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Abstract Under the assumption that the sectional curvature of the manifold is
bounded from below, we establish convergence result about the cyclic subgradient
projection algorithm for convex feasibility problem presented in a paper by Bento
and Melo on Riemannian manifolds (J Optim Theory Appl 152, 773–785, 2012). If,
additionally, we assume that a Slater type condition is satisfied, then we further show
that, without changing the step size, this algorithm terminates in a finite number of
iterations. Clearly, our results extend the corresponding ones due to Bento and Melo
and, in particular, we solve partially the open problem proposed in the paper by Bento
and Melo.
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1 Introduction

The convex feasibility problem (CFP, for short), which consists in finding a point in
the intersection of finitely many closed and convex sets in Hilbert spaces, is a very
broad and adaptive framework, and its study has a long and rich history in applied
mathematics. The main approach to solve this problem is offered by the projection-like
algorithms, which probably goes back to the work by von Neumann in the early 1930s
for the special case, when there are only two sets. For details, we refer the reader to
[1–10] and the references therein. For the special situation, where each convex set is
given as a sublevel set of a convex function, Censor and Lent proposed in [11] a cyclic
subgradient projection algorithm by using, instead of the orthogonal projections to the
convex sets, the projections of the corresponding subgradients. As pointed out in [12],
this special approach does not lose the generality because one can certainly choose
the functions as the squared Euclidean distance functions to the involved convex sets
to cover the general case. Since then, some authors have incorporated acceleration
procedures in order to improve the speed of convergence; see, e.g., [2,8,12–15].

Recent interests are focused on extensions of some important notions and techniques
in Hilbert spaces to Riemannian manifolds. The reason is that, as explained in [16],
some optimization problems, arising in various applications, cannot be posted in linear
spaces and require Riemannian manifold structures for their formalization and study;
while some nonconvex and/or nonsmooth problems of constrained optimization in
R

n can be reduced to convex and smooth unconstrained optimization problems on
appropriate Riemannian manifolds; see, for examples, [17–25]. For developments
of optimization techniques on Riemannian manifolds, we refer the reader to [16,
26–37] and the bibliographies therein for various results, examples, discussions, and
applications. Here, let us particularly mention the CFP on Riemannian manifolds
with each convex set being given as a sublevel set of a convex function and the cyclic
subgradient projection algorithm (i.e., Algorithm 3.1) for solving it; this algorithm was
first proposed in [38], but the idea comes from the book of Udriste, that is, the general
descent and/or gradient algorithms studied in [25, Chap. 7, §3 and §4] for finding a
minimizer of a C2-function f on Riemannian manifolds. Convergence properties of
the gradient algorithm have also been studied in [24,30,34,37,39]. The CFP can be
reformulated as a convex minimization problem on Riemannian manifolds, but the
induced convex function f on Riemannian manifolds is nonsmooth in general; hence,
the known results in [25] and the literature mentioned above cannot be applied to solve
the CFP on Riemannian manifolds considered here, nor establish the convergence
properties of the cyclic subgradient projection algorithm.

In the special case, when the underlying Riemannian manifold is of non-negative
sectional curvature, Bento and Melo proved in [38] that the cyclic subgradient projec-
tion algorithm converges to a solution of the CFP, and if, additionally, a Slater type
condition is satisfied, then this algorithm has the finite termination property. More-
over, the following open problem was proposed there: How is the CFP solved on
Riemannian manifolds with negative sectional curvature?
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The main purpose of the present paper is to study the convergence problem of the
cyclic subgradient projection algorithm on Riemannian manifolds with possible non-
positive sectional curvature. More precisely, under the assumption that the underlying
Riemannian manifold is of sectional curvature bounded from below, we show that,
employing the same step sizes as in [38], any sequence generated by the cyclic sub-
gradient projection algorithm converges to a solution of the CFP, and if a Slater type
condition is additionally satisfied, then this algorithm terminates in a finite number
of iterations. Our results extend the corresponding ones in [38], and, in particular, the
open problem mentioned above is solved partially.

The paper is organized as follows. We recall some basic notions, notations, and
properties of Riemannian geometry, together with some definitions and preliminary
results on convex analysis on Riemannian manifolds in Sect. 2 . In Sect. 3 , the cyclic
subgradient projection algorithm considered in [38] is introduced and some useful
lemmas are shown. The main results of the present paper, including the convergence
theorems and the finite termination theorems of this algorithm, are presented in Sects. 4
and 5, respectively.

2 Notations and Preliminaries

The notations used in the present paper are standard; and the readers are referred to
some textbooks for more details, for example, [25,40,41].

Let M be a connected n-dimensional Riemannian manifold. We use ∇ to denote
the Levi-Civita connection on M . Let x ∈ M , let Tx M denote the tangent space
at x to M . We denote by 〈, 〉x the scalar product on Tx M with the associated norm
‖.‖x , where the subscript x is sometimes omitted. For y ∈ M , let γ : [0, 1] → M
be a piecewise smooth curve joining x to y. Then, the arc-length of γ is defined
by l(γ ) := ∫ 1

0 ‖γ ′(t)‖dt , while the Riemannian distance from x to y is defined by
d(x, y) := infγ l(γ ), where the infimum is taken over all piecewise smooth curves
γ : [0, 1] → M joining x to y. A vector field V is said to be parallel along γ if
∇γ ′ V = 0. In particular, for a smooth curve γ , if γ ′ is parallel along itself, then γ is
called a geodesic, that is, a smooth curve γ is a geodesic if and only if ∇γ ′γ ′ = 0.
A geodesic γ : [0, 1] → M joining x to y is minimal if its arc-length equals its
Riemannian distance between x and y. By the Hopf–Rinow theorem [41], (M, d) is a
complete metric space, and there is at least one minimal geodesic joining x to y. The
closed metric ball in M centered at the point x ∈ M with radius r > 0 is denoted by
B(x, r), i.e.,

B(x, r) := {y ∈ M : d(x, y) ≤ r}.

A complete simply connected Riemannian manifold of non-positive sectional cur-
vature is called a Hadamard manifold. One important example of Hadamard manifold
is the m-dimensional hyperbolic space H

m , which is defined as follows:

H
m := {x = (x1, . . . , xm+1) ∈ R

m+1 : 〈x, x〉H = −1, xm+1 > 0},
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where 〈·, ·〉H denotes the symmetric bilinear form (which is called the Lorentz metric
on R

m+1), defined by

〈x, y〉H :=
n∑

i=1

xi yi − xn+1 yn+1 for any x = (xi ), y = (yi ) ∈ R
m+1.

Then, H
m is a Hadamard manifold with sectional curvature −1 [20,27]. Let κ < 0

and let Mm
κ be the Hadamard manifold obtained from the m-dimensional hyperbolic

space H
m by multiplying the distance function by the constant 1√|κ| .

Consider two geodesic segments γ1, γ2 : [0,+∞[→ M emanating from p (i.e.,
γ1(0) = γ2(0) = p). Let � p(γ1, γ2) denote the angle between γ1 and γ2 at p, which
is defined to be the angle between the tangent vectors γ ′

1(0) and γ ′
2(0). By [27, p.

173, Corollary 1A7.], � p(γ1, γ2) coincides with the Alexandrov angle. Recall that a
geodesic triangle (p1 p2 p3) in M is a figure consisting of three points p1, p2, p3 (the
vertices of (p1 p2 p3)) and three geodesic segments γi (the edges of (p1 p2 p3)) that
join pi−1 to pi+1 with i = 1, 2, 3 (mod3). For each i = 1, 2, 3 (mod3), the inner angle
of (p1 p2 p3) at pi is denoted by � (pi−1 pi pi+1), which equals � pi (−γi−1, γi+1).
The following proposition is known in [40, p. 138].

Proposition 2.1 Let κ < 0 and let (p1 p2 p3) be a geodesic triangle in M2
κ . Then,

the following “law of cosines” holds

cosh(
√|κ|l2) = cosh(

√|κ|l1) cosh(
√|κ|l3)

− sinh(
√|κ|l1) sinh(

√|κ|l3) cos � (p1 p2 p3),

where li = d(pi−1, pi+1) for each i = 1, 2, 3 (mod3).

Another important tool that will be used is the comparison theorem described in
Proposition 2.2 below, which is known in [40, p. 161, Theorem 4.2].

Following [40, p. 161], a generalized geodesic hinge Λ(p; γ, τ ) in M is a figure
consisting of a point p ∈ M (the vertex of the hinge) and two geodesic segments γ, τ

(the edges of the hinge) emanating from p with one being minimal. Moreover, a hinge
Λ( p̄; γ̄ , τ̄ ) in M2

κ is called a comparison hinge of Λ(p; γ, τ ) if it satisfies

l(γ̄ ) = l(γ ), l(τ̄ ) = l(τ ), and � p̄(γ̄ , τ̄ ) = � p(γ, τ ).

Proposition 2.2 Let κ < 0 and suppose that M is a complete Riemannian manifold
of sectional curvature bounded from below by κ . Let Λ(p; γ, τ ) be a generalized
geodesic hinge in M. Then, there exists a comparison hinge Λ( p̄; γ̄ , τ̄ ) in M2

κ such
that d(qγ , qτ ) ≤ d(q̄γ̄ , q̄τ̄ ), where qγ , qτ , q̄γ̄ , and q̄τ̄ denote the end points of γ , τ ,
γ̄ , and τ̄ , respectively.

Let Γxy denote the set of all geodesics γ : [0, 1] → M with γ (0) = x and
γ (1) = y. Then, Γxy is nonempty for all x, y ∈ M . Consider next a real-valued
function f : M → R. We say that f is convex on M if, for any x, y ∈ M and any
γ ∈ Γxy , the composition ( f ◦ γ ) : [0, 1] → R is a convex function on [0, 1], i.e.,
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f (γ (t)) ≤ (1 − t) f (x) + t f (y) for all t ∈ [0, 1].

For the remainder, we always assume that f : M → R is convex on M . Then, as
pointed out in [21, p. 642] (see also [25, p. 70]), f is Lipschitz continuous on any
compact subset of M . This, in particular, implies that f is continuous on M . Let
x ∈ M . We define the subdifferential ∂ f (x) of f at x by

∂ f (x) := {g ∈ Tx M : f (y) ≥ f (x) + 〈g, γ ′(0)〉, ∀y ∈ M and γ ∈ Γxy}.

Then, ∂ f (x) is a nonempty, closed convex set in the space Tx M . Furthermore, by the
Lipschitz continuity, one sees that

∂ f (·) is uniformly bounded on any bounded subset of M (1)

(see also [38]).
We end this section with the notions of the distance function and the projection

associated to a subset Q of M . The distance function dQ(·) of Q is defined by

dQ(x) := inf
y∈Q

d(x, y) for each x ∈ M;

while the projection P(·|Q) on Q is defined by

P(x |Q) := {
y ∈ Q : d(x, y) = dQ(x)

}
for each x ∈ M.

Note that, in general, P(·|Q) is a set-valued map even if Q is convex in the sense that,
for any y, z ∈ Q, any minimal geodesic joining y to z is in Q. For example, consider
M := S

2, the two dimensional sphere, and

Q := {(t1, t2, t3) ∈ M : each ti ≥ 0}.

Let x0 := (0, 0,−1). Then, dQ(x0) = π
2 and P(x0|Q) = {(t1, t2, 0) ∈ Q}.

3 Algorithm and Auxiliary Results

Let I := {1, 2, . . . , m}, where m ∈ N, and let fi : M → R be a convex function for
each i ∈ I . Consider a family of closed and convex subsets {Qi : i ∈ I } in M with
each Qi given by

Qi := {x ∈ M : fi (x) ≤ 0} .

The CFP on Riemannian manifold M considered here consists in finding a point x∗
satisfying

x∗ ∈ Q :=
m⋂

i=1

Qi .

Let f : M → R be the sup-function of { fi : i ∈ I } defined by
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f (x) := max
i∈I

fi (x) for each x ∈ M.

Then, f is convex on M , and the solution set Q is re-expressed as

Q = {x ∈ M : f (x) ≤ 0}.

We assume throughout the whole paper that Q �= ∅.
The following algorithm was proposed in [38] by Bento et al. for solving the CFP

on Riemannian manifolds, which is actually suggested by the book of Udriste (see
[25, Chap. 7, §3 and §4]); in particular, this algorithm coincides with “the gradient
method” described in [25, p. 263] in the case when f is smooth.

Algorithm 3.1 Step 1. Select x0 ∈ M and put k := 0.
Step 2. If f (xk) ≤ 0, then stop; otherwise, go to Step 3.
Step 3. Put ik := (k mod m) + 1.
Step 4. If fik (xk) ≤ 0, then set xk+1 := xk ; otherwise, go to Step 5.
Step 5. Select gk ∈ ∂ fik (xk), tk ∈ (0,+∞) and construct the geodesic γk such
that

γk(0) = xk and γ ′
k(0) = − gk

‖gk‖ . (2)

Step 6. Set xk+1 := γk(tk).
Step 7. Replace k by k + 1 and go to Step 2.

Remark 3.1 (i) Note that the selected gk ∈ ∂ fik (xk) in Step 5 is nonzero (otherwise,
xk is a minimum of fik and then, fik (xk) ≤ 0). This means that Algorithm 3.1 is
well defined.

(ii) The sequence {tk} is called the step size sequence. By Algorithm 3.1, we have that

d(xk, xk+1) ≤ tk for each k ∈ N. (3)

To analyze the convergence of Algorithm 3.1, we first establish the basic inequality
on Riemannian manifolds. For simplicity, we define the function h̄ :]0,∞[→ R

by

h̄(t) := tanh t

t
for any t ∈]0,∞[.

It is easy to verify that h̄ is strictly decreasing on ]0,∞[.
For the remainder of the paper, we assume that the Riemannian manifold M is of

sectional curvature bounded from below by some negative number κ .

Lemma 3.1 Let {xk} be a sequence generated by Algorithm 3.1. Let z ∈ M and let
k ≥ 0 be such that fik (xk) > 0. Then, the following inequality holds:
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cosh
(√|κ|d(xk+1, z)

)
≤ cosh

(√|κ|d(xk, z)
)

(4)

+√|κ| cosh
(√|κ|d(xk, z)

)
sinh(

√|κ|tk)

·
(

tk
2

− h̄
(√|κ|d(xk, z)

) fik (xk) − fik (z)

‖gk‖
)

.

Proof Without loss of generality, we assume that κ = −1. Take z ∈ M and let
τk : [0, 1] → M be a minimal geodesic segment joining xk and z with τk(0) = xk

and τk(1) = z. Let γk : [0, tk] → M be the geodesic segment defined by Algorithm
3.1. Then,

l(γk) = tk, l(τk) = d(xk, z). (5)

Consider the generalized geodesic hinge Λ(xk; γk, τk) in M , and let
α := �

xk (γk, τk). Then α coincides with the angle between the tangent vectors γ ′
k(0)

and τ ′
k(0) in the tangent space Txk M . This, together with (2), implies that

〈gk, τ ′
k(0)〉 = −‖gk‖ · d(xk, z) cos α. (6)

By Proposition 2.2, there exists a comparison geodesic hinge Λ(x̄ k; γ̄k, τ̄k) of the
hinge Λ(xk; γk, τk) in M2−1 such that

d(xk+1, z) ≤ d(x̄ k+1, z̄), (7)

where x̄ k+1 and z̄ are the end points of γ̄k and τ̄k , respectively. Consider the geodesic
triangle (x̄ k x̄k+1 z̄) in M2−1. By the definition of the comparison geodesic hinge and
using (5), we have that

d(x̄ k, x̄ k+1) = tk, d(x̄ k, z̄) = d(xk, z), and �
x̄ k (γ̄k, τ̄k) = α.

Then, applying the “law of cosines” to the geodesic triangle (x̄ k x̄k+1 z̄) in M2−1, we
get

cosh d(x̄ k+1, z̄) = cosh d(xk, z) cosh tk − sinh d(xk, z) sinh tk cos α.

Combing this and (7) yields that

cosh d(xk+1, z) ≤ cosh d(xk, z) cosh tk − sinh d(xk, z) sinh tk cos α. (8)

By elementary calculus, one can easily verify that

cosh t ≤ 1 + t

2
sinh t for any t ≥ 0.
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It follows from (8) that

cosh d(xk+1, z) ≤ cosh d(xk, z)

(

1 + tk sinh tk
2

)

− sinh d(xk, z) sinh tk cos α

= cosh d(xk, z) + cosh d(xk, z) sinh tk

[
tk
2

− tanh d(xk, z) cos α

]

. (9)

Recall that gk ∈ ∂ fik (xk). By equality (6), one has that

fik (z) ≥ fik (xk) + 〈gk, τ ′
k(0)〉 = fik (xk) − ‖gk‖ · d(xk, z) cos α;

hence,

− cos α ≤ − fik (xk) − fik (z)

d(xk, z)‖gk‖ .

Substituting this into (9) and recalling the definition of the function h̄, we see that (4)
holds, and the proof is complete. ��
Set

f ∗ := inf
x∈M

f (x).

Then, f ∗ ≤ 0 by the nonemptiness assumption of Q. Throughout the whole paper, let
{ f ∗

i : i ∈ I } ⊆ R satisfy

f ∗ ≤ f ∗
i ≤ 0 for each i ∈ I

and choose the step size sequence {tk} as follows:

tk :=
{

αk
fik (xk )− f ∗

ik
‖gk‖ , if fik (xk) > 0,

0, otherwise,
(10)

where ik = (k mod m) + 1. Set

C := {x ∈ M : fi (x) ≤ f ∗
i , ∀i ∈ I }.

Note that C ⊆ Q and the equality holds if each f ∗
i = 0. Furthermore, let x0 ∈ M and

write r0 := dC (x0).

Lemma 3.2 Let x0 ∈ M and suppose that

0 < inf
k

αk ≤ sup
k

αk < 2h̄(2
√|κ|r0). (11)
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Let {xk} be a sequence generated by Algorithm 3.1 with initial point x0. Set

C̃ := C
⋂

⎛

⎝
⋃

ω∈P(x0|C)

B(ω, r0)

⎞

⎠

and let z ∈ C̃. Then, the following estimate holds for each k ∈ N:

d2(xk+1, z) ≤ d2(xk, z) − σ t2
k

4β
, (12)

where

β := sinh(2
√|κ|r0)

4
√|κ|r0

and σ := min

{

inf
k

αk, 2 − supk αk

h̄(2
√|κ|r0)

}

.

Proof As in the proof of Lemma 3.1, we also assume that κ = −1. By the definition
of σ , assumption (11) implies that σ ∈]0, 1[ and

σ ≤ αk ≤ (2 − σ)h̄(2r0) for each k ∈ N. (13)

Without loss of generality, we assume that fik (xk) > 0 (otherwise, xk+1 = xk and
(12) holds trivially by (10)). Then,

fik (xk) − fik (z) ≥ fik (xk) − f ∗
ik

> 0 (14)

(noting that z ∈ C̃). By the choice of tk and noting (13), one sees that

tk
2

= αk

2

fik (xk) − f ∗
ik

‖gk‖ ≤
[

h̄(2r0) − σ h̄(2r0)

2

] fik (xk) − f ∗
ik

‖gk‖ .

This, together with (14), implies that

tk
2

− h̄
(

d(xk, z)
) fik (xk) − fik (z)

‖gk‖

≤
[

h̄(2r0) − h̄
(

d(xk, z)
)

− σ h̄(2r0)

2

] fik (xk) − f ∗
ik

‖gk‖ .

Applying (4), we get that

cosh d(xk+1, z) ≤ cosh d(xk, z) (15)

+ cosh d(xk, z) sinh tk

[

h̄(2r0) − h̄
(

d(xk, z)
)

− σ h̄(2r0)

2

] fik (xk) − f ∗
ik

‖gk‖ .
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Since σ > 0, we have that

cosh d(xk+1, z) ≤ cosh d(xk, z) (16)

+ cosh d(xk, z) sinh tk
[
h̄(2r0) − h̄

(
d(xk, z)

)] fik (xk) − f ∗
ik

‖gk‖ .

Below, we use mathematical induction to show that

d(xk, z) ≤ 2r0 (17)

holds for each k ∈ N. By the choice of z and the definition of C̃ , we can choose
ω ∈ P(x0|C) such that d(z, ω) ≤ r0. Thus, (17) is clear for k = 0, because

d(x0, z) ≤ d(x0, ω) + d(ω, z) ≤ 2r0.

Now, suppose that (17) is valid for k = n, that is,

d(xn, z) ≤ 2r0. (18)

Then,
h̄(2r0) ≤ h̄

(
d(xn, z)

)
(19)

(as h̄ is decreasing on ]0,+∞[). It follows from (16) that

cosh d(xn+1, z) ≤ cosh d(xn, z);

hence, d(xn+1, z) ≤ d(xn, z). This, together with (18), yields that (17) holds for
k = n + 1. Therefore, (17) is checked for all k ∈ N, and so (19) holds for all n ∈ N.
Thus, combining (15) and (19) (with k in place of n), one concludes that

cosh d(xk+1, z) ≤ cosh d(xk, z) − cosh d(xk, z) sinh tk
σ h̄(2r0)

(
fik (xk )− f ∗

ik

)

2‖gk‖ . (20)

Recalling (17), one can use Taylor expansion for the function cosh(·) to verify the
following estimate:

cosh d(xk+1, z) − cosh d(xk, z) ≥ β
(

d2(xk+1, z) − d2(xk, z)
)

,

where β := sinh(2r0)
4r0

. This, together with (20), implies that

d2(xk+1, z) ≤ d2(xk, z) − σ

2β
h̄(2r0) cosh d(xk, z) sinh tk

fik (xk) − f ∗
ik

‖gk‖ .
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Since sinh tk > tk and cosh d(xk, z) ≥ 1, it follows that

d2(xk+1, z) ≤ d2(xk, z) −
σ h̄(2r0)tk

(
fik (xk) − f ∗

ik

)

2β‖gk‖ . (21)

On the other hand, using (10) and (13), we see that

fik (xk) − f ∗
ik

‖gk‖ = tk
αk

≥ tk
(2 − σ)h̄(2r0)

≥ tk
2h̄(2r0)

.

This, together with (21), yields (12). The proof is complete. ��
Remark 3.2 Suppose that assumption (11) holds. Then, the following assertions hold
by Lemma 3.2:

(i) The sequence {xk} ⊆ B(ω, r0) for any point ω ∈ P(x0|C), and is Fejér convergent
to C̃ in the sense that

d(xk+1, z) ≤ d(xk, z) for each k ∈ N and z ∈ C̃ . (22)

(ii) By (1), we have that

L := sup{‖g‖ : g ∈ ∂ fi (xk), (i, k) ∈ I × N} < +∞. (23)

(iii) By (3) and (12), we have that

lim
k→∞ d(xk+1, xk) = lim

k→∞ tk = 0. (24)

4 Convergence Results

We assume in this section that f ∗
i = 0 for each i ∈ I in the step size sequence {tk},

that is Algorithm 3.1 employs the following step sizes

tk :=
{

αk
fik (xk )

‖gk‖ , if fik (xk) > 0,

0, otherwise.

Then, one has that C = Q. The main result of this section is as follows.

Theorem 4.1 Let x0 ∈ M and suppose that assumption (11) holds. Then, any
sequence {xk} generated by Algorithm 3.1 with initial point x0 converges to a point
x∞ ∈ Q.

Proof By assumption (11), Remark 3.2 is applicable. Then, {xk} satisfies (22), (24),
and that

d(xk, ω) ≤ r0 for any ω ∈ P(x0|C). (25)
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Thus, there exists a subsequence {xk j } of {xk} such that xk j → x∞ ∈ M . Below,
we verify that x∞ ∈ Q, that is, fl(x∞) ≤ 0 for each l ∈ I . To do this, recall that
ik j = (k mod m) + 1 and so ik ∈ I . Thus, without loss of generality, we assume that
ik j = m for each j . Let l ∈ I and consider the subsequence {xk j +l}∞j=0. Then,

xk j +l → x∞ and ik j +l = l, (26)

where the first assertion is true by (24). Recalling the choice of tk , we have that, if
fl(xk j +l) > 0, then

tk j +l = αk j +l
fl(xk j +l)

‖gk j +l‖ ≥ σ

L
fl(xk j +l),

where L > 0 is given by (23); hence,

fl(xk j +l) ≤ L

σ
tk j +l . (27)

This inequality holds trivially if fl(xk j +l) ≤ 0. Thus, (27) holds for each j ∈ N. Since
fl is continuous on M , it follows from (26) that

fl(x∞) = lim
j→∞ fl(xk j +l) ≤ 0.

Therefore, x∞ ∈ Q as l ∈ I is arbitrary. Moreover, by (25), we get that d(x∞, ω) ≤ r0,
and so x∞ ∈ C̃ (noting that C = Q). Appying (22), one concludes that {xk} converges
to x∞ and the proof is complete. ��

As a consequence of Theorem 4.1, we get the following corollary, which was proved
in [38].

Corollary 4.1 Suppose that the sectional curvature of M is non-negative and that

0 < inf
k

αk ≤ sup
k

αk < 2. (28)

Then, any sequence {xk} generated by Algorithm 3.1 with initial point x0 ∈ M con-
verges to a point x∞ ∈ Q.

Proof Let x0 ∈ M . Recall that function h̄ is continuous on ]0,∞[ and h̄(0) = 1.
Then, by assumption (28), one can choose κ < 0 such that assumption (11) holds.
Furthermore, by assumption, it is clear that the sectional curvature of M is bounded
from below by κ . Thus, Theorem 4.1 is applicable to complete the proof. ��
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5 Finite Convergence

Recall that the step size sequence is given as in (10):

tk :=
{

αk
fik (xk )− f ∗

ik
‖gk‖ , if fik (xk) > 0,

0, otherwise,

where ik = (k mod m) + 1 and f ∗ ≤ f ∗
i ≤ 0 for each i ∈ I . We suppose in this

section that the CFP on M satisfies the Slater condition:

f ∗ < 0,

and that { f ∗
i : i ∈ I } satisfies

f ∗ ≤ f ∗
i < 0 for each i ∈ I.

The following theorem shows that Algorithm 3.1 terminates in a finite number of
iterations.

Theorem 5.1 Let x0 ∈ M and suppose that assumption (11) holds. Then, any
sequence {xk} generated by Algorithm 3.1 with initial point x0 terminates in a finite
number of iterations.

Proof Suppose on the contrary that Algorithm 3.1 generates an infinite sequence {xk},
which satisfies that

sup
i∈I

fi (xk) > 0 for each k ∈ N.

This means that there exists a subsequence {xk j } such that

fik j
(xk j ) > 0 for each j ∈ N, (29)

where ik j = (k j mod m) + 1 as before. Moreover, by assumption (11), Remark 3.2 is
applicable. Therefore, {xk} is bounded and (24) holds. Thus, without loss of generality,
we may further assume that {xk j } converges to some point x∞ ∈ M and ik j = 1 for
each j (as each ik j is in the finite set I ). Since f1 is continuous on M , it follows from
(29) that

f1(x∞) = lim
j→+∞ f1(xk j ) ≥ 0. (30)

Furthermore, we have that

tk j = αk j

f1(xk j ) − f ∗
1

‖gk j ‖ ≥ σ

L

(
f1(xk j ) − f ∗

1

)
for each j ∈ N,
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where L > 0 is given by (23). Passing to the limit and making use of (24), we get
that f1(x∞) − f ∗

1 ≤ 0; hence, f1(x∞) ≤ f ∗
1 < 0, which contradicts (30). Hence, the

proof is complete. ��
With a similar argument that we did for Corollary 4.1, but using Theorem 5.1 in

place of Theorem 4.1, we can show the following corollary, which was proved in [38,
Theorem 5.1].

Corollary 5.1 Suppose that the sectional curvature of M is non-negative and that

0 < inf
k

αk ≤ sup
k

αk < 2.

Then, any sequence {xk} generated by Algorithm 3.1 with initial point x0 ∈ M termi-
nates in a finite number of iterations.

6 Conclusions

By using a different approach, we generalize the results in [38] for the Riemannian
manifolds with non-negative sectional curvature to those with sectional curvature
bounded from below. In particular, the open problem proposed in [38] has been solved
partially. It is still an open problem how to establish similar convergence results on
Riemannian manifolds without the assumption that the sectional curvature is bounded
from below. Note that, in the Hilbert space setting, if the CFP satisfies a Slater type
condition, then the cyclic subgradient projection algorithm is linearly convergent [1].
Our future work is to establish the linear convergence result about the algorithm
on Riemannian manifolds under a Slater type condition. Moreover, recalling that
every complete, connected Riemannian manifold is a special geodesic metric space
(as pointed out in [27]), we expect that our approach in the present paper can be used
to study similar problems in the setting of geodesic spaces (with curvature bounded
from below).
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