearly constrained problem (42),

PDk

(
dk − Hkdk −∇L

(
yk+1, λk+1))− dk = 0.

Changing variables (y = yk+1 + d) and using the fact that the projections are non-
expansive, we have

‖Pk
(
yk+1 −∇L

(
yk+1, λk+1))− yk+1‖ = ‖PDk

(−∇L
(
yk+1, λk+1))‖

= ‖PDk

(− ∇L
(
yk+1, λk+1))− PDk

(
dk − Hkdk −∇L

(
yk+1, λk+1))

+ PDk

(
dk − Hkdk −∇L

(
yk+1, λk+1))‖ ≤ ‖PDk

(− ∇L
(
yk+1, λk+1))

− PDk

(
dk−Hkdk −∇L

(
yk+1, λk+1))‖+‖PDk

(
dk−Hkdk−∇L

(
yk+1, λk+1))‖

≤ ‖dk − Hkdk‖ + ‖dk‖ ≤ (
2+ σmax

)‖dk‖.

So, defining σ := min
{

σmin
2 , 1

2+σmax

}
, we have that Assumption 3.3 holds.

From Lemma 3.3, we can see that condition (39) holds for γ1 = σmin
4 and sufficiently

small t . Thus, if σmin is known, then we can ensure that Assumption 3.4 holds testing
the sufficient decrease at Step 5 of Algorithm 2.1. Moreover, even if σmin is not known,
it is possible to do a double backtracking, in t and σ , to ensure that Assumption 3.4
holds [45]. However, this does not seem to be either efficient or necessary in practice,
so we only test simple decrease in Step 5 of Algorithm 2.1.
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Finally, to prove the plausibility of Assumption 3.6, we consider that λk+1 is chosen
as the vector of Lagrange multipliers associated with the constraints ∇h(yk)T d = 0
in problem:

min
1

2
dT Hk−1d +∇ f (yk)T d s.t. yk + d ∈ �, ∇h(yk)T d = 0.

In this case, denoting Dk := {d : yk + d ∈ �}, we have that

PDk

(
dk−1 − Hk−1dk−1 − ∇ f

(
yk)−∇h

(
yk)λk+1)− dk−1 = 0.

Therefore,

‖P�

(
yk −∇ f (yk)−∇h(yk)λk+1)− yk‖ = ‖PDk

(−∇ f
(
yk)−∇h(yk)λk+1)‖

≤‖PDk

(− ∇ f (yk)−∇h(yk)λk+1)− PDk

(
dk−1− Hk−1dk−1−∇ f (yk)

−∇h(yk)λk+1)‖
+‖PDk

(
dk−1 − Hk−1dk−1− ∇ f (yk)−∇h(yk)λk+1)‖

≤ ‖dk−1 − Hk−1dk−1‖ + ‖dk−1‖.

Thus, considering that the sequence {‖Hk‖} is uniformly bounded and that Assump-
tions 3.1–3.5 hold, by Lemma 3.4, we have that

lim
k→∞ P�(yk −∇ f (yk)−∇h(yk)λk+1)− yk = 0,

which means that Assumption 3.6 holds.

5 Conclusions

The Inexact-Restoration method introduced in this paper employs an improved version
of the Fischer–Friedlander line search approach combined with the use of Lagrange
multipliers estimates both in the Optimization Phase subproblem as in the merit func-
tion. The new method has enhancements in several theoretical aspects and it is appro-
priate to tackle many problems in which there is a natural way to restore feasibility.

It remains to be investigated its application to general constrained optimization
problems. In the general case, some standard (perhaps under-determined Newtonian)
method should be defined for the restoration phase and convergence should be proved
taking into account the characteristics of that method.

Other possible approach for general problems could be to introduce objective func-
tion information in the restoration phase, aiming to provide better initial approxima-
tions for the second-phase subproblems. Much theoretical and practical research can
be expected along these lines.

Future research will also include the application of alternative I-R approaches to
multiobjective optimization.
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